MAX5900LCEUT-T中文资料
- 格式:pdf
- 大小:296.60 KB
- 文档页数:14
General DescriptionThe MAX200–MAX211/MAX213 transceivers are designed for RS-232 and V.28 communication inter-faces where ±12V supplies are not available. On-board charge pumps convert the +5V input to the ±10V need-ed for RS-232 output levels. The MAX201 and MAX209operate from +5V and +12V, and contain a +12V to -12V charge-pump voltage converter.The MAX200–MAX211/MAX213 drivers and receivers meet all EIA/TIA-232E and CCITT V.28 specifications at a data rate of 20kbps. The drivers maintain the ±5V EIA/TIA-232E output signal levels at data rates in excess of 120kbps when loaded in accordance with the EIA/TIA-232E specification.The 5µW shutdown mode of the MAX200, MAX205,MAX206, and MAX211 conserves energy in battery-powered systems. The MAX213 has an active-low shut-down and an active-high receiver enable control. Two receivers of the MAX213 are active, allowing ring indica-tor (RI) to be monitored easily using only 75µW power.The MAX211 and MAX213 are available in a 28-pin wide small-outline (SO) package and a 28-pin shrink small-outline (SSOP) package, which occupies only 40% of the area of the SO. The MAX207 is now avail-able in a 24-pin SO package and a 24-pin SSOP. The MAX203 and MAX205 use no external components,and are recommended for applications with limited circuit board space.ApplicationsComputersLaptops, Palmtops, Notebooks Battery-Powered Equipment Hand-Held Equipment Next-Generation Device Features ♦For Low-Cost Applications:MAX221E: ±15kV ESD-Protected, +5V, 1µA, Single RS-232 Transceiver with AutoShutdown™♦For Low-Voltage and Space-Constrained Applications:MAX3222E/MAX3232E/MAX3237E/MAX3241E/MAX3246E: ±15kV ESD-Protected, Down to 10nA,+3.0V to +5.5V, Up to 1Mbps, True RS-232Transceivers (MAX3246E Available in UCSP™Package)♦For Space-Constrained Applications:MAX3228E/MAX3229E: ±15kV ESD-Protected,+2.5V to +5.5V, RS-232 Transceivers in UCSP ♦For Low-Voltage or Data Cable Applications:MAX3380E/MAX3381E: +2.35V TO +5.5V, 1µA,2Tx/2Rx RS-232 Transceivers with ±15kV ESD-Protected I/O and Logic Pins ♦For Low-Power Applications:MAX3224E–MAX3227E/MAX3244E/MAX3245E:±15kV ESD-Protected, 1µA, 1Mbps, +3.0V to+5.5V, RS-232 Transceivers with AutoShutdown Plus™MAX200–MAX211/MAX213+5V , RS-232 Transceivers with 0.1µF External Capacitors ________________________________________________________________Maxim Integrated Products 119-0065; Rev 6; 10/03For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .Ordering Information appears at end of data sheetAutoShutdown, AutoShutdown Plus, and UCSP are trademarks of Maxim Integrated Products, Inc.MAX200–MAX211/MAX213+5V , RS-232 Transceiverswith 0.1µF External Capacitors______________________________________________________________________________________19Ordering Information*Contact factory for dice specifications.M A X 200–M A X 211/M A X 213+5V , RS-232 Transceiverswith 0.1µF External Capacitors Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.20____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,go to /packages .)。
General DescriptionThe MAX4580/MAX4590/MAX4600 dual analog switches feature low on-resistance of 1.25Ωmax. On-resistance is matched between switches to 0.25Ωmax and is flat (0.3Ωmax) over the specified signal range. Each switch can handle Rail-to-Rail ®analog signals. The off-leakage current is only 2.5nA max at +85°C. These analog switches are ideal in low-distortion applications and are the preferred solution over mechanical relays in automat-ic test equipment or applications where current switching is required. They have low power requirements, require less board space, and are more reliable than mechanical relays.The MAX4580 has two NC (normally closed) switches,the MAX4590 has two NO (normally open) switches,and the MAX4600 has one NC (normally closed) and one NO (normally open) switch.These switches operate from a +4.5V to +36V single supply or from ±4.5V to ±20V dual supplies. All digital inputs have +0.8V and +2.4V logic thresholds, ensuring TTL/CMOS-logic compatibility when using a +12V sin-gle supply or ±15V dual supplies.ApplicationsReed Relay Replacement Test EquipmentCommunication Systems PBX, PABX SystemsFeatureso Low On-Resistance (1.25Ωmax)o Guaranteed R ON Match Between Channels (0.25Ωmax)o Guaranteed R ON Flatness Over Specified Signal Range (0.3Ωmax)o Rail-to-Rail Signal Handlingo Guaranteed ESD Protection >2kV per Method 3015.7o Single-Supply Operation: +4.5V to +36V Dual-Supply Operation: ±4.5V to ±20V o TTL/CMOS-Compatible Control InputsMAX4580/MAX4590/MAX46001.25Ω, Dual SPST,CMOS Analog Switches________________________________________________________________Maxim Integrated Products119-1394; Rev 1; 6/03Ordering Information continued at end of data sheet.Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.Pin Configurations/Functional Diagrams/Truth TablesOrdering InformationFor pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at 1-888-629-4642, or visit Maxim’s website at .M A X 4580/M A X 4590/M A X 46001.25Ω, Dual SPST,CMOS Analog Switches 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V+ to GND..............................................................-0.3V to +44V V- to GND...............................................................+0.3V to -44V V+ to V-...................................................................-0.3V to +44V V L to GND....................................................-0.3V to (V+ + 0.3V)All Other Pins to GND (Note 1) ...........(V- - 0.3V) to (V+ + 0.3V)Continuous Current (COM_, NO_, NC_) .......................±200mA Peak Current (COM_, NO_, NC_)(pulsed at 1ms, 10% duty cycle) ..............................±300mAContinuous Power Dissipation (T A = +70°C)16 SSOP (derate 7.1mW/°C above +70°C).................571mW 16 Wide SO (derate 9.52mW/°C above +70°C) ..........762mW 16 Plastic DIP (derate 10.53mW/°C above +70°C).....842mW Operating Temperature RangesMAX4_ _0C_E ....................................................0°C to +70°C MAX4_ _0E_E ..................................................-40°C to +85°C Storage Temperature Range ...........................-65°C to +160°C Lead Temperature (soldering, 10sec) ............................+300°CELECTRICAL CHARACTERISTICS–Dual Supplies(V+ = +15V, V- = -15V, V L = +5V, V IN_H = +2.4V, V IN_L = +0.8V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)Note 1:Signals on NC_, NO_, COM_, or IN_ exceeding V+ or V- are clamped by internal diodes. Limit forward diode current tomaximum current rating.ELECTRICAL CHARACTERISTICS–Dual Supplies (continued)MAX4580/MAX4590/MAX46001.25Ω, Dual SPST,CMOS Analog Switches (V+ = +15V, V- = -15V, V L= +5V, V IN_H= +2.4V, V IN_L= +0.8V, T A = T MIN to T MAX, unless otherwise noted. Typical values are atT A= +25°C.)_______________________________________________________________________________________3M A X 4580/M A X 4590/M A X 46001.25Ω, Dual SPST,CMOS Analog Switches 4_______________________________________________________________________________________ELECTRICAL CHARACTERISTICS–Single Supply(V+ = +12V, V- = 0, V L = +5V, V INH = 2.4V, V INL = 0.8V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T = +25°C.)MAX4580/MAX4590/MAX46001.25Ω, Dual SPST,CMOS Analog Switches_______________________________________________________________________________________5ELECTRICAL CHARACTERISTICS—Single Supply (continued)(V+ = +12V, V- = 0, V L = +5V, V IN_H = 2.4V, V IN_L = 0.8V, T A = T MIN to T MAX , unless otherwise noted. Typical values are at T A = +25°C.)Note 2:The algebraic convention, where the most negative value is a minimum and the most positive value a maximum, is used inthis data sheet.Note 3:Guaranteed by design.Note 4:∆R ON = R ON(MAX)- R ON(MIN).Note 5:Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over thespecified analog signal range.Note 6:Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at +25°C.Note 7:Off-isolation = 20 log 10[V COM / (V NC or V NO )], V COM = output, V NC or V NO = input to off switch.Note 8:Between any two switches.Note 9:Leakage testing at single supply is guaranteed by testing with dual supplies.0.51.01.52.02.5-20-12-8-16-448121620ON-RESISTANCE vs. V COM(DUAL SUPPLIES)V COM (V)R O N (Ω)ON-RESISTANCE vs. V COMAND TEMPERATURE (DUAL SUPPLIES)V COM (V)R O N (Ω)129-12-9-63-360.50.60.70.80.91.01.11.20.4-1515ON-RESISTANCE vs. V COM(SINGLE SUPPLY)V COM (V)R O N (Ω)2220181614121086421234524Typical Operating Characteristics(Circuit of Figure 1, T A = +25°C, unless otherwise noted.)Typical Operating Characteristics (continued)(Circuit of Figure 1, T A = +25°C, unless otherwise noted.)M A X 4580/M A X 4590/M A X 46001.25Ω, Dual SPST,CMOS Analog Switches 6_______________________________________________________________________________________ON-RESISTANCE vs. V COMAND TEMPERATURE (SINGLE SUPPLY)V COM (V)R O N (Ω)11108923456710.250.500.751.001.251.501.752.002.2500120.0010.010.11100101000-4020-20406080100POWER-SUPPLY CURRENTvs. TEMPERATURETEMPERATURE (°C)I +, I - (n A )10,0000.0010.01110-4020-20406080100ON/OFF-LEAKAGE vs. TEMPERATURETEMPERATURE (°C)L E A K A G E (n A )-500-3000200400-400-100100300500-15-50-10515CHARGE INJECTIONvs. V COMV COM (V)Q (p C )10-2000-1000.011100.1100-80FREQUENCY (MHz)L O S S (d B )P H A S E (d e g r e e s )-60-40-20-90-70-50-30-10+180-720-540-360-1800-630-450-270-90+9050100150250300-4010-15356085TURN-ON/TURN-OFF TIME vs. TEMPERATURETEMPERATURE (°C)t O N , t O F F (n s )MAX4580/MAX4590/MAX46001.25Ω, Dual SPST,CMOS Analog Switches_______________________________________________________________________________________7801202001602402801012111314151617181920TURN-ON/TURN-OFF TIME vs. SUPPLY VOLTAGEV+, V- (V)t O N , t O F F (n s )Typical Operating Characteristics (continued)(Circuit of Figure 1, T A = +25°C, unless otherwise noted.)TURN-ON/TURN-OFF TIME vs. V COMV COM (V)t O N , t O F F (n s )8642-2-4-6-8120140160180200220100-1010Pin DescriptionM A X 4580/M A X 4590/M A X 46001.25Ω, Dual SPST,CMOS Analog Switches8__________________________________________________________________________________________________Applications InformationOvervoltage ProtectionProper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maxi-mum ratings, because stresses beyond the listed rat-ings can cause permanent damage to the devices.Always sequence V+ on first, then V-, followed by the logic inputs, NO, or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with supply pins for overvoltage protection (Figure 1). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices’ low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+and V- should not exceed 44V. These protection diodes are not recommended when using a single supply.Figure 1. Overvoltage Protection Using External Blocking DiodesFigure 2. Switching-Time Test CircuitMAX4580/MAX4590/MAX46001.25Ω, Dual SPST,CMOS Analog Switches_______________________________________________________________________________________9Figure 4. Off-Isolation Test Circuit Figure 5. Crosstalk Test CircuitM A X 4580/M A X 4590/M A X 46001.25Ω, Dual SPST,CMOS Analog Switches 10______________________________________________________________________________________Ordering Information (continued)___________________Chip InformationTRANSISTOR COUNT: 100Figure 6. Switch Off-Capacitance Test CircuitFigure 7. Switch On-Capacitance Test CircuitPackage InformationMAX4580/MAX4590/MAX46001.25Ω, Dual SPST,CMOS Analog Switches (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline informationgo to /packages.) Array______________________________________________________________________________________11M A X 4580/M A X 4590/M A X 46001.25Ω, Dual SPST,CMOS Analog Switches S O I C W .E P SPackage Information (continued)(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to /packages .)Ma xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2003 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.。
MAX809 Series,MAX810 SeriesVery Low Supply Current 3-Pin Microprocessor Reset MonitorsThe MAX809 and MAX810 are cost–effective system supervisor circuits designed to monitor V CC in digital systems and provide a reset signal to the host processor when necessary. No external components are required.The reset output is driven active within 10 µsec of V CC falling through the reset voltage threshold. Reset is maintained active for a minimum of 140 msec after V CC rises above the reset threshold. The MAX810 has an active–high RESET output while the MAX809 has an active–low RESET output. The output of the MAX809 is guaranteed valid down to V CC = 1.0 V. Both devices are available in a SOT–23 package.The MAX809/810 are optimized to reject fast transient glitches on the V CC line. Low supply current of 1.0 µA (V CC= 3.2 V) makes these devices suitable for battery powered applications.Features•Precision V CC Monitor for 2.5 V, 3.0 V, 3.3 V, and 5.0 V Supplies •Precision Monitoring V oltages from 1.6 V to 4.9 V Availablein 100 mV Steps•140 msec Guaranteed Minimum RESET Output Duration •RESET Output Guaranteed to V CC = 1.0 V•Low Supply Current•V CC Transient Immunity•Small SOT–23 Package•No External Components•Wide Operating Temperature: –40°C to 105°CTypical Applications•Computers•Embedded Systems•Battery Powered Equipment•Critical µP Power Supply MonitoringV CCFigure 1. Typical Application DiagramDevice Package ShippingORDERING INFORMATIONMAX809xTR SOT–233000 Tape/Reel MAX809SNxxxT1SOT–233000 Tape/Reel NOTE:*SOT–23 is equivalent to JEDEC (TO–236) **RESET is for MAX809***RESET is for MAX810SOT–23(TO–236)CASE 318PIN CONFIGURATION312V CCGNDRESET**SOT–23*(Top View)xx, xxx= Specific Device Codem= Date Codey= Yearw= Work WeekMARKINGDIAGRAMS32xxxm1(RESET)***MAX810xTR SOT–233000 Tape/ReelSee general marking information in the device marking section on page 8 of this data sheet.DEVICE MARKING INFORMATION NOTE: The “x” and “xxx” denotes a suffix for V cc voltage threshold options – see page 8 for more details.32xxyw1See specific device markinginformation on page 8.PIN DESCRIPTIONABSOLUTE MAXIMUM RATINGS* (Note 1)1.This device series contains ESD protection and exceeds the following tests:Human Body Model 2000 V per MIL–STD–883, Method 3015. Machine Model Method 350 V.2.The maximum package power dissipation limit must not be exceeded.P D +T J(max)*T Aq JAwith T J(max) = 150°C ELECTRICAL CHARACTERISTICS T A = –40°C to +105°C unless otherwise noted. Typical values are at T A = +25°C. (Note 3)The following data is given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V.AELECTRICAL CHARACTERISTICS(continued) T A = –40°C to +105°C unless otherwise noted. Typical values are at T A = +25°C. (Note 4) The following data is given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V.A5.Contact your ON Semiconductor sales representative for other threshold voltage options.ELECTRICAL CHARACTERISTICS (V CC = Full Range, T A = –40°C to +85°C unless otherwise noted. Typical values are at T A = +25°C, V CC = 5.0 V for L/M/J, 3.3 V for T/S, 3.0 V for R) (Note 6) The following data is given for MAX809 threshold levels: 2.63 V, 3.08 V, 4.00 V and 4.38 V; MAX810 threshold levels: 2.63 V, 2.93 V, 3.08 V, 4.38 V and 4.63 V.AAPPLICATIONS INFORMATIONV CC Transient RejectionThe MAX809 provides accurate V CC monitoring and reset timing during power–up, power–down, and brownout/sag conditions, and rejects negative–going transients (glitches)on the power supply line. Figure 2 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies under the curve will not generate a reset signal. Combinations above the curve are detected as a brownout or power–down. Typically, transient that goes 100 mV below the reset threshold and lasts 5 µs or less will not cause a reset pulse. Transient immunity can be improved by adding a capacitor in close proximity to the V CC pin of the MAX809.Figure 2. Maximum Transient Duration vs. Overdrivefor Glitch Rejection at 25°CV CC10.010080110.060.0M A X I M U M T R A N S I E N T D U R A T I O N (µs e c )20120RESET COMPARATOR OVERDRIVE (mV)160.06040RESET Signal Integrity During Power–DownThe MAX809 RESET output is valid to V CC = 1.0 V .Below this voltage the output becomes an “open circuit” and does not sink current. This means CMOS logic inputs to the µP will be floating at an undetermined voltage. Most digital systems are completely shutdown well above this voltage.However, in situations where RESET must be maintainedvalid to V CC = 0 V , a pull–down resistor must be connected from RESET to ground to discharge stray capacitances and hold the output low (Figure 3). This resistor value, though not critical, should be chosen such that it does not appreciably load RESET under normal operation (100 k W will be suitable for most applications).Figure 3. Ensuring RESET Valid to V CC = 0 VProcessors With Bidirectional I/O PinsSome µP’s (such as Motorola 68HC11) have bi–directional reset pins. Depending on the current drive capability of the processor pin, an indeterminate logic level may result if there is a logic conflict. This can be avoided by adding a 4.7 k W resistor in series with the output of the MAX809 (Figure 4). If there are other components in the system which require a reset signal, they should be buffered so as not to load the reset line. If the other components are required to follow the reset I/O of the µP, the buffer should be connected as shown with the solid line.Figure 4. Interfacing to Bidirectional Reset I/OBUFFERED RESETThe following data is given for MAX809 threshold levels: 1.60 V, 2.32 V, 2.93 V, 4.63 V and 4.90 V.1.10S U P P L Y C U R R E N T I N M I C R O A M PTEMPERATURE (°C)N O R M A L I Z E D P O W E R –U P R E S E T T I M E O U T–404020–206080Figure 7. Normalized Power–Up Reset vs.Temperature Figure 8. Normalized Reset Threshold Voltagevs. TemperatureTEMPERATURE (°C)–404020–206080The following data is given for MAX809 threshold levels: 2.63 V, 3.08 V, 4.00 V and 4.38 V;MAX810 threshold levels: 2.63 V, 2.93 V, 3.08 V, 4.38 V and 4.63 V.S U P P L Y C U R R E N T ( A )m 040206080100P O W E R -D O W N R E S E T D E L A Y ( s e c )m TEMPERATURE (C °)-40-200204085Figure 13. Power–Up Reset Timeout vs.Temperature TEMPERATURE (C °)-40-20020406085225235230240245250P O W E R -U P R E S E T T I M E O U T (m s e c )60Figure 14. Normalized Reset Threshold vs.TemperatureTAPING FORMComponent Taping Orientation for 3L SOT–23 (JEDEC–236) Devices(Mark Right Side Up)SOT–23Package Carrier Width (W)Pitch (P)Part Per Full ReelReel Size 8 mm4 mm30007 inchesTape & Reel Specifications TableMARKING AND THRESHOLD INFORMATIONm = Date Codey = Yearw = Work WeekPACKAGE DIMENSIONSSOT–23PLASTIC PACKAGE (TO–236)CASE 318–08ISSUE AHNOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: INCH.3.MAXIMUM LEAD THICKNESS INCLUDES LEADNotesNotes11ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. PUBLICATION ORDERING INFORMATIONJAPAN: ON Semiconductor, Japan Customer Focus Center4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031Phone: 81–3–5740–2700Email: r14525@。
Electromagnetic Compatibility (EMC)01/11 This machine has been designed in accordance with all relevant directives and standards. However, it may still generate electromagnetic disturbances that can affect other systems like telecommunications (telephone, radio, and television) or other safety systems. These disturbances can cause safety problems in the affected systems. Read and understand this section to eliminate or reduce the amount of electromagnetic disturbance generated by this machine.This machine has been designed to operate in an industrial area. The operator must install and operate thisequipment as described in this manual. If any electromagnetic disturbances are detected the operator must putin place corrective actions to eliminate these disturbances with, if necessary, assistance from Lincoln Electric.This machine is not in accordance with IEC 61000-3-12. If it is powered by a low voltage public distribution network in the connection responsibility of the installer or user of equipment, consultation, if necessary, with the electricity service distributor.Before installing the machine, the operator must check the work area for any devices that may malfunction because of electromagnetic disturbances. Consider the following.∙Input and output cables, control cables, and telephone cables that are in or adjacent to the work area and the machine. ∙Radio and/or television transmitters and receivers. Computers or computer controlled equipment.∙Safety and control equipment for industrial processes. Equipment for calibration and measurement.∙Personal medical devices like pacemakers and hearing aids.∙Check the electromagnetic immunity for equipment operating in or near the work area. The operator must be sure that all equipment in the area is compatible. This may require additional protection measures.∙The dimensions of the work area to consider will depend on the construction of the area and other activities that are taking place.Consider the following guidelines to reduce electromagnetic emissions from the machine.∙Connect the machine to the input supply according to this manual. If disturbances occur if may be necessary to take additional precautions such as filtering the input supply.∙The output cables should be kept as short as possible and should be positioned together. If possible connect the work piece to ground in order to reduce the electromagnetic emissions. The operator must check that connecting the work piece to ground does not cause problems or unsafe operating conditions for personnel and equipment.∙Shielding of cables in the work area can reduce electromagnetic emissions. This may be necessary for special applications.due to conducted as well as radio-frequency disturbances.Safety01/11WARNINGThis equipment must be used by qualified personnel. Be sure that all installation, operation, maintenance and repair procedures are performed only by qualified person. Read and understand this manual before operating this equipment. Failure to follow the instructions in this manual could cause serious personal injury, loss of life, or damage to this equipment. Read and understand the following explanations of the warning symbols. Lincoln Electric is not responsible for damages caused by improper installation, improper care or abnormal operation.Do not remove or paint over (cover) the label.SAFETY MARK: This equipment is suitable for supplying power for cutting operations carried out in anenvironment with increased hazard of electric shock.The manufacturer reserves the right to make changes and/or improvements in design without upgrade at the same time the operator’s manual.Installation and Operator InstructionsRead this entire section before installation or operation of the machine.Location and EnvironmentThis machine can operate in harsh environments. However, it is important that simple preventative measures are followed to assure long life and reliable operation:∙Do not place or operate this machine on a surface with an incline greater than 15° from horizontal.∙Do not use this machine for pipe thawing.∙This machine must be located where there is free circulation of clean air without restrictions for air movement to and from the air vents. Do not cover the machine with paper, cloth or rags when switched on.∙Dirt and dust that can be drawn into the machine should be kept to a minimum.∙This machine has a protection rating of IP23S. Keep it dry when possible and do not place it on wet ground or in puddles.∙Locate the machine away from radio controlled machinery. Normal operation may adversely affect the operation of nearby radio controlled machinery, which may result in injury or equipment damage.Read the section on electromagnetic compatibility in this manual.∙Do not operate in areas with an ambient temperature greater than 40°C.Duty CycleThe duty cycle of a plasma machine is the percentage of time in a 10 minute cycle at which the operator can operate the machine at rated cutting current.Example: 35% duty cycle means that is possible cut for 3,5 minutes, then the machine stops for 6,5minutes.Refer to the Technical Specification section for more information about the machine rated duty cycles.Input Supply ConnectionCheck the input voltage, phase, and frequency supplied to this machine before turning it on. The allowable input voltage is indicated in the technical specification section of this manual and on the rating plate of the machine. Be sure that the machine is grounded.Make sure the amount of power available from the input connection is adequate for normal operation of the machine. The fuse rating and cable sizes are both indicated in the technical specification section of this manual. The machines:∙CITOCUT 25iare designed to operate on engine driven generators as long as the auxiliary can supply adequate voltage, frequency and power as indicated in the "Technical Specification" section of this manual. The auxiliary supply of the generator must also meet the following conditions:∙Vac peak voltage: below 410V.∙Vac frequency: 50Hz.∙RMS voltage of the AC waveform: 230Vac ± 10%.It is important to check these conditions because many engine driven generators produce high voltage spikes. Operation of this machine on engine driven generators not conforming to these conditions is not recommended and may damage the machine.Output ConnectionsWARNINGUse ONLY the torch supplied with this machine. For areplacement refer to the Maintenance section of this manual.WARNINGAlways turn OFF the machine when working on the torch.WARNINGDo not remove the work clamp during cutting, plasma cutting generates high voltages that can kill.WARNINGOpen Circuit Voltage U0 > 100VDC. For more information refer to the Technical Specification section. This machine is sent from the factory with a cutting torch and work clamp installed. The work clamp must be securely connected to the work piece. If the work piece is painted or extremely dirty it may be necessary to expose the bare metal in order to make a good electrical connection.Built-In CompressorThis machine has a built-in compressor that allow to operates in areas where an external primary air is not available. Only an electrical mains supply is necessary!Controls and Operational Features CITOCUT 25i front command panel.Commands descriptions:A. Output Current Knob: Potentiometer used to set theoutput current used during cutting. Refer to the Technical Specification section for more information about the machine rated current range.Air Purge: The Output Current Knob completely rotated counterclockwise enables the air purge function. A 5 minutes timeout stops the purge function; this happens only if the Output Current Knob remains in the purge mode for a long time.B. Power ON/OFF green LED: It lights up when themachine is ON.C. Output red LED: See meanings in the following table.D. Thermal yellow LED: See meanings in the followingtable.LEDs MeaningOutput(Red)Thermal(Yellow)On Off The cutting torch is energized.On OnPart in place error: the retaining capis not properly screwed.To restore the machine:∙Screw firmly the torch retainingcap.∙Wait for 5seconds; during thistime the Output and ThermalLEDs blinks alternately.∙After 5seconds the machine isautomatically restored and readyto operate.Off OnThe machine is overheated and theoutput has been disabled. Thisusually occurs when the duty cycleof the machine has been exceeded.Leave the machine On to allow theinternal components to cool. Whenthe thermal LED turns off, normaloperation is again possible.Off BlinkMains undervoltage or overvoltageerror: the machine is disabled.When the mains return in thecorrect range, the machine restartautomatically.Blink Off Low air pressure error.To check / adjust the air pressure(see recommended values in theTecnical Specifications of thismanual):∙Put the machine in Purge mode[A].∙ Check and adjust the airpressure through themanometer and air pressureregulator knob [F].∙If necessary, check and adjustalso the inlet air pressurethrough the commands of theexternal compressor.E. Internal / External air selection :This switch determine the air supply. With the “InCompr” position selected, the machine operatesthrough the built-in compressor. With the “Ext Air”position selected, the internal compressor iscompletely disabled and the machine operatesthrough an external air supply hose connected to theproper air inlet connection placed on the machine rearside.WARNINGIf operate with external air, be sure to select the “Ext Air” switch position in order to completely disable the built-in compressor. Otherwise the compressor may be damagedby the probable greater pressure of the external air.F. Air Pressure Gauge and Regulator Knob :Allow to regulate and monitoring the air pressure.G. Fan: Provides machine cooling. It is switched ONwith the machine and continues to run till the machine is turned OFF.H. Power Switch: It turns ON / OFF the input power tothe machine.I. Input cable: Connect it to the mains.J. Air Inlet : If the “Ext Air” operating mode is selected, connect here the hose carrying the air to the machine.WARNINGA clean, dry air must be supplied to the machine. A pressure setting above 7.5bar could damage the torch. Failure to observe these precautions could result in excessive operating temperatures or damage to the torch. Cutting ProcessThe air plasma cutting process uses air as primary cutting gas and as torch cooling gas.The air is provided by the built-in compressor with a pressure of 3.5bar (approximate value).The Citicut 25i can reach the best cutting performances operates also with external air; in this case the air pressure is limited by a pressure regulator [F], set at factory at 5.0bar. In case to adjust the air pressure, put the machine in Purge mode [A].The pilot arc is struck as follow:∙“In Compr” operating mode:The torch button enables the built-in compressorthat provide the air flow to the torch. Releasing thetorch button the cutting process is stopped, but thecompressor continues to run for the post-flowstage.∙“Ext Air” operating mode: the torch button energize an electrovalve (solenoid valve). Thisvalve lets the air flow during the cutting and thepost-flow stages.The design concept at the basis of these power sources is to have available a current which remains constant at the set value, independently from the length of the plasma arc. When preparing to cut, make sure you have all materials needed to complete the job and have taken all safety precautions. Install the machine as instructed in this manual and remember to attach the work clamp to the work piece.∙Turn ON the Power Switch [H] placed on the back of the machine; the LED [B] on the front panel will turn ON. The unit is now ready to operate.∙Check that the primary air is available through the Air Purge function [A].∙Set the desired current value with the Output Current[A] knob.To start the cutting process just press the torch button, making sure you are not aiming the torch air blow towards people or foreign objects. During the cutting process it is possible to hold the torch away from the work piece for an extended period of time.To piercing the work piece, lower thetorch onto the metal at a 30° angleaway from the operator. This will blowthe dross (melted metal) away fromthe torch tip.Slowly rotate the torch to the verticalposition as the arc becomes deeper.Once the work piece is pierced normalcutting can occur.Keep moving while cuttingand cut at a steady speed sothat the arc leg is 10° to 20°behind the travel direction.Use a 5° to 15° leading anglein the direction of the cut.Once the cutting process isterminated releasing off thetorch button will cause theplasma arc to be turned off;the air flow will continue forapproximately 20sec. (post-flow) to allow the cooling down of the torch.MaintenanceWARNINGFor any maintenance or repair operations it is recommended to contact the nearest technical service center or Lincoln Electric. Maintenance or repairs performed by unauthorized service centers or personnel will null and void the manufacturers warranty.The frequency of the maintenance operations may vary in accordance with the working environment. Any noticeable damage should be reported immediately.∙Check cables and connections integrity. Replace, if necessary.∙Regularly clean the torch head, check its consumables and if necessary replace them.WARNINGRefer to the torch instructions before changing or servicing the torch.∙Keep clean the machine. Use a soft dry cloth to clean the enclosing case, especially the airflow inlet / outlet louvers.∙Regularly clean the compressor air inlet filter.WARNINGDo not open this machine and do not introduce anything into its openings. Power supply must be disconnected from the machine before maintenance and service. After each repair, perform proper tests to check safety requirements.Cutting SpeedThe cutting speed is a function of:∙ Thickness and of material to be cut.∙ Value of set current. The current setting affects thequality of the cut edge.∙ Geometrical shape of the cut (whether straight orcurved). In order to provide indications on the most suitable setting, the following table was established, based on tests performed on an automatic test-bench; the best results however can only be achieved from direct experience by the operator in his actual working conditions.CITOCUT 25i (internal air) CITOCUT 25i (external air) Speed (cm/min.)Speed (cm/min.)T h i c k n e s sC u r r e n t (A )M I L D S T E E LA L U M I N U MS T A I N L E S S S T E E LC u r r e n t (A )M I L D S T E E L A L U M I N U M S T A I N L E S S S T E E L 4 mm 25 147 94 77.7 25 179 122 112.8 5 mm 25 108 86 59 25 131 104 90 6 mm 25 73 68 47 25 80.6 81.6 70 ¼” 25 55 58 43 25 67 70 62 8 mm --- --- --- --- --- --- --- --- ⅜” 25 10 --- 23 25 12 --- 3010 mm 25 --- --- 20.4 25 --- --- 23.6 11 mm --- --- --- --- --- --- --- --- ½” 25 --- --- 11 25 --- --- 12 15 mm------------------------ ¾” --- --- --- --- --- --- --- ---Customer Assistance PolicyThe business of The Lincoln Electric Company is manufacturing and selling high quality welding equipment, consumables, and cutting equipment. Our challenge is to meet the needs of our customers and to exceed their expectations. On occasion, purchasers may ask Lincoln Electric for advice or information about their use of our products. We respond to our customers based on the best information in our possession at that time. Lincoln Electric is not in a position to warrant or guarantee such advice, and assumes no liability, with respect to such information or advice. We expressly disclaim any warranty of any kind, including any warranty of fitness for any customer’s particular purpose, with respect to such information or advice. As a matter of practical consideration, we also cannot assume any responsibility for updating or correcting any such information or advice once it has been given, nor does the provision of information or advice create, expand or alter any warranty with respect to the sale of our productsLincoln Electric is a responsive manufacturer, but the selection and use of specific products sold by Lincoln Electric is solely within the control of, and remains the sole responsibility of the customer. Many variables beyond the control of Lincoln Electric affect the results obtained in applying these types of fabrication methods and service requirements.Subject to Change – This information is accurate to the best of our knowledge at the time of printing. Please refer to for any updated information.WEEESpare Parts12/05 Part List reading instructions∙Do not use this part list for a machine if its code number is not listed. Contact the Lincoln Electric Service Department for any code number not listed.∙Use the illustration of assembly page and the table below to determine where the part is located for your particular code machine.∙Use only the parts marked "X" in the column under the heading number called for in the assembly page (# indicate a change in this printing).First, read the Part List reading instructions above, then refer to the "Spare Part" manual supplied with the machine, that contains a picture-descriptive part number cross-reference.REACh11/19 Communication in accordance with Article 33.1 of Regulation (EC) No 1907/2006 – REACh.Some parts inside this product contain:Bisphenol A, BPA, EC 201-245-8, CAS 80-05-7Cadmium, EC 231-152-8, CAS 7440-43-9Lead, EC 231-100-4, CAS 7439-92-1Phenol, 4-nonyl-, branched, EC 284-325-5, CAS 84852-15-3in more than 0,1% w/w in homogeneous material. These substances are included in the “Candidate List of Substances of Very High Concern for Authorisation” of REACh.Your particular product may contain one or more of the listed substances.Instructions for safe use:∙use according to Manufacturer instructions, wash hands after use;∙keep out of reach of children, do not put in mouth,∙dispose in accordance with local regulations.Authorized Service Shops Location09/16 ∙The purchaser must contact Lincoln Electric or Authorized Service Facility about any defect claimed under warranty period.∙Contact your local Sales Representative for assistance in locating the nearest Authorized Service Facility. Electrical SchematicRefer to the "Spare Part" manual supplied with the machine.。
置很简单,即使是设置较大的5.1和7.1系统也只需几分钟。
(来自W i SA协会)儒卓力提供具有最高功率密度和效率的英飞凌O pti M O S T M功率M O S F ET英飞凌O p ti M O S TM3和5同类最佳(Bi C)功率M O S F E T采用节省空间的S up e r S O8封装,与先前型号相比,具有更高的功率密度和稳健性,从而降低系统成本和提升整体性能。
由于具有最低的导通电阻,这些Bi C M O S F E T 能够以良好的性价比降低损耗。
此外,通管壳的较低热阻提供了出色的散热性能,从而带来更低的满载运作温度。
较低的反向恢复电荷通过显著减小电压过冲来提高系统可靠性,从而最大限度地减少对缓冲电路的需求,同时也减少了工程成本和工作量。
(来自儒卓力)市场要闻英特尔联合百度,共同开发N e r v ana神经网络训练处理器在近日举行的百度AI开发者大会上,英特尔公司副总裁兼人工智能产品事业部总经理Na v ee n Ra o 宣布,英特尔正与百度合作开发英特尔誖Ne r v a n a TM 神经网络训练处理器(NNP-T)。
这一合作包括全新定制化加速器,以实现极速训练深度学习模型的目的。
英特尔在人工智能方面提供优越的硬件选择,并通过软件来最大化释放硬件的性能,从而帮助客户无论数据多么复杂或位于哪里都可以自如运行AI应用。
此次NNP-T是一类全新开发的高效深度学习系统硬件,能够加速大规模的分散训练。
与百度的密切合作能够确保英特尔开发部门始终紧跟客户对训练硬件的最新需求。
此外,鉴于数据安全对于用户极其重要,英特尔还与百度共同致力于打造基于英特尔软件保护扩展(SG X)技术的M esa T EE*———内存安全功能即服务(F aa S)计算框架。
(来自英特尔)Arm与中国联通成功部署物联网设备管理平台解决方案日前,A r m宣布与中国联通旗下联通物联网有限责任公司(物联网公司)的合作取得了最新进展,A r m已成功部署基于A r m Peli on设备管理平台与M b ed O S操作系统所打造的全新物联网平台,加速推进和完善中国物联网生态发展。
General DescriptionThe MAX2605–MAX2609 evaluation kits (EV kits) simplify evaluation of this family of voltage-controlled oscillators (VCOs). These kits enable testing of the devices’ per-formance and require no additional support circuitry.Both signal outputs use SMA connectors to facilitate connection to RF test equipment.These EV kits are fully assembled and tested. Their oscil-lation frequencies are set to approximately the midrange of the respective VCOs.Featureso Easy Evaluationo Complete, Tunable VCO Test Board with Tank Circuit o Low Phase Noiseo Fully Assembled and TestedEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits19-1673 Rev 0; 9/00Ordering InformationComponent SuppliersFor free samples and the latest literature, visit or phone 1-800-998-8800.For small orders, phone 1-800-835-8769.MAX2606 Component ListMAX2605 Component ListE v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 2_______________________________________________________________________________________Quick StartThe MAX2605–MAX2609 evaluation kits are fully assembled and factory tested. Follow the instructions in the Connections a nd Setup section for proper device evaluation.Test Equipment Required•Low-noise power supplies (these are recommended for oscillator noise measurement). Noise or ripple will frequency-modulate the oscillator and cause spectral spreading. Batteries can be used in place of power supplies, if necessary.– Use a DC power supply capable of supplying +2.7V to +5.5V. Alternatively, use two or three 1.5V batteries.– Use a DC power supply capable of supplying +0.4V to +2.4V, continuously variable, for TUNE.Alternatively, use two 1.5V batteries with a resistive voltage divider or potentiometer.•An RF spectrum analyzer that covers the operating frequency range of the MAX2605–MAX2609• A 50Ωcoaxial cable with SMA connectors •An ammeter (optional)Connections and Setup1)Connect a DC supply (preset to +3V) to the V CC and GND terminals (through an ammeter, if desired) on the EV kit.2)Turn on the DC supply. If used, the ammeter readingMAX2607 Component ListMAX2608 Component ListEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________3approximates the typical operating current specified in the MAX2605–MAX2609 data sheet.3)Connect the VCO output (OUT+ or OUT-) to a spec-trum analyzer with a 50Ωcoaxial cable.4)Apply a positive variable DC voltage between 0.4V and 2.4V to TUNE.5)Check the tuning bandwidth on the spectrum analyz-er by varying the tuning voltage (+0.4V to +2.4V).Layout ConsiderationsThe EV kit PC board can serve as a guide for laying out a board using the MAX2605–MAX2609. Generally, the VCC pin on the PC board should have a decoupling capacitor placed close to the IC. This minimizes noisecoupling from the supply. Also, place the VCO as far away as possible from the noisy section of a larger sys-tem, such as a switching regulator or digital circuits.The VCO ’s performance is strongly dependent on the availability of the external tuning inductor. For best per-formance, use high-Q components and choose their val-ues carefully. To minimize the effects of parasitic ele-ments, which degrade circuit performance, place the tuning inductor and C BYP close to the VCO. For higher-frequency versions, include the parasitic PC board inductance and capacitance when calculating the oscillation frequency. In addition, remove the ground plane around and under the tuning inductor to minimize the effect of parasitic capacitance.Noise on TUNE translates into FM noise on the outputs;therefore, keep the trace between TUNE and the control circuitry as short as possible. If necessary, use an RC filter to further suppress noise, as done on the EV kits.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits 4_______________________________________________________________________________________Figure 2. MAX2608/MAX2609 EV Kits SchematicFigure 1. MAX2605/MAX2606/MAX2607 EV Kits SchematicEvaluate: MAX2605–MAX2609MAX2605–MAX2609 Evaluation Kits_______________________________________________________________________________________5Figure 3. MAX2605/MAX2606/MAX2607 EV Kits ComponentPlacement Guide—Top Silk ScreenFigure 4. MAX2608/MAX2609 EV Kits Component PlacementGuide—Top Silk ScreenFigure 5. MAX2605/MAX2606/MAX2607 EV Kits PC BoardLayout—Component SideFigure 6. MAX2608/MAX2609 EV Kits PC Board Layout—Component SideMa xim ca nnot a ssume responsibility for use of a ny circuitry other tha n circuitry entirely embodied in a Ma xim product. No circuit pa tent licenses a re implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.6_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2000 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.E v a l u a t e : M A X 2605–M A X 2609MAX2605–MAX2609 Evaluation Kits Figure 7. MAX2605/MAX2606/MAX2607/MAX2608/MAX2609EV Kits PC Board Layout—Ground Plane。
EconoPACK ™2 模块 采用第七代沟槽栅/场终止IGBT7和第七代发射极控制二极管带有温度检测NTC 特性•电气特性-V CES = 1200 V-I C nom = 100 A / I CRM = 200 A -沟槽栅IGBT7-低 V CEsat-过载操作达175°C•机械特性-高功率循环和温度循环能力-集成NTC 温度传感器-铜基板-低热阻的三氧化二铝 Al 2O 3 衬底-焊接技术可选应用•辅助逆变器•电机传动•伺服驱动器产品认证•根据 IEC 60747、60749 和 60068 标准的相关测试,符合工业应用的要求。
描述FS100R12N2T7_B15EconoPACK ™2 模块内容描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1特性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1可选应用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1产品认证 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1内容 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1封装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2IGBT, 逆变器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 3二极管,逆变器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 4负温度系数热敏电阻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 5特征参数图表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 6电路拓扑图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 7封装尺寸 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 8模块标签代码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13修订历史 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14免责声明 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151封装表 1绝缘参数特征参数代号标注或测试条件数值单位绝缘测试电压V ISOL RMS, f = 50 Hz, t = 1 min 2.5kV 模块基板材料Cu内部绝缘基本绝缘 (class 1, IEC 61140)Al2O3爬电距离d Creep端子至散热器10.0mm 电气间隙d Clear端子至散热器7.5mm 相对电痕指数CTI>200相对温度指数 (电)RTI封装140°C 表 2特征值特征参数代号标注或测试条件数值单位最小值典型值最大值杂散电感,模块L sCE26nH 模块引线电阻,端子-芯片R CC'+EE'T C=25°C, 每个开关 2.7mΩ储存温度T stg-40125°C 模块安装的安装扭距M根据相应的应用手册进行安装M5, 螺丝36Nm 重量G180g 注:The current under continuous operation is limited to 50 A rms per connector pin.2IGBT, 逆变器表 3最大标定值特征参数代号标注或测试条件数值单位集电极-发射极电压V CES T vj = 25 °C1200V 连续集电极直流电流I CDC T vj max = 175 °C T C = 95 °C100A 集电极重复峰值电流I CRM t P = 1 ms200A 栅极-发射极峰值电压V GES±20V表 4特征值特征参数代号标注或测试条件数值单位最小值典型值最大值集电极-发射极饱和电压V CE sat I C = 100 A, V GE = 15 V T vj = 25 °C 1.50 1.80VT vj = 125 °C 1.64T vj = 175 °C 1.72栅极阈值电压V GEth I C = 2.5 mA, V CE = V GE, T vj = 25 °C 5.15 5.80 6.45V 栅极电荷Q G V GE = ±15 V, V CE = 600 V 1.8µC 内部栅极电阻R Gint T vj = 25 °C 1.5Ω输入电容C ies f = 100 kHz, T vj = 25 °C, V CE = 25 V, V GE = 0 V21.7nF 反向传输电容C res f = 100 kHz, T vj = 25 °C, V CE = 25 V, V GE = 0 V0.076nF 集电极-发射极截止电流I CES V CE = 1200 V, V GE = 0 V T vj = 25 °C0.01mA 栅极-发射极漏电流I GES V CE = 0 V, V GE = 20 V, T vj = 25 °C100nA开通延迟时间(感性负载)t don I C = 100 A, V CE = 600 V,V GE = ±15 V, R Gon = 3.9 ΩT vj = 25 °C0.175µs T vj = 125 °C0.192T vj = 175 °C0.205上升时间(感性负载)t r I C = 100 A, V CE = 600 V,V GE = ±15 V, R Gon = 3.9 ΩT vj = 25 °C0.046µs T vj = 125 °C0.051T vj = 175 °C0.053关断延迟时间(感性负载)t doff I C = 100 A, V CE = 600 V,V GE = ±15 V, R Goff = 3.9 ΩT vj = 25 °C0.309µs T vj = 125 °C0.389T vj = 175 °C0.442下降时间(感性负载)t f I C = 100 A, V CE = 600 V,V GE = ±15 V, R Goff = 3.9 ΩT vj = 25 °C0.104µs T vj = 125 °C0.198T vj = 175 °C0.248开通损耗能量 (每脉冲)E on I C = 100 A, V CE = 600 V,Lσ = 35 nH, V GE = ±15 V,R Gon = 3.9 Ω, di/dt =1650 A/µs (T vj = 175 °C)T vj = 25 °C10.5mJ T vj = 125 °C14.7T vj = 175 °C16.8关断损耗能量 (每脉冲)E off I C = 100 A, V CE = 600 V,Lσ = 35 nH, V GE = ±15 V,R Goff = 3.9 Ω, dv/dt =3030 V/µs (T vj = 175 °C)T vj = 25 °C 6.68mJ T vj = 125 °C10.8T vj = 175 °C12.8(待续)表 4(续) 特征值特征参数代号标注或测试条件数值单位最小值典型值最大值短路数据I SC V GE≤ 15 V, V CC = 800 V,V CEmax=V CES-L sCE*di/dt t P≤ 8 µs,T vj=150 °C370At P≤ 7 µs,T vj=175 °C350结-外壳热阻R thJC每个 IGBT0.371K/W 外壳-散热器热阻R thCH每个 IGBT, λgrease= 1 W/(m*K)0.135K/W 允许开关的温度范围T vj op-40175°C注:T vj op > 150°C is allowed for operation at overload conditions. For detailed specifications, please refer to AN 2018-14.3二极管,逆变器表 5最大标定值特征参数代号标注或测试条件数值单位反向重复峰值电压V RRM T vj = 25 °C1200V 连续正向直流电流I F100A 正向重复峰值电流I FRM t P = 1 ms200A I2t-值I2t t P = 10 ms, V R = 0 V T vj = 125 °C1260A²sT vj = 175 °C1060表 6特征值特征参数代号标注或测试条件数值单位最小值典型值最大值正向电压V F I F = 100 A, V GE = 0 V T vj = 25 °C 1.72 2.10VT vj = 125 °C 1.59T vj = 175 °C 1.52反向恢复峰值电流I RM V R = 600 V, I F = 100 A,V GE = -15 V, -di F/dt =1650 A/µs (T vj = 175 °C)T vj = 25 °C57.7A T vj = 125 °C77.4T vj = 175 °C88.3(待续)表 6(续) 特征值特征参数代号标注或测试条件数值单位最小值典型值最大值恢复电荷Q r V R = 600 V, I F = 100 A,V GE = -15 V, -di F/dt =1650 A/µs (T vj = 175 °C)T vj = 25 °C 6.9µC T vj = 125 °C15.4T vj = 175 °C19.4反向恢复损耗(每脉冲)E rec V R = 600 V, I F = 100 A,V GE = -15 V, -di F/dt =1650 A/µs (T vj = 175 °C)T vj = 25 °C 2.04mJ T vj = 125 °C 4.61T vj = 175 °C 6.66结-外壳热阻R thJC每个二极管0.592K/W 外壳-散热器热阻R thCH每个二极管, λgrease= 1 W/(m*K)0.148K/W 允许开关的温度范围T vj op-40175°C注:T vj op > 150°C is allowed for operation at overload conditions. For detailed specifications, please refer to AN 2018-14.4负温度系数热敏电阻表 7特征值特征参数代号标注或测试条件数值单位最小值典型值最大值额定电阻值R25T NTC = 25 °C5kΩR100偏差ΔR/R T NTC = 100 °C, R100 = 493 Ω-55%耗散功率P25T NTC = 25 °C20mW B-值B25/50R2 = R25 exp[B25/50(1/T2-1/(298,15 K))]3375K B-值B25/80R2 = R25 exp[B25/80(1/T2-1/(298,15 K))]3411K B-值B25/100R2 = R25 exp[B25/100(1/T2-1/(298,15 K))]3433K 注:根据应用手册标定4 负温度系数热敏电阻6电路拓扑图图 17封装尺寸图 28模块标签代码图 3修订历史修订历史修订版本发布日期变更说明1.002021-11-19Initial version商标所有参照产品或服务名称和商标均为其各自所有者的财产。
General Description The MAX803/MAX809/MAX810 are microprocessor (µP) supervisory circuits used to monitor the power supplies in µP and digital systems. They provide excellent circuit reliability and low cost by eliminating external compo-nents and adjustments when used with +5V, +3.3V, +3.0V, or +2.5V-powered circuits.These circuits perform a single function: they assert a reset signal whenever the V CC supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after V CC has risen above the reset thresh-old. Reset thresholds suitable for operation with a vari-ety of supply voltages are available.The MAX803 has an open-drain output stage, while the MAX809/MAX810 have push-pull outputs. The MAX803’s open-drain RESET output requires a pull-up resistor that can be connected to a voltage higher than V CC. The MAX803/MAX809 have an active-low RESET output, while the MAX810 has an active-high RESET output. The reset comparator is designed to ignore fast transients on V CC, and the outputs are guaranteed to be in the correct logic state for V CC down to 1V.Low supply current makes the MAX803/MAX809/ MAX810 ideal for use in portable equipment. The MAX803 is available in a 3-pin SC70 package, and the MAX809/MAX810 are available in 3-pin SC70 or SOT23 packages.Applications ComputersControllersIntelligent InstrumentsCritical µP and µC Power MonitoringPortable/Battery-Powered EquipmentAutomotive ____________________________Features o Precision Monitoring of +2.5V, +3V, +3.3V, and +5V Power-Supply Voltageso Fully Specified Over Temperatureo Available in Three Output ConfigurationsOpen-Drain RESET Output (MAX803)Push-Pull RESET Output (MAX809)Push-Pull RESET Output (MAX810)o140ms min Power-On Reset Pulse Widtho12µA Supply Currento Guaranteed Reset Valid to V CC= +1Vo Power Supply Transient Immunityo No External Components o3-Pin SC70 and SOT23 Packages MAX803L/M/R/S/T/Z, MAX809J/L/M/R/S/T/Z, MAX810L/M/R/S/T/Z3-Pin Microprocessor Reset Circuits________________________________________________________________Maxim Integrated Products1Pin Configuration Typical Operating Circuit19-0344; Rev 4; 12/99Note: These parts are offered in 2.5k or 10k reels, and must beordered in 2.5k or 10k increments. Order MAX803_EXR-T for2.5k reels and MAX803_EXR-T10 for 10k reels. Insert thedesired suffix letter from the Selector Guide into the blank tocomplete the part number. All versions of these products maynot be available at the time of announcement. Contact factory foravailability.For free samples & the latest literature: , or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.Ordering InformationM A X 803L /M /R /S /T /Z , M A X 809J /L /M /R /S /T /Z , M A X 810L /M /R /S /T /Z3-Pin Microprocessor Reset CircuitsABSOLUTE MAXIMUM RATINGSELECTRICAL CHARACTERISTICS(V CC = full range, T A = -40°C to +105°C, unless otherwise noted. Typical values are at T A = +25°C, V CC = 5V for L/M/J versions, V CC = 3.3V for T/S versions, V CC = 3V for R version, and V CC = 2.5V for Z version.) (Note 1)Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Terminal Voltage (with respect to GND)V CC ....................................................................-0.3V to +6.0V RESET, RESET (push-pull).....................-0.3V to (V CC + 0.3V)RESET (open drain)...........................................-0.3V to +6.0V Input Current, V CC ..............................................................20mA Output Current, RESET, RESET ..........................................20mA Rate of Rise, V CC ............................................................100V/µsContinuous Power Dissipation (T A = +70°C)3-Pin SC70 (derate 2.17mW/°C above +70°C)............174mW 3-Pin SOT23 (derate 4mW/°C above +70°C)...............320mW Operating Temperature Range .........................-40°C to +105°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CMAX803L/M/R/S/T/Z, MAX809J/L/M/R/S/T/Z, MAX810L/M/R/S/T/Z3-Pin Microprocessor Reset Circuits_______________________________________________________________________________________3A Note 2:RESET output for MAX803/MAX809; RESET output for MAX810.POWER-DOWN RESET DELAY vs. TEMPERATURE (MAX8_ _R/S/T/Z)80100TEMPERATURE (°C)P O W E R -D O W N R E S E T D E L A Y (µs )402060-408520-2006040Typical Operating Characteristics(V CC = full range, T A = -40°C to +105°C, unless otherwise noted. Typical values are at T A = +25°C, V CC = +5V for L/M/J versions,V CC = +3.3V for T/S versions, V CC = +3V for R version, and V CC = +2.5V for Z version.)ELECTRICAL CHARACTERISTICS (continued)(V CC = full range, T A = -40°C to +105°C, unless otherwise noted. Typical values are at T A = +25°C, V CC = 5V for L/M/J versions, V CC = 3.3V for T/S versions, V CC = 3V for R version, and V CC = 2.5V for Z version.) (Note 1)-402040-206085SUPPLY CURRENT vs. TEMPERATURE(SC70 PACKAGE, NO LOAD)TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )051015M A X 803L /M /R /S /T /Z , M A X 809J /L /M /R /S /T /Z , M A X 810L /M /R /S /T /Z3-Pin Microprocessor Reset Circuits 4_______________________________________________________________________________________Typical Operating Characteristics (continued)(V CC = full range, T A = -40°C to +105°C, unless otherwise noted. Typical values are at T A = +25°C, V CC = +5V for L/M/J versions,V CC = +3.3V for T/S versions, V CC = +3V for R version, and V CC = +2.5V for Z version.)225POWER-UP RESET TIMEOUTvs. TEMPERATURE245250TEMPERATURE (°C)P O W E R -U P R E S E T T I M E O U T (m s )235230240-408520-2060400.997NORMALIZED RESET THRESHOLDvs. TEMPERATURE1.0011.0021.003M A X 803-T O C 6TEMPERATURE (°C)N O R M A L I Z E D T H R E S H O L D0.9990.9981.000-408520-206040Selector Guide0POWER-DOWN RESET DELAY vs. TEMPERATURE (MAX8_ _J/L/M)80100120140TEMPERATURE (°C)P O W E R -D O W N R E S E T D E L A Y (µs )402060-408520-2006040MAX803L/M/R/S/T/Z, MAX809J/L/M/R/S/T/Z, MAX810L/M/R/S/T/Z_______________________________________________________________________________________5Detailed DescriptionA microprocessor’s (µP’s) reset input starts the µP in a known state. The MAX803/MAX809/MAX810 assert reset to prevent code-execution errors during power-up, power-down, or brownout conditions. They assert a reset signal whenever the V CC supply voltage declines below a preset threshold, keeping it asserted for at least 140ms after V CC has risen above the reset thresh-old. The MAX803 uses an open-drain output, and the MAX809/MAX810 have a push-pull output stage.Connect a pull-up resistor on the MAX803’s RESET out-put to any supply between 0 and 6V.Applications InformationNegative-Going V CC TransientsIn addition to issuing a reset to the µP during power-up,power-down, and brownout conditions, the MAX803/MAX809/MAX810 are relatively immune to short-duration negative-going V CC transients (glitches).Figure 1 shows typical transient duration vs. reset com-parator overdrive, for which the MAX803/MAX809/MAX810 do not generate a reset pulse. The graph was generated using a negative-going pulse applied to V CC ,starting 0.5V above the actual reset threshold and end-ing below it by the magnitude indicated (reset compara-tor overdrive). The graph indicates the maximum pulse width a negative-going V CC transient can have without causing a reset pulse. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. Typically, for the MAX8__L and MAX8__M, a V CC transient that goes 100mV below the reset threshold and lasts 20µs or less will not cause a reset pulse. A 0.1µF bypass capacitor mounted as close as possible to the V CC pin provides additional transient immunity.Ensuring a Valid Reset OutputDown to V CC = 0When V CC falls below 1V, the MAX809 RESET output no longer sinks current—it becomes an open circuit.Therefore, high-impedance CMOS logic inputs con-nected to RESET can drift to undetermined voltages.This presents no problem in most applications since most µP and other circuitry is inoperative with V CC below 1V. However, in applications where RESET must be valid down to 0V, adding a pull-down resistor to RESET causes any stray leakage currents to flow to3-Pin Microprocessor Reset CircuitsFigure 2. RESET Valid to V CC = Ground Circuit_____________________Pin DescriptionFigure 1. Maximum Transient Duration Without Causing a Reset Pulse vs. Reset Comparator OverdriveM A X 803L /M /R /S /T /Z , M A X 809J /L /M /R /S /T /Z , M A X 810L /M /R /S /T /Zground, holding RESET low (Figure 2). R1’s value is not critical; 100k Ωis large enough not to load RESET and small enough to pull RESET to ground.A 100k Ωpull-up resistor to V CC is also recommended for the MAX810 if RESET is required to remain valid for V CC < 1V.Interfacing to µPs with Bidirectional Reset PinsSince the RESET output on the MAX803 is open drain,this device interfaces easily with µPs that have bidirec-tional reset pins, such as the Motorola 68HC11.Connecting the µP supervisor’s RESET output directly to the microcontroller’s (µC’s) RESET pin with a single pull-up resistor allows either device to assert reset (Figure 3).MAX803 Open-Drain RESET Output Allows Use with Multiple SuppliesG enerally, the pull-up connected to the MAX803 will connect to the supply voltage that is being monitored at the IC’s V CC pin. However, some systems may use the open-drain output to level-shift from the monitored sup-ply to reset circuitry powered by some other supply (Figure 4). Note that as the MAX803’s V CC decreases below 1V, so does the IC’s ability to sink current at RESET . Also, with any pull-up, RESET will be pulled high as V CC decays toward 0. The voltage where this occurs depends on the pull-up resistor value and the voltage to which it is connected.Benefits of Highly AccurateReset ThresholdMost µP supervisor ICs have reset threshold voltages between 5% and 10% below the value of nominal sup-ply voltages. This ensures a reset will not occur within 5% of the nominal supply, but will occur when the sup-ply is 10% below nominal.When using ICs rated at only the nominal supply ±5%,this leaves a zone of uncertainty where the supply is between 5% and 10% low, and where the reset may or may not be asserted.The MAX8__L/T/Z use highly accurate circuitry to ensure that reset is asserted close to the 5% limit, and long before the supply has declined to 10% below nominal.3-Pin Microprocessor Reset Circuits 6_______________________________________________________________________________________Figure 4. MAX803 Open-Drain RESET Output Allows Use with Multiple SuppliesFigure 3. Interfacing to µPs with Bidirectional Reset I/OTRANSISTOR COUNT:275 (SOT23)380 (SC70)___________________Chip InformationMAX803L/M/R/S/T/Z, MAX809J/L/M/R/S/T/Z, MAX810L/M/R/S/T/Z3-Pin Microprocessor Reset Circuits_______________________________________________________________________________________7Package InformationM A X 803L /M /R /S /T /Z , M A X 809J /L /M /R /S /T /Z , M A X 810L /M /R /S /T /Z3-Pin Microprocessor Reset Circuits Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©1999 Maxim Integrated ProductsPrinted USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。
The following table lists the G codes, identifies the defaults (in the shaded areas), lists Modal (M) or Non-modal (N) types, identifies groups, and describes the G codes’ functions.Some G codes are strictly BNC or strictly ISNC, and are identified as such in this manual. Otherwise, the G codes apply to either dialect.G Code Type Group FunctionG00M01Positioning (Rapid Traverse)G01M Linear Interpolation (Cutting Feed)G02M Circular Interpolation/Helical CWG02.4M3D Circular Interpolation CWG03M Circular Interpolation/Helical CCWG03.4M3D Circular Interpolation CCWG04N00Dwell, Exact StopG05.1M19Surface Finish ParametersG05.2M19Data SmoothingG09N00Decelerate Axis to ZeroG10N Data SettingG11N Data Setting Mode CancelG15M17Polar Coordinates CancelG16M Polar CoordinatesG17M02XY Plane SelectionG18M ZX Plane SelectionG19M YZ Plane SelectionISNC G20M06Input in InchISNC G21M Input in mmG28N00Return to Reference PointG29N Return from Reference PointG31N Skip FunctionContinuedNC Part Programming Ultimax and Max Consoles704-0111-302NC Part Programming — 37G40M07Cutter Compensation CancelG41M Cutter Compensation LeftG42M Cutter Compensation RightG43M08Tool Length Compensation + DirectionG44M Tool Length Compensation - DirectionG45N00Tool Offset IncreaseG46N Tool Offset DecreaseG47N Tool Offset Double IncreaseG48N Tool Offset Double DecreaseG49M08Tool Length Offset Compensation CancelG50M11Scaling CancelG51M ScalingG50.1M18Mirroring CancelG51.1M MirroringG52N00Local Coordinate System SettingG53N Machine Coordinate System SelectionG54M14Work Coordinate System 1 SelectionG55M Work Coordinate System 2 SelectionG56M Work Coordinate System 3 SelectionG57M Work Coordinate System 4 SelectionG58M Work Coordinate System 5 SelectionG59M Work Coordinate System 6 SelectionG61M15Decelerates to Zero–Precision CorneringG64M Cancels Precision CorneringG65N12Macro Command, Subprogram CallG66M Modal Subprogram CallG67M Modal Subprogram Call CancelG68M16Coordinate RotationG69M Coordinate Rotation CancelBNC G70M06Input in InchBNC G71M Input in mmG73M09Peck Drilling CycleISNC G74M Left-handed Tapping CycleISNC G74M Rigid Tappingwith M2938 - NC Part Programming704-0111-302NC Part Programming Ultimax and Max ConsolesBNC G74M01Single-quadrant Circular InterpolationBNC G75M Multi-quadrant Circular InterpolationG76M09Bore Orient CycleG80M Canned Cycle CancelG81M Drilling Cycle, Spot BoringG82M Drilling Cycle, Counter BoringG83M Peck Drilling CycleG84M Tapping CycleISNC G84.2M Rigid Tapping CycleISNC G84.3M Rigid Tapping CycleM Rigid Tapping CycleISNC G84with M29G85M Boring CycleBNC G86M Bore Orient CycleISNC G86M Bore Rapid Out CycleBNC G87M Chip Breaker CycleISNC G87M Back Boring CycleBNC G88M Rigid Tapping CycleISNC G88M Boring Cycle Manual Feed Out, DwellG89M Boring Cycle Bore and DwellG90M03Absolute CommandG91M Incremental CommandG92N00Programming of Absolute Zero PointG93M05Inverse TimeG94M Feed per MinuteG98M10Return to Initial Point in Canned CycleG99M Return to R Point in Canned CycleTable 3.G Codes in order of CodesNC Part Programming Ultimax and Max Consoles704-0111-302NC Part Programming — 39。
V CC ..........................................................................-0.3V to +6VV+ ..............................................................(V CC - 0.3V) to +14VV- ...........................................................................+0.3V to -14VInput VoltagesT IN ........................................................-0.3V to (V CC + 0.3V)R IN ...................................................................................±30VOutput VoltagesT OUT ................................................(V+ + 0.3V) to (V- - 0.3V)R OUT ....................................................-0.3V to (V CC + 0.3V)Short-Circuit DurationT OUT ......................................................................ContinuousContinuous Power Dissipation (T A = +70°C)14-Pin Plastic DIP (derate 10.00mW/°C above +70°C) ...800mW16-Pin Plastic DIP (derate 10.53mW/°C above +70°C) ...842mW16-Pin SO (derate 8.70mW/°C above +70°C).............696mW16-Pin Wide SO (derate 9.52mW/°C above +70°C) ...762mW16-Pin CERDIP (derate 10.00mW/°C above +70°C) .....800mW20-Pin Plastic DIP (derate 11.11mW/°C above +70°C) ...889mW 20-Pin Wide SO (derate 10.00mW/°C above +70°C) ..800mW 20-Pin CERDIP (derate 11.11mW/°C above +70°C) ...889mW 24-Pin Narrow Plastic DIP (derate 13.33mW/°C above +70°C) .......................1067mW 24-Pin Wide Plastic DIP (derate 9.09mW/°C above +70°C) ...........................727mW 24-Pin Wide SO (derate 11.76mW/°C above +70°C)..941mW 24-Pin SSOP (derate 8.00mW/°C above +70°C) ........640mW 24-Pin CERDIP (derate 12.50mW/°C above +70°C) ...1000mW 28-Pin Wide SO (derate 12.50mW/°C above +70°C) ..1000mW 28-Pin SSOP (derate 9.52mW/°C above +70°C) ........762mW Operating Temperature Ranges MAX2_ _C_ _ .....................................................0°C to +70°C MAX2_ _E_ _ .................................................-40°C to +85°C MAX2_ _ M_ _ ..............................................-55°C to +125°C Storage Temperature Range ............................-65°C to +160°C Lead Temperature (soldering, 10s) (Note 1) ...................+300°C(MAX202/MAX204/MAX206/MAX208/MAX211/MAX213: V CC = +5V ±10%; MAX200/MAX203/MAX205/MAX207: V CC = +5V ±5%, C1–C4 = 0.1µF; MAX201/MAX209: V CC = +5V ±10%, V+ = +9.0V to +13.2V, T A = T MIN to T MAX , unless otherwise noted.)PARAMETERCONDITIONS MIN TYP MAX UNITS Output-Voltage SwingAll transmitter outputs loaded with 3kΩ to ground ±5±8V V CC Power-SupplyCurrent No load, T A = +25°C MAX202, MAX203815mA MAX200, MAX204–MAX208, MAX211,MAX2131120MAX201, MAX2090.41V+ Power-Supply CurrentNo load MAX201510mA MAX209715Shutdown Supply CurrentFigure 1, T A = +25°C MAX200, MAX205, MAX206, MAX211110µA MAX2131550Input Logic Threshold LowT IN , EN , SHDN, EN, SHDN 0.8V Input Logic Threshold HighT IN 2.0V EN , SHDN, EN, SHDN 2.4Logic Pullup CurrentT IN = 0V15200µA RS-232 Input-VoltageOperating Range -30+30V Integrated │ 2Note 1: Maximum reflow temperature for the MAX203 and MAX205 is +225°C.Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Electrical Characteristics找MEMORY 、二三极管上美光存储Detailed Description The MAX200–MAX209/MAX211/MAX213 consist of three sections: charge-pump voltage converters, drivers (trans-mitters), and receivers. Each section is described in detail.+5V to ±10V Dual Charge-Pump Voltage Converter The +5V to ±10V conversion is performed by two charge-pump voltage converters (Figure 4). The first uses capaci-tor C1 to double +5V to +10V, storing +10V on the V+output filter capacitor, C3. The second chargepump volt-age converter uses capacitor C2 to invert +10V to -10V,storing -10V on the V- output filter capacitor, C4.The MAX201 and MAX209 include only the V+ to Vcharge pump, and are intended for applications that have a V CC = +5V supply and a V+ supply in the +9V to +13.2V range.In shutdown mode, V+ is internally connected to V CC by a 1kΩ pulldown resistor and V- is internally connected to ground by a 1kΩ pullup resistor.RS-232 Drivers When V CC = +5V, the typical driver output-voltage swing is ±8V when loaded with a nominal 5kΩ RS-232 receiver. The output swing is guaranteed to meet the EIA/TIA-232E and V.28 specifications, which call for ±5V minimum out-put levels under worst-case conditions. These include a minimum 3kΩ load, V CC = +4.5V, and the maximum operating temperature. The open-circuit output-voltage swing ranges from (V+ - 0.6V) to V-.Input thresholds are both CMOS and TTL compatible. The inputs of unused drivers can be left unconnected since 400kΩ pullup resistors to V CC are included onchip. Since all drivers invert, the pullup resistors force the outputs of unused drivers low. The input pullup resistors typically source 15μA; therefore, the driver inputs should be driven high or open circuited to minimize power-supply current in shutdown mode.When in low-power shutdown mode, the driver outputs are turned off and their leakage current is less than 1mA, even if the transmitter output is backdriven between 0V and (V CC + 6V). Below -0.5V, the transmitter output is diode clamped to ground with a 1kΩ series impedance. The transmitter output is also zener clamped to approxi-mately (V CC + 6V), with a 1kΩ series impedance.Figure 1. Shutdown Current Test CircuitFigure 2. Receiver Output Enable and Disable Timing MAX200–MAX209/MAX211/MAX213+5V, RS-232 Transceivers with 0.1μF External Capacitors Integrated │ 5。
MAX471/MAX472的特点、功能美国美信公司生产的精密高端电流检测放大器是一个系列化产品,有MAX471/MAX472、MAX4172/MAX4173等。
它们均有一个电流输出端,可以用一个电阻来简单地实现以地为参考点的电流/电压的转换,并可工作在较宽电压内。
MAX471/MAX472具有如下特点:●具有完美的高端电流检测功能;●内含精密的内部检测电阻(MAX471);●在工作温度范围内,其精度为2%;●具有双向检测指示,可监控充电和放电状态;●内部检测电阻和检测能力为3A,并联使用时还可扩大检测电流范围;●使用外部检测电阻可任意扩展检测电流范围(MAX472);●最大电源电流为100μA;●关闭方式时的电流仅为5μA;●电压范围为3~36V;●采用8脚DIP/SO/STO三种封装形式。
MAX471/MAX472的引脚排列如图1所示,图2所示为其内部功能框图。
表1为MAX471/MAX472的引脚功能说明。
MAX471的电流增益比已预设为500μA/A,由于2kΩ的输出电阻(ROUT)可产生1V/A的转换,因此±3A时的满度值为3V.用不同的ROUT电阻可设置不同的满度电压。
但对于MAX471,其输出电压不应大于VRS+。
对于MAX472,则不能大于。
MAX471引脚图如图1所示,MAX472引脚图如图2所示。
MAX471/MAX472的引脚功能说明引脚名称功能MAX471MAX47211SHDN关闭端。
正常运用时连接到地。
当此端接高电平时,电源电流小于5μA2,3-RS+内部电流检测电阻电池(或电源端)。
“+”仅指示与SIGN输出有关的流动方向。
封装时已将2和3连在了一起-2空脚88OUT 电流输出,它正比于流过TSENSE被测电路的幅度,在MAX741中,此引脚到地之间应接一个2kΩ电阻,每一安培被测电流将产生大小等于1V的电压OUT端为电流幅度输出端,而SIGN端可用来指示输出电流的方向。
UNIS R5900万兆综合业务网关硬件描述紫光恒越技术有限公司资料版本:6W100-20210310Copyright © 2021 紫光恒越技术有限公司及其许可者版权所有,保留一切权利。
未经本公司书面许可,任何单位和个人不得擅自摘抄、复制本书内容的部分或全部,并不得以任何形式传播。
UNIS为紫光恒越技术有限公司的商标。
对于本手册中出现的其它公司的商标、产品标识及商品名称,由各自权利人拥有。
由于产品版本升级或其他原因,本手册内容有可能变更。
紫光恒越保留在没有任何通知或者提示的情况下对本手册的内容进行修改的权利。
本手册仅作为使用指导,紫光恒越尽全力在本手册中提供准确的信息,但是紫光恒越并不确保手册内容完全没有错误,本手册中的所有陈述、信息和建议也不构成任何明示或暗示的担保。
环境保护本产品符合关于环境保护方面的设计要求,产品的存放、使用和弃置应遵照相关国家法律、法规要求进行。
前言《UNIS R5900万兆综合业务网关硬件描述》主要介绍了设备以及各可插拔模块的外观及规格、产品指示灯以及槽位及接口编号等内容。
前言部分包含如下内容:•读者对象•本书约定•产品配套资料•资料意见反馈读者对象本手册主要适用于如下工程师:•网络规划人员•现场技术支持与维护人员•负责网络配置和维护的网络管理员本书约定1. 命令行格式约定格式意义粗体命令行关键字(命令中保持不变、必须照输的部分)采用加粗字体表示。
斜体命令行参数(命令中必须由实际值进行替代的部分)采用斜体表示。
[ ] 表示用“[ ]”括起来的部分在命令配置时是可选的。
{ x | y | ... }表示从多个选项中仅选取一个。
[ x | y | ... ]表示从多个选项中选取一个或者不选。
{ x | y | ... } *表示从多个选项中至少选取一个。
[ x | y | ... ] *表示从多个选项中选取一个、多个或者不选。
&<1-n>表示符号&前面的参数可以重复输入1~n次。
EA440-TGenerator Automatic Voltage RegulatorOperation ManualSelf Excited Automatic Voltage RegulatorCompatible with Newage SX440** Use for reference purpose only and not a genuine Newage product. Array Headquarters : No.3, Lane 201, Chien Fu ST., Chyan Jenn Dist., Kaohsiung, TAIWANTel : + 886-7-8121771Fax : + 886-7-8121775URL : ______________________________________________________________________________________ 2EA440-T1. INTRODUCTIONSensing InputVoltage 90 ~ 520 VAC, 1 phase 2 wire Frequency 50 / 60 Hz, selectableOutput Voltage Max. 90 VDC @ 207 VACCurrent Continuous 4AIntermittent 10A for 10 sec. ResistanceMin. 15 ohmVoltage Regulation < ± 1% ( with 4% engine governing ) Voltage Build-up Residual voltage at AVR terminal > 5 VAC Thermal Drift 0.05% per °C change in AVR ambient External Volts Adjustmen ±8% with 1K ohm 1 watt trimmer Unit Power Dissipation Max. 12 watt Under Frequency Protection Set point 95% Hz Soft Start Ramp Time 2 sec. Analogue Input Max. Input ± 5 VDCSensitivity 1V for 5% generator volts Input Resistance1K ohmQuadrature Droop Input Burden 10 ohm Max sensitivity 0.07 A for 5% droop (PF=0) Max. input 0.33 A Dimensions 150mm L * 135mm W * 40mm H Weight 489g ± 2%2. WIRING1. K1,K2 : Field input external switch terminals.Linked for normal operation. 2. P2,P3 : External power input terminals. 3. 0,110,220,380 : Sensing input terminals. 4. 1,2 : External VR terminals. Linked for useless. 5. X,XX : x connect to field (+), XX connect to field (-). 6. C1,C2 : Droop CT input terminal. 7. A1,A2 : VAR/PF controller input. 8. A,B,C : Link A,C for under 90KW.Link B,C for 90 ~ 550KW. Link A,B for over 550KW.9. J1~J8 : jump select terminals, 2-3,4-5,6-7. please refer to Figure 2 and Figure 3.3. ADJUSTMENT3.1 Voltage adjustmentThe generator output voltage can be altered by adjustment of the volt VR on the AVR board, or by the external trimmer (1K Ω) if fitted.1. The terminals 1&2 must be linked if no hand trimmer.2. Before start the generator, please turn the Volt trimmer on the AVR board fully anticlockwise Turn the external trimmer to midway position.3. Turn the stability trimmer on the AVR board to midway position.4. Connect a voltmeter to generator output voltage terminals.5. Start generator set and run on no load at nominal frequency 50 ~ 53Hz or 60~63Hz.6. If the red Led is illuminated, refer to the under frequency roll off adjustment.7. Carefully turn volt trimmer clockwise until rated voltage is reached.______________________________________________________________________________________EA440-T33.2 Stability adjustmentIf a replacement AVR has been fitted or re-setting of the stability control is required, turn the stability trimmer slowly clockwise until the output voltage is steady, on or off load.3.3 Droop adjustmentGenerator intended for parallel are fitted with a quadrature droop CT with provides a power factor dependent signal for the AVR. The CT is connected to S1,S2 on the AVR. The Droop adjustment is normally present in the works to give 5% voltage droop at full load zero power factor. Clockwise increases the amount of CT signal injected into the AVR and increases the droop with lagging power factor. With the control fully anticlockwise there is no droop.3.4 Trim adjustmentAn auxiliary input is provided to connect to A1, A2. It is designed to accept DC ± 5V.Turn the TRIM trimmer fully anticlockwise has no effect, Clockwise it has maximum effect.Outline DrawingFigure 1Wiring DrawingFigure 3______________________________________________________________________________________ 4EA440-T4. TROUBLE SHOOTINGSYMPTOM CAUSECORRECTIONEngine speed is too low Please refer to the Generator Manual wires are not connected well Please refer to Figure 2Voltage does notbuild upDefective GeneratorPlease refer to the Generator Manual External VR broken Check wiring and testing VR Terminal 1&2 not linked Please linked terminal 1&2 Terminal 3&2 no sensing input Please refer to Figure 2Under frequency Please refer to the Generator Manual Under voltageDefective GeneratorPlease refer to the Generator Manual AVR adjustment not well Please refer to voltage adjustment page Out voltageDefective GeneratorPlease refer to the Generator ManualP .S. Please use the fuse of the original plant.。
123456789A B C D E F G H I J K L M N O P Q R S T U V W123456789A B C D E F G H IJKL M N OP Q RS TUVWREV/ISS AMENDMENTS DATEAPVD D.O.CHKD DRAWN TAIT ELECTRONICS2.SC.12300-400MHZ RF PCB T2000-700/900128905f 220-01289-0524-Feb-03F T2000-700BRD 1V0.P-P 60%-MODTYP:**********************2V7-6V7+6DBM/50OHMTX 8V012V0RX 1V85V6CONTROL-VOLTSFREQ 340360TX:+4V5RX:+3V3+5DBM/50OHM0V-AT-REST3AEMC MODS CHANGE NOTE 96/04-207MAJTYP:*****************3A C/NOTE 96/04-207,96/06-323RPS 11/02/973A C/NOTE 96/07-406,96/08-453RPS 21/02/973A RELAY CYCLIC-KEYING,10MS DELAY RPS 24/02/973A C/NOTE 96/11-634,97/01-040RPS 26/03/9704A ECO 21 0342TS 03-08-0005A ECO21-1060 MMATCH HOLES CHANGED TS RH BD 21-11-01VER 900700FREQ 360-400340-360#C1074P7S 5P6S#C1098P2S NF#C1121P5S 1P2S#C1138P2S NF#C11512PS 8P2S#C1171P5S 1P2S#C1188P2S NF#C12110PS 5P6S#C12210PS 5P6S#C301220PS 270PS#C3026P8S 8P2S#C30318PUH 15PUH #C30512PS 15PS#C30512PS 15PS#C30622PS 27PS#C30812PS 47PS#C30922PS 56PS#C31310PS 5P6S#C3146P8S 4P7S#C32318PAHV 27PAHV #C33010PUH 8P2UH #C33110PUH 8P2UH #L104664674#L105664674#L106664674#L30010S4010S35#L30115H4015H40#L30515H3025H30#L30715H3015H25#L32110S2010S20#R318220X 47X#R319220X 47X05F BLUE MASK GENERATEDBRD 24-02-03#C1075P6#C1121P2 #C1158P2#C1171P2#C1215P6#C1225P6#C301270P#C3028P2#C30315P #C30515P #C30627P #C30847P#C30956P #C3135P6 #C3144P7#C32327P#C3308P2#C3318P2 #L104#674#L105#674#L106#674#L3001T/3.5#L3011.5T/4.0 #L3052.5T/3.0 #L3071.5T /2.5#L3211T/2.0C11N0C100150PC10112PC102150PC104100NC1051P0C10633PC108150PC11047PC1115P6C11447PC11947PC123150PC1246P8C1253P3C1265P6 C12712PC12833PC12910NC13010NC132150PC13347PC1346P8 C13533PC1366P8 C137100PC1386P8C13933PC1406P8 C14147PC14212PC145100PC1461N0C14710NC14810PC149150PC150100P C151100NC152100PC152A 10NC1534U7C153A 100P C15410NC155100PC15622PC157100NC1581N0C17447UC175100NC176100NC180100NC181100NC182150PC184150PC18510NC18610NC1871N0C188100PC189470PC190470P C1911N0 C19233PC1934U7C194150PC195150PC197100NC198220PC1991N0C21N0C20010NC201100NC20210NC20356P C20422NC20522NC20710NC2081N0 C20910NC21010NC211180PC2125P6C21347UC214150PC2154U7C21610NC21747UC2184U7C2194U7C22010NC2211U0 C222100NC223150PC2241N0C225270PC22727PC228100NC22947UC2304N7C231270PC2324P7C2334U7C2344U7C235100NC236150PC23727PC23847P C2391P0C240270PC241270PC24210NC243150PC2445P6 C2452P7C246150PC2478P2C249270P C25082PC251100PC252180PC25382PC25718P C31N0C300150PC3041N0C307100N C3101N0C311150PC312150PC315150PC316150PC317150PC318150PC319150P C32033PC32133PC32433PC32533PC326150PC32747PC3284U7C32947PC332150PC333150PC334150PC3352P7C336150PC337150PC3395P6C3405P6C3415P6 C3424P7C3435P6 C3443P9 C345150PC3462P2 C3472P2 C348150PC349150PC3504P7C351100N C3521P5 C3531N0C360150PC3613P3C403470PC4104U7C411100NC41247UC413100NC414470U C4151000UC416470PC419100NC420100NC42356UC4244U7C4254U7C42610NC4274U7C4284U7C4291N0C43056UC431100ND1MR2520D100BAV9923D100BAV99 31D101BB43912D102BB43912D103BB43912D105BAT18D106BAT18D107BAT17DS 23D107BAT17DS31D108BAT17DS31D108BAT17DS23D110BAT17DS 31D110BAT17DS23D111BAT17DS 23D111BAT17DS31D140ABAT18D202BAV7023D203BB439 12D204BB439 12D205BB63912D206BB63912D208BAT18D209BAT18D3011SS97D303UM9401D304UM9401D401BAV70 13D401BAV7023ININ OUT PD OUTR VSYNTHESISERIC201145158-2F 8DATA 10CLK9EN11GND 6F 13F 3OSC 1OSC 2REF 14MC 12+V 4LD 7OUT5PR 16PV 15IC203MC12052IN1GND 5IN 8SW 3NC7VCC 2MC6OUT 4VREGIC4037808ACTVIN1GND2VOUT3VREGIC4047805ACTVIN1GND2VOUT3L107RF BALUN32146L108RF BALUN32146L1091.5T/4.0 L110330NL114#662L116#662L117RF BALUN32146L118RF BALUN32146L119#65523614L120M21B L121M21AL200M21AL201100NH L202100NH L203#662L204100NH L205330NH L206330NH L207#574L208330NHL209330NH L21047NH L211330NHL21233NH L3021.5T/3.0L303330N L306M21BL3086.5T /3.0L3106.5T/3.0 L3116.5T/3.0L312330NH L3135.5T/5.0 L3166.5T /3.0L317528L3181.5T/3.0 L319330NL3203.5T/3.5L3222.5T/3.5 L3232.5T/3.5 L3243.5T/3.0L3252.5T/3.5L3262.5T/3.5 L331M21BL401#650 23614D SGQ100BFR31Q101951Q102BC857Q103951Q105951Q106BC847BQ107BFS17Q108BFS17Q109BF824Q110BFS17 Q115BC847BQ201BC857Q202BC847BQ203BC847BQ204BC847BQ205BC857Q206BC847BQ207BC857Q208BC847BQ209BC857D SGQ210BFR31Q211BC807Q212951 Q213BC847BQ214MMBR571Q215MMBR571Q300951Q301MRF559Q302MRF630Q303BC847B Q304BD234Q305SD1433Q306MRF646Q401BC857Q402BC817CWRV15347K231CWRV22247K231C WR V 324470K 231R100330 R1013K9 R102560R1032K2R104120R10518 R106100KR107100KR108100KR11247 R1134R7 R114820R11512KR1164R7R11710R118100 R11910R120820R121180R12210KR12310KR131100R1322K2R133270 R13510KR138100K R14068K R140A 33KR1411K5R14227KR142A 100KR14333KR143A 33K R14468KR144A 120KR1451K5R145A 33K R14622 R147220R148560R149100KR150100KR1513K3R152390KR1531K0R155100KR156100R15710K R1581K0R15947R16010 R1611K0R1940R19568KR196100R197100R1982K2R199100R213330R2141K2R21812KR219270R2206K8R221330R22247 R22322KR22433KR22522KR22615K R227560R2283K3 R22922R230390 R231180R2322K2 R2331M0R234180 R235330 R23647R237100R2388K2R23922K R240100KR2411K5R24222R2432K2R24422R245100R24710 R2480R2502K2R251150R252820R25347R25433 R25522R2561K5R2571K2R25810R259390R26018R26133R26210R2663K3R2673K3 R26856ER2694R7R2704R7R271220R272220R2734R7R2743K9 R2754R7R2766K8R27733 R278100KR282120 R28410K R28510KR2861K0R287100K R28839KR301220R3021K0R303270R304100R30510R307220R3081K2R30968R310180R311180 R312680 R314470R31522 R315A 22 R316150R317470R32027KR321470KR32210R32527KR326220KR3271K0R328150R32947KR330220KR332100R3332K2R3370R418680R42033K R42133KR42222R4251K0R4264R7R4274R7R42822R42927KR4306K8R431100KR43210R433100R43447R4371K0+-IC20233078D321+-IC20233078D5671020IC402+6GND 9SUB1SB5VCC3BS 4O/P2R440270KC453100NQ403BC847BR44156KC4541N0Q404BC807R442220 R443680R44410KR4451K8Q405BC807C455150PS4I/OPADD202BAV70 13R24615KC4171N0D307MA4P1250D306MA4P1250 #C1188P2 #C1138P2#C1098P2TSP7#R31847#R31947TSP5C17910NC206100NIC20233078D V-4V+8R21747 +1020IC40287IC1013371DXTAL OSC15LIM IN 16MIX IN 15GND3MIX OUT 2XTAL OSC 4VCC6DEC 7DEC 8QUAD 9AF OUT13RSSI IC1013371D 1011IC1013371D1214L1LINK FB14S3L304LINK FB34S3FB2 4S3L308A LINK FB5 4S3FB4 4S3L309LINK FB7 4S3FB6 4S3L314LINKFB94S3FB8 4S3L316A LINK FB11 4S3FB10 4S3P1+5V 15P1+8V10P1+8V-SYNTH9P1AF-SIG8P1BUSY3P1CLK12P1DATA13P1DET-AF5P1ENABLE14P1GND4P1GND1P1GND16P1LCK-DET11P1LF-SIG6P1MOD 7P1RSSI2P2+13.8V 8P2+13.8V-US6P2+13V-ECON 5P2+5-VOLTS7P2+8V-OUT 9P2+8VTX 10P2AUDIO-PA1P2EXTRNL3P2GND2P2IGN4P2PWR-CNTRL12P2PWR-SENSE 11P3AUDIO-O/P4P3EXTERNAL 1P3GND 3P3GND5P3IGN 7P3SPKR-GND2P313.8V-UNSW6P5+8VOLTS7P5AF-OUT 10P5CMPRTR-OUT 6P5DETECT-AUDIO8P5FILTER3P5GND2P5MIXER4P5NSE-DET5P5QUAD-COIL 1P5455-OUT 9P6+8V-SYNTH4P6+8V-SYNTH10P6AF-SIG9P6GND3P6GND2P6LF-SIG 7P6MOD 6P6REF-MOD5P6TCXO1P6TX-AF8P72P71+13.8V +13.8V+13.8V-UNSW+13.8V-UNSW+13.8V-UNSW+13V-ECON +13V-ECON+30V+5-VOLTS +5-VOLTS+5V+5V+5V+8-VOLTS+8-VOLTS+8-VOLTS+8-VOLTS+8-VOLTS+8-VOLTS+8V+8V+8V+8V+8V-OUT+8V-OUT+8V-SYNTH+8V-SYNTH+8V-SYNTH+8V-SYNTH+30VREF-MOD ADJSYNTHESISERLOOP FILTER38.4M H Z O U TTCXO & TX-AUDIO PCBDELAY LINE+8V-TX1ST MIXERPDL16M PDL12M P1 TO CONTROL PCBP2 TO CNTRL PCBX3 MULTIPLIERIF PCB38.4MHZP R I N T E DCOUPLERPRINTEDFROM +8V REGULATOR ON CNTRL PCB, VIA P1-PIN 9TO CNTRL-PCB VIA P2 PIN-9TO LOOM CONNECTOR P2PIN-7NOISE BLANKERPRESCALERVCORX-TUNE VOLTAGEUNDER-WALL DECOUPLING PRINTED+8V-TX TO LOOP-FILTER IC202PIN-8 VIA R217.L304,L308A,L309DUAL-4S3B BEADSINTERNAL SPKRPL2U SK7HMCH AUDIO PA+13.8V-ECONOMY VIA P2-PIN 5TO LOOM CONNECTOR P2 PIN-6& RF POWER-AMPFROM CONTROL-PCB TRACK-FUSE PCB-GND C U T F O R E X T R N L S P K RINT SPKRSPKR GNDPOWERC ONTROL 5V76V26V72V31V50V7V86V25V43V93V77V82V10V73V40V78V03V04V04V8FREQ LOOP VOLTAGERX TUNE TX RX -700-900340360812 1.85.6 2.37.53604008.4131.87.12.39.5NOTE:THIS SCHEMATIC CORRESPONDS TO THE T2000-700 340-360 MHZNote +30V via R434L314,L316A123456789123456789AB C D E F G H J KREV/ISSAMENDMENTSDATEAPVDD.O.CHKDDRAWNNO.SHEETS:FILE NAME:TAIT ELECTRONICSIPN:FILE DATE:ISSUE:ID:.2.SC.PROJECT:DESIGNER:22300-400MHZ RF PCBT2000-700/900128905f220-01289-0524-Feb-03F BRD04A ECO 21 0342TS 26-06-0005A ECO21-1060 MMATCH HOLES WRONG TS RH BD 21-11-01SHIELDA3M2594 RX SHIELD TOPFIDA FIDUCIAL TOPFIDB FIDUCIALBOTFIDA FIDUCIAL BOTFIDB FIDUCIALP52X5 WAY TOP ENTRY PLUG P62X5 WAY TOP ENTRY PLUG P116 WAY PADDLE CONNECTOR P212 WAY PADDLE CONNECTOR P37WAY SIDE ENTRY SKTP72 WAY PLUGAIFIDA HOLEAIFIDB HOLE65104938271F LEKDJCHBG A#C 107#C109#C112#C113#C 115#C117#C118#C 121#C122#C 301#C302#C305#C306#C 308#C 313#C330#C331#L104#L105#L106#L300#L 301#L 305#L 307#L 321AIFIDAAIFIDBC1C100C101C102C104C 105C 106C108C 110C 111C 114C 119C 123C124C125C 126C 127C128C 129C130C132C133C134C135C136C 137C138C 139C140C 141C 142C145C 146C 147C148C 149C150C151C 152C 152AC153C 153AC 154C155C 156C157C158C174C 175C176C179C180C181C182C184C185C186C187C 188C 189C190C 191C 192C193C194C195C197C 198C199C2C200C 201C202C 203C204C 205C206C 207C208C209C 210C 211C 212C213C214C215C 216C217C218C219C220C221C222C223C224C225C227C 228C229C230C 231C 232C233C234C 235C236C 237C 238C 239C 240C 241C242C 243C 244C245C 246C247C249C 250C 251C 252C 253C257C3C 304C 307C 311C 312C 315C 316C317C 318C319C326C328C332C 333C334C335C336C 337C339C340C341C342C343C344C345C346C347C 348C 349C 350C351C 352C 353C360C 403C410C 411C412C 413C414C415C 416C417C 419C 420C423C424C425C426C427C428C429C430C431C453C 454C 455D1D100D101D102D103D105D106D107D108D110D111D140AD202D203D204D205D206D208D209D301D306D307D401FB1FB10FB11FB2FB3FB4FB5FB6FB7FB8FB9I C 101IC201IC202IC203I C 402I C 403I C 404L1L107L108L109L110L114L116L117L118L119L120L121L 200L201L202L203L204L205L206L208L209L210L211L212L 302L303L304L306L308L308AL309L310L311L 312L313L314L316L316AL 317L318L319L320L322L 323L324L325L326L331L401P1P2P3P5P6P7Q100Q101Q102Q103Q105Q 106Q107Q108Q109Q110Q115Q201Q202Q203Q 204Q205Q 206Q207Q 208Q209Q210Q211Q212Q213Q214Q215Q300Q301Q302Q303Q 304Q401Q402Q403Q404Q405R100R 101R102R 103R 104R105R 106R107R108R112R 113R114R115R 116R 117R118R 119R120R121R122R123R131R132R 133R135R138R140R140AR 141R 142R142AR 143R 143A R144R144AR145R145AR146R147R 148R149R150R151R152R 153R 155R 156R 157R 158R159R160R 161R194R195R196R197R 198R199R213R 214R 217R 218R 219R 220R 221R 222R223R 224R225R226R227R228R 229R 230R 231R232R233R 234R235R236R 237R238R 239R240R 241R242R 243R244R245R 246R 247R248R 250R 251R 252R 253R 254R 255R 256R257R258R 259R 260R261R262R 266R 267R 268R 269R270R271R272R273R274R 275R276R277R278R282R 284R285R286R287R 288R 301R302R 303R304R305R307R 308R309R310R 311R 312R 314R315R315AR 316R317R320R321R322R325R 326R 327R 328R329R330R332R 333R337R 418R420R 421R 422R 425R426R427R 428R429R430R431R432R 433R 434R 437R 440R 441R 442R443R 444R 445RV153RV222RV324S4SHIELDTOPFIDATOPFIDBT S P 5T S P 7TAIT ELECTRONICST2000-700 PCB LAYOUT - TOP SIDEIPN:ISS:ID:DATE:220-01289-05A1.TA21 Nov 2001Scale:1.9:1 ; Rotation: 0 degreesD 303D 30451049382716LEKDJCHBGAF #C303#C309#C314#C323#R318#R319BOTFIDABOTFIDBC300C310C320C321C324C325C327C329C361L207Q305Q306TAIT ELECTRONICST2000-700 PCB LAYOUT - BOTTOM SIDEIPN:ISS:ID:DATE:220-01289-05A2.BA21 Nov 2001Scale:1.9:1 ; Rotation: 0 degrees。
LT8920C2.4G 可变数据率射频芯片芯片特点●包括射频前端和数字基带的单芯片解决方案。
●支持跳频●支持SPI 和I2C 接口●内置auto_ack 功能●数据率1Mbps ,250Kbps ,125Kbps ,62.5Kbps ●1Mbps 时同步位为64bits ,48bits ,32bits ,16bits ;250Kbps ,125Kbps ,62.5Kbps 时同步位为32bits ,16bits 。
推荐使用32bits ,容错1bits 。
●极低功耗●支持信号能量检测●单芯片传输距离200米Page 22017年5月2.极限值.............................................................................................................................................................53.电气特性.........................................................................................................................................................64.典型应用.........................................................................................................................................................95.管脚描述.......................................................................................................................................................106.SPI 接口.......................................................................................................................................................116.1.SPI 默认格式...........................................................................................................................................116.2.SPI Optional Format .. (11)6.3.SPI 时序要求...........................................................................................................................................127.IIC 接口.......................................................................................................................................................137.1.I2C 命令格式...........................................................................................................................................137.2.I2C 特性...................................................................................................................................................137.3.I2C 器件地址...........................................................................................................................................148.状态机框图...................................................................................................................................................159.寄存器信息...................................................................................................................................................169.1.Register 3–Read only .....................................................................................................................169.2.Register 6–Read only .....................................................................................................................169.3.Register 7...............................................................................................................................................169.4.Register 9...............................................................................................................................................179.5.Register 10.............................................................................................................................................179.6.Register 11.............................................................................................................................................179.7.Register 23.............................................................................................................................................179.8.Register 27.............................................................................................................................................189.9.Register 29–Read only ...................................................................................................................189.10.Register 30–Read only ...............................................................................................................189.11.Register 31–Read only ...............................................................................................................189.12.Register 32.........................................................................................................................................199.13.Register 33.........................................................................................................................................219.14.Register 34.........................................................................................................................................219.15.Register 35.........................................................................................................................................219.16.Register 36.........................................................................................................................................229.17.Register 37.........................................................................................................................................229.18.Register 38.........................................................................................................................................239.19.Register 39.........................................................................................................................................239.20.Register 40.........................................................................................................................................239.21.Register 41.........................................................................................................................................Page 32017年5月9.23.Register 43.........................................................................................................................................249.24.Register 48–Read only ...............................................................................................................259.25.Register 50 (25)9.26.Register 52.........................................................................................................................................2610.寄存器推荐值...............................................................................................................................................2711.注意事项.......................................................................................................................................................2811.1.上电和寄存器初始化数据...................................................................................................................2811.2.进入sleep mode 和唤醒.....................................................................................................................2911.3.数据包格式...........................................................................................................................................2911.4.清空FIFO 指针.....................................................................................................................................2911.5.Packet Payload Length (29)11.6.状态机决定包长度...............................................................................................................................3111.6.1.发射时序........................................................................................................................................3111.7.接收时序 (33)11.8.MCU/应用决定包长度...........................................................................................................................3411.8.1.FW_TERM_TX=1..............................................................................................................................3511.8.2.FW_TERM_TX=0(发射状态).......................................................................................................3711.8.3.FW_TERM_TX=0(RX)....................................................................................................................3911.9.晶体振荡器...........................................................................................................................................4111.9.1.Quartz crystal application ...................................................................................................4111.9.2.外部时钟输入................................................................................................................................4111.9.3.减小管脚数....................................................................................................................................4212.封装形式.......................................................................................................................................................43....................................................................................................................................................错误!未定义书签。