上海交通大学附属中学2008-2009学年《复数》单元测试卷
- 格式:doc
- 大小:260.00 KB
- 文档页数:5
一、选择题1.满足条件34z i i -=+的复数z 在复平面上对应点的轨迹是( )A .一条直线B .两条直线C .圆D .椭圆2.12i 12i+=- A .43i 55-- B .43i 55-+ C .34i 55-- D .34i 55-+ 3.已知复数1z ,2z 满足()1117i z i +=-+,21z =,则21z z -的最大值为( ) A .3 B .4 C .5 D .64.在下列命题中,正确命题的个数是( ).①两个复数不能比较大小;②复数i 1z =-对应的点在第四象限;③若()()22132i x x x -+++是纯虚数,则实数1x =;④若()()2212230z z z z -+-=,则123z z z ==.A .0B .1C .2D .35.欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e 2i 表示的复数在复平面中对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 6.若复数z 满足232,z z i +=-其中i 为虚数单位,则z= A .1+2i B .1-2i C .12i -+ D .12i -- 7.若复数z 满足()11z i i --⋅=+,则z =( )A B C .D .3 8.已知i 为虚数单位,复数32i 2i z +=-,则以下命题为真命题的是( ) A .z 的共轭复数为74i 55- B .z 的虚部为75- C .3z = D .z 在复平面内对应的点在第一象限 9.已知i 是虚数单位,复数z 满足()341z i i +=+,则z 的共轭复数在复平面内表示的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.复数z 满足(1i)2i z -=,则z =A .1i -B .1i -+C .1i --D .1i +11.i 为虚数单位,复平面内表示复数2i z i -=+的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限 12.若32a i i -+为纯虚数,则实数a 的值为( ) A .32- B .23- C .23 D .32二、填空题13.若复数z 满足0z z z z ⋅++=,则复数33z i --的最大值与最小值的乘积为___________.14.若z a bi =+,21z R z∈+,则实数a ,b 应满足的条件为________. 15.已知集合{}11M z z =+=,{}i N z z i z =+=-,则M N =______.16.若23i -是方程()220,x px q p q R ++=∈的一个根,则p q +=______.17.若复数z 满足0z z z z ⋅++=,则复数12z i --的最大值为______.18.若有两个数,它们的和是4,积为5,则这两个数是________.19.661i ⎛⎫+= ⎪ ⎪-⎝⎭_______________. 20.若复数 z =21i i-,则3z i + =__________ 三、解答题21.(1)计算:()()432-2i (i 为虚数单位);(2)已知z 是一个复数,求解关于z 的方程,313z z i z i ⋅-⋅=+(i 为虚数单位). 22.设m R ∈,复数22(56)(3)m m m m i -++-(i 为虚数单位)是纯虚数.(1)求m 的值;(2)若2mi -+是方程20x px q ++=的一个根,求实数p ,q 的值.23.当实数m 取什么值时,复数224(6)Z m m m i =-+--分别满足下列条件? (1)复数Z 实数;(2)复数Z 纯虚数;(3)复平面内,复数Z 对应的点位于直线y x =-上.24.已知复数(,)z a bia b =+∈R ,且2(1)430a i a b i --++=.(Ⅰ)求复数z ;(Ⅱ)若m z z+是实数,求实数m 的值. 25.已知关于t 的一元二次方程2(2)2()0(,)t i t xy x y i x y ++++-=∈R .(1)当方程有实根时,求点(,)x y 的轨迹;(2)求方程实根的取值范围.26.已知关于x 的方程x 2+kx+k 2﹣2k=0有一个模为1的虚根,求实数k 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】 因为34z i i -=+,所以5z i -=,22(1)25,x y +-= 因此复数z 在复平面上对应点的轨迹是圆,选C.2.D解析:D【解析】分析:根据复数除法法则化简复数,即得结果. 详解:212(12)341255i i i i ++-+==∴-选D. 点睛:本题考查复数除法法则,考查学生基本运算能力. 3.D解析:D【分析】先求得1z ,设出2z ,然后根据几何意义求得21z z -的最大值.【详解】由()()()()11711768341112i i i i z i i i i -+--++====+++-,令2z x yi =+,x ,y R ∈,由222||11z x y =⇒+=,()()2134z z x y i -=-+-= 2z 对应点在单位圆上,所以21z z -表示的是单位圆上的点和点()3,4的距离, ()3,4到圆心()0,05=,单位圆的半径为1,所以21max 516z z -=+=.故选:D【点睛】本小题主要考查复数除法运算,考查复数模的最值的计算.4.B解析:B【分析】根据复数121,2z z ==,可得①是错误的;根据复数的表示,可得②是错误的;根据复数的分类,列出方程组,可得③是正确的;根据1231,,1z z i z ===-,可得④错误的.【详解】对于①中,例如复数121,2z z ==,此时12z z <,所以①是错误的;对于②中,复数i 1z =-对应的点坐标为(1,1)-位于第二象限,所以②是错误的;对于③中,若()()22132i x x x -+++是纯虚数,则满足2210320x x x ⎧-=⎨++≠⎩,解得1x =, 所以③是正确的; 对于④中,例如1231,,1z z i z ===-,则()()22110i i -++=,所以④错误的. 故选:B.【点睛】本题主要考查了复数的基本概念,以及复数的表示与复数的运算的综合应用,其中解答中熟记复数的概念与运算,逐项判定是解答的关键,着重考查推理与运算能力. 5.B解析:B【分析】由题意得2cos 2sin 2i e i =+,得到复数在复平面内对应的点(cos 2,sin 2),即可作出解答.【详解】由题意得,e 2i =cos 2+isin 2,∴复数在复平面内对应的点为(cos 2,sin 2).∵2∈,∴cos 2∈(-1,0),sin 2∈(0,1),∴e 2i 表示的复数在复平面中对应的点位于第二象限,故选B.【点睛】本题主要考查了复数坐标的表示,属于基础题.6.B解析:B【解析】试题分析:设i z b a =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.7.A解析:A【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】由()11z i i --⋅=+,得()()21111i i i z i i i +-+--===--,则2z i =-+,∴z ==故选:A【点睛】本题主要考查了复数的除法运算,复数的模的运算,属于中档题. 8.D 解析:D【分析】利用复数的除法运算,化简32i 2iz +=-,利用共轭复数,虚部,模长的概念,运算求解,进行判断即可.【详解】 ()()()()32i 2i 32i 47i 2i 2i 2i 55z +++===+--+, z ∴的共扼复数为47i 55-,z 的虚部为75,z ==,z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,在第一象限. 故选:D.【点睛】本题考查了复数的四则运算,共轭复数,虚部,模长等概念,考查了学生概念理解,数学运算的能力,属于基础题.9.A解析:A【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【详解】复数z 满足()341z i i +=+,∴()()()()3434134z i i i i +-=+-,∴257z i =-,∴712525z i =-. ∴712525z i =+. 则复平面内表示z 的共轭复数的点71,2525⎛⎫⎪⎝⎭在第一象限. 故选:A .【点睛】此题考查复数的运算和几何意义,涉及共轭复数概念辨析,关键在于熟练掌握运算法则,根据几何意义确定点的位置.10.B解析:B【解析】因为()1i 2i z -=,所以()2i 111iz i i i ==+=-+-,选B. 11.C解析:C【解析】(2)21122(2)(2)555i i i i z i i i i -----====--++-.故选C 12.C解析:C【分析】先化简复数,再利用纯虚数的定义求解.【详解】 由题得()(32)(32)(23)32(32)(32)13a i a i i a a i i i i -----+==++-, 因为32a i i-+为纯虚数, 则320(23)0a a -=⎧⎨-+≠⎩,所以23a =. 故选:C【点睛】结论点睛:复数(,)z a bi a b R =+∈则0a =且0b ≠,不要漏掉了0b ≠.二、填空题13.24【分析】设()结合条件得在复平面内对应点的轨迹再由的几何意义求解即可【详解】设()则由得即复数在复平面内对应点的轨迹是以为圆心以1为半径的圆表示复数在复平面内对应点到点的距离所以最大值为最小值为 解析:24【分析】设z a bi =+,(,a b ∈R ),结合条件0z z z z ⋅++=得z 在复平面内对应点的轨迹,再由33z i --的几何意义求解即可.【详解】设z a bi =+,(,a b ∈R )则由0z z z z ⋅++=,得2220a b a ++=,即()2211a b ++=.复数z 在复平面内对应点的轨迹是以(1,0)A -为圆心,以1为半径的圆,33z i =--z 在复平面内对应点到点(3,3)P 的距离 所以33zi --最大值为||116PA +==.最小值为||114PA -==故最大值与最小值的乘积为2446=⨯故答案为:24【点睛】本题考查复平面内复数对应的点的轨迹问题,复数模长的几何意义,是中档题. 14.或【分析】根据复数的运算得出再由复数是实数的条件得出实数应满足的条件【详解】因为故有所以或即或是ab 应满足的条件故答案为:或【点睛】本题考查复数的运算和复数的概念属于中档题解析:0b =或221a b +=【分析】根据复数的运算得出21+z z ()()()222222222212114a a b ab b b a i a b a b+-++--=+--,再由复数是实数的条件得出实数a ,b 应满足的条件.【详解】()22222211()1212z a bi a bi a bi z a bi a abi b a b abi +++===+++++-+-+()()222222212()14ab abi a bi a b a b +--=++--()()()22222222222112214a a b b a b i a bi ab a b a b+-++--+=+-- ()()()2222322222212214a a b ab b a b b a b i a b a b+-+++--=+-- ()()()222222222212114a a b ab b b a i a b a b +-++--=+-- 因为21z R z ∈+,故有()2210b b a --=,所以0b =或2210b a --=, 即0b =或221a b +=是a ,b 应满足的条件.故答案为:0b =或221a b +=.【点睛】本题考查复数的运算和复数的概念,属于中档题.15.【分析】根据复数的几何意义可知代表的是圆上代表的是线利用线与圆的位置关系可知结果【详解】的几何意义是以点为圆心1为半径的圆表示到点和点的距离相等的点的集合是线段的垂直平分线也就是轴的几何意义是轴与圆 解析:{}0,2-【分析】 根据复数的几何意义,可知11z +=代表的是圆上,i z i z +=-代表的是线,利用线与圆的位置关系,可知结果.【详解】11z +=的几何意义是以点()1,0-为圆心,1为半径的圆.i i z z +=-表示到点()0,1A 和点()0,1B -的距离相等的点的集合,是线段AB 的垂直平分线,也就是x 轴.M N ⋂的几何意义是x 轴与圆的公共点对应的复数,故0z =或2z =-,{}0,2M N ∴⋂=-.【点睛】本题考查复数的几何意义,属中档题.16.38;【分析】假设另外一个根为根据是实数结合韦达定理可得结果【详解】假设另外一个根为是方程的一个根则①由可知是的共轭复数所以②把②代入①可知所以故答案为:38【点睛】本题重在考查是实数掌握复数共轭复 解析:38;【分析】假设另外一个根为z ,根据z z 是实数,结合韦达定理,可得结果.【详解】假设另外一个根为z ,23i -是方程()220,x px q p q R ++=∈的一个根,则()232232p i z q iz ⎧-+=-⎪⎪⎨⎪-=⎪⎩① 由,p q R ∈,可知z 是23i -的共轭复数,所以32z i =-- ②把②代入①可知1226p q =⎧⎨=⎩所以38p q +=故答案为:38【点睛】本题重在考查z z 是实数,掌握复数共轭复数的形式,属基础题17.【分析】设()结合条件得在复平面内对应点的轨迹再由的几何意义求解即可【详解】解:设()则由得即复数在复平面内对应点的轨迹是以为圆心以1为半径的圆如图:表示复数在复平面内对应点到点的距离所以最大值为故 解析:221+【分析】设z a bi =+,(,a b ∈R ),结合条件0z z z z ⋅++=得z 在复平面内对应点的轨迹,再由12z i --的几何意义求解即可.【详解】解:设z a bi =+,(,a b ∈R )则由0z z z z ⋅++=,得2220a b a ++=,即()2211a b ++=.复数z 在复平面内对应点的轨迹是以(1,0)A -为圆心,以1为半径的圆,如图:2212(1)(2)z i a b --=-+-z 在复平面内对应点到点(1,2)P 的距离所以12z i --最大值为||111PA +==.故答案为:1.【点睛】本题考查复平面内复数对应的点的轨迹问题,复数模长的几何意义,是中档题. 18.【分析】设利用列方程组解方程组求得题目所求两个数【详解】设依题意有即所以将代入得;将代入解得;将代入得结合解得或所以对应的数为故答案为:【点睛】本小题主要考查复数运算属于中档题解析:2i ±【分析】设()12,,,,z a bi z c di a b c d R =+=+∈,利用12124,5z z z z +=⋅=列方程组,解方程组求得题目所求两个数.【详解】设()12,,,,z a bi z c di a b c d R =+=+∈,依题意有12124,5z z z z +=⋅=,即()()45a c b d i ac bd ad bc i ⎧+++=⎪⎨-++=⎪⎩,所以405a cb d ac bd ad bc +=⎧⎪+=⎪⎨-=⎪⎪+=⎩.将=-b d 代入0ad bc +=,得a c =;将a c =代入4a c +=,解得2a c ==;将2a c ==代入5ac bd -=,得1bd =-,结合=-b d 解得11b d =⎧⎨=-⎩或11b d =-⎧⎨=⎩.所以对应的数为2i +、2i -. 故答案为:2i ±【点睛】本小题主要考查复数运算,属于中档题.19.【分析】由于次数比较高先利用的周期性将其次数降低再进行四则运算【详解】故答案为:【点睛】本主要考查了有关的幂的运算和复数的四则运算还考查了转化问题运算求解的能力属于基础题解析:2i【分析】由于次数比较高,先利用()*n in ∈N 的周期性,将其次数降低,再进行四则运算. 【详解】66+=⎝⎭3323312⎡⎤+⎢⎥=+=+=⎢⎥⎝⎭⎣⎦i i i i i i . 故答案为:2i【点睛】本主要考查了有关i 的幂的运算和复数的四则运算,还考查了转化问题,运算求解的能力,属于基础题.20.【解析】分析:先化简复数z 再求再求 的值详解:由题得所以故答案为:点睛:(1)本题主要考查复数的运算共轭复数和复数的模的计算意在考查学生对这些知识的掌握水平和基本的运算能力(2)复数的共轭复数【解析】分析:先化简复数z,再求3z i +,再求3z i + 的值. 详解:由题得2i 2i(1i)22i 1i 1i (1i)(1i)2z +-+====-+--+,所以31312,3z i i i i z i +=--+=-+∴+==点睛:(1)本题主要考查复数的运算、共轭复数和复数的模的计算,意在考查学生对这些知识的掌握水平和基本的运算能力.(2) 复数(,)z a bi a b R =+∈的共轭复数,z a bi =-||z =三、解答题21.(1)8;(2)13z i =-+或1z =-【分析】(1)()()()()()()4222232-22-22-28i i i i -=即可化简得值;(2)设,,z a bi a b R =+∈,建立等式()()()313a bi a bi i a bi i +---=+,列方程组求解.【详解】(1)()()()()()()4222232-22-22-286488i i i i --===-; (2)设,,z a bi a b R =+∈,313z z i z i ⋅-⋅=+,即()()()313a bi a bi i a bi i +---=+, 223313a b b ai i +--=+,所以2231,33a b b a +-=-=,解得13a b =-⎧⎨=⎩或10a b =-⎧⎨=⎩, 所以13z i =-+或1z =-.故答案为:13z i =-+或1z =-【点睛】此题考查复数的运算,关键在于根据题意利用复数的运算法则,准确计算求解. 22.(1)2.(2)4p =,8q =.【分析】(1)根据纯虚数的定义求出m 的值即可;(2)将2mi -+代入方程20x px q ++=,得到关于p ,q 的方程组,解出即可.【详解】(1)复数22(56)(3)m m m m i -++-是纯虚数, 2256030m m m m ⎧-+=∴⎨-≠⎩ 解得:2?30?3m m m m ==⎧⎨≠≠⎩或且 2m ∴=(2) 2mi -+是方程20x px q ++=的一个根由(1)可得2m =,即:22i -+是方程20x px q ++=的一个根2(22)(22)0i p i q ∴-++-++=即(2)(28)0p q p i -++-=20280p q p -+=⎧∴⎨-=⎩解得:4p =,8q =.【点睛】本题解题关键是掌握纯虚数定义和复数相等求参数方法,考查了分析能力和计算能力,属于中档题.23.(1)2m =-或3m =;(2)2m =;(3)2m =-或52m =. 【分析】(1)由虚部为0,求解m 值;(2)由实部为0且虚部不为0,列式求解m 值;(3)由实部与虚部的和为0,列式求解m 值.【详解】解:由题可知,复数224(6)Z m m m i =-+--,(1)当Z 为实数时,则虚部为0,由260m m --=,解得:2m =-或3m =;(2)当Z 纯虚数时,实部为0且虚部不为0, 由224060m m m ⎧-=⎨--≠⎩,解得:2m =; (3)当Z 对应的点位于直线y x =-上时,则0x y +=,即:实部与虚部的和为0,由224(6)0m m m -+--=,解得:2m =-或52m =. 【点睛】本题考查复数的基本概念,以及复数的代数表示法及其几何意义,属于基础题. 24.(Ⅰ)33z i =-(Ⅱ)18m =【分析】(Ⅰ)根据复数相等列方程组,解得,a b (Ⅱ)先化复数为代数形式,再根据复数为实数列式,解得实数m 的值.【详解】解: (Ⅰ)由题意240{30a ab a ++=-+=,解之得3,3a b ==-. 所以33z i =-为所求(Ⅱ)由(Ⅰ)得,()133333333666m i m m m m z i i i z i +⎛⎫⎛⎫+=-+=-+=++- ⎪ ⎪-⎝⎭⎝⎭ m z z +是实数,306m ∴-=,即18m =为所求. 【点睛】 本题考查复数相等以及复数概念,考查基本分析求解能力,属中档题25.(1)轨迹是以点(1,1)-为圆心为半径的圆.(2)[4,0]-.【分析】(1)由复数相等的定义化简得出0t y x =-,将其代入200220t t xy ++=中即可得出所求点的轨迹方程;(2)将方程的根转化为直线与圆的交点问题,由圆心到直线的距离小于等于半径,即可求得方程实根的取值范围.【详解】解:(1)设方程实根为0t .根据题意得200(2)2()0(,)t i t xy x y i x y ++++-=∈R ,即()()2000220t t xy t x y i ++++-=. 根据复数相等的充要条件,得20002200t t xy t x y ⎧++=⎨+-=⎩① 由①得0t y x =-,代入200220t t xy ++=得2()2()20y x y x xy -+-+=即22(1)(1)2x y -++=.所以所求的点的轨迹方程是22(1)(1)2x y -++=,轨迹是以点(1,1)-为圆心为半径的圆.(2)由(1)得圆心为(1,1)-,半径r =直线0t y x =-与圆有公共点,2,即022t +,所以040t -.故方程实根的取值范围是[4,0]-.【点睛】本题主要考查了复数相等的定义以及直线与圆的位置关系,属于中档题.26.1【解析】分析:设两根为1z 、2z ,则21=z z , 21==1z z ,得12=1z z ⋅,利用韦达定理列方程可求得k 的值,结合判别式小于零即可得结果.详解:由题意,得()222423800k k k k k k ∆=--=-+<⇒<或83k >, 设两根为1z 、2z ,则21=z z , 21==1z z ,得12=1z z ⋅,212=2z z k k ⋅- 221k k ⇒-= 1211k k ⇒==.所以1k =点睛:本题考查复数代数形式乘除运算,韦达定理的使用,实系数方程有虚数根的条件,共轭复数的性质、共轭复数的模,意在考查基础知识的掌握与综合应用,属于中档题.。
一、选择题1.设a R ∈,则复数22121a aiz a-+=+所对应点组成的图形为( ) A .单位圆B .单位圆除去点()1,0±C .单位圆除去点()1,0D .单位圆除去点()1,0-2.已知复数z 满足:21z -=,则1i z -+的最大值为( )A .2B 1C 1D .33.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=( )A .-16B .0C .16D .324.如果复数z 满足|||i 2|i z z ++-=,那么|1|z i ++的最小值是( ) A .1 B 2C .2D5.若复数(1)(1)z m m m i =-+-是纯虚数,其中m 是实数,则1z=( ) A .iB .i -C .2iD .2i -6.已知i 为虚数单位,复数32i2iz +=-,则以下命题为真命题的是( ) A .z 的共轭复数为74i 55- B .z 的虚部为75-C .3z =D .z 在复平面内对应的点在第一象限7.复数z 满足()234(i z i i --=+为虚数单位),则(z = ) A .2i -+ B .2i -C .2i --D .2i +8.复数21iz i+=-,i 是虚数单位,则下列结论正确的是A .z =B .z 的共轭复数为31+22i C .z 的实部与虚部之和为1D .z 在复平面内的对应点位于第一象限9.i 为虚数单位,复平面内表示复数2iz i-=+的点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限10.若i 为虚数单位,复数z 满足z i ≤,则2z i -的最大值为( )A .2B .3C .D .11.已知复数21aiz i+=-是纯虚数,则实数a 等于( ) AB .2CD12.若复数z 满足(12)5z i +=,则它的共轭复数z 在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.若复数z满足||1z i -,则2z i +(i 为虚数单位)的最小值为______. 14.设复数z ,满足11z =,22z =,12z z i +=,则12z z -=____________. 15.已知复数z 满足()14i z a i +=+(i为虚数单位),且z =,则实数a =________.16.若有两个数,它们的和是4,积为5,则这两个数是________. 17.若复数z 满足111,arg 23z z z z π--⎛⎫== ⎪⎝⎭,则z 的代数形式是z =_____________. 18.已知复数z ,且|z|=1,则|z+3+4i|的最小值是________. 19.已知i 为虚数单位,则(1)(23i)(32i)-+-+=________________; (2)(4i)(23i)+--+=________________;(3)已知复数13i z b =-,22i z a =-+,其中a ,b R ∈,若复数12z z z =+,且复数z 对应的点在第三象限,则+a b 的取值范围为________________;(4)在复平面内,复数1z 对应的点为(2,2)-,复数2z 对应的点为(1,1)-,若复数21z z z =-,则复数z 对应的点在第________________象限.20.已知复数z 满足(12)43i z i +=+,则z = _________________;三、解答题21.设m R ∈,复数22(56)(3)m m m m i -++-(i 为虚数单位)是纯虚数. (1)求m 的值;(2)若2mi -+是方程20x px q ++=的一个根,求实数p ,q 的值.22.已知:复数1z 与2z 在复平面上所对应的点关于y 轴对称,且12(1)(1)z i z i -=+(i 为虚数单位),|1z. (I )求1z 的值;(II )若1z 的虚部大于零,且11mz n i z +=+(m ,n ∈R ),求m ,n 的值. 23.已知关于x 的方程()2250x px p R -+=∈的两根为1x 、2x . (1)若134x i =+,求p 的值;(2)若121x x -=,求实数p 的值. 24.计算下列各题:(1)55(1)(1)11i i i i +-+-+;(2)201920191111i i i i +-⎛⎫⎛⎫- ⎪ ⎪-+⎝⎭⎝⎭;;(4) 23201920202320192020i i i i i +++++.25.已知1(3)(?4)z x y y x i =++-,2(42)(53)(,)z y x x y i x y R =--+∈,设12z z z =-,且132z i =+,求复数1z ,2z .26.已知O 为坐标原点,向量1OZ 、2OZ 分别对应复数1z 、2z ,且()213105z a i a =+-+,()()22251z a i a R a =+-∈-.若12z z +是实数. (1)求实数a 的值; (2)求以1OZ 、2OZ 为邻边的平行四边形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据复数222221212111a ai a az i a a a-+-==++++,得到复数z 对应点的坐标为:22212,11a a a a ⎛⎫- ⎪++⎝⎭,然后由22212,11a ax y a a -==++,利用复数的模求解. 【详解】因为复数222221212111a ai a az i a a a-+-==++++, 所以复数z 对应点的坐标为:22212,11a a a a ⎛⎫- ⎪++⎝⎭, 即22212,11a ax y a a -==++, 所以222222212111a a x y a a ⎛⎫-⎛⎫+=+= ⎪ ⎪++⎝⎭⎝⎭,因为22212111a x a a-==-+++, 又因为a R ∈, 所以211a +≥, 所以22021a <≤+, 所以221111a -<-+≤+, 即11x -<≤,所以复数z 对应点组成的图形为单位圆除去点()1,0-. 故选:D 【点睛】本题主要考查复数的几何意义以及复数模的轨迹问题,还考查了运算求解的能力,属于中档题.2.B解析:B 【分析】复数方程|2|1z -=转化成实数方程()2221x y -+=,再由复数模定义|1|z i -+表示(1,1)-与圆上任一点(,)x y 间距离.【详解】解:设z x yi =+,由|2|1z -=得圆的方程()2221x y -+=,又|1|z i -+(1,1)-与圆上任一点(,)x y 间距离.则由几何意义得x ma |1|11z i -+==,故选:B . 【点睛】本题主要考查复数模的计算和几何意义,属于中档题.3.B解析:B 【分析】先求出(4,4)OA =,(4,4)OB =-,再利用平面向量的数量积求解. 【详解】∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.由24y x y x⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-,则44z i =+,(4,4)OA =,(4,4)OB =-, ∴444(4)0OA OB ⋅=⨯+⨯-=. 故选B 【点睛】本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.4.A解析:A 【分析】直接利用复数模的几何意义求出z 的轨迹.然后利用点到直线的距离公式求解即可. 【详解】:∵|z +i|+|z -i|=2∴点Z 到点A (0,-1)与到点B (0,1)的距离之和为2. ∴点Z 的轨迹为线段AB .而|z +1+i|表示为点Z 到点(-1,-1)的距离. 数形结合,得最小距离为1 故选A . 【点睛】本题只要弄清楚复数模的几何意义,就能够得到解答.5.A解析:A 【解析】因为复数()()11z m m m i =-+-是纯虚数,所以()1010m m m ⎧-=⎨-≠⎩,则m =0,所以z i =-,则11i z i==-. 6.D解析:D 【分析】利用复数的除法运算,化简32i2iz +=-,利用共轭复数,虚部,模长的概念,运算求解,进行判断即可. 【详解】()()()()32i 2i 32i 47i2i 2i 2i 55z +++===+--+, z ∴的共扼复数为47i 55-,z 的虚部为75,z ==,z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,在第一象限. 故选:D. 【点睛】本题考查了复数的四则运算,共轭复数,虚部,模长等概念,考查了学生概念理解,数学运算的能力,属于基础题.7.C解析:C 【解析】 【分析】把已知等式变形,再由复数代数形式的乘除运算化简得答案. 【详解】由()2345i z i --=+=,得()()()5252222i z i i i i -+===-+-----+, 2z i ∴=--. 故选C . 【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.8.D解析:D 【分析】利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论. 【详解】 由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则2z ==,z的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D . 【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -. 9.C解析:C【解析】(2)21122(2)(2)555i i i i z i i i i -----====--++-.故选C 10.D解析:D 【分析】先根据33z i ++≤分析出复数z 对应的点在复平面内的轨迹,然后将2z i -的最大值转化为圆外一点到圆上一点的距离最大值问题并完成求解. 【详解】因为33z i ++≤表示以点()3,1M --为圆心,半径3R =的圆及其内部, 又2z i -表示复平面内的点到()0,2N 的距离,据此作出如下示意图:所以()()()()22max 20321333z i MN R -=+=--+--=故选:D. 【点睛】结论点睛:常见的复数与轨迹的结论:(1)()00z z r r -=>:表示以0z 为圆心,半径为r 的圆;(2)(1220z z z z a a -+-=>且)122a z z =:表示以12,z z 为端点的线段; (3)(1220z z z z a a -+-=>且)122a z z >:表示以12,z z 为焦点的椭圆;(4)(1220z z z z a a ---=>且)1202a z z <<:表示以12,z z 为焦点的双曲线.11.B解析:B 【分析】 化简复数2222a a z i -+=+,根据复数z 是纯虚数,得到202a -=且202a+≠,即可求解. 【详解】由题意,复数()()()()2122211122ai i ai a az i i i i +++-+===+--+, 因为复数z 是纯虚数,可得202a -=且202a+≠,解得2a =, 所以实数a 等于2. 故选:B. 【点睛】本题主要考查了复数的除法运算,以及复数的基本概念的应用,其中解答中熟记复数的运算法则,结合复数的基本概念求解是解答的关键,着重考查推理与运算能力.12.A解析:A 【分析】根据复数的除法运算法则,可得12z i =-,求得12z i =+,结合复数的几何意义,即可求解. 【详解】由题意,复数z 满足(12)5z i +=,可得51212z i i==-+, 所以12z i =+,它在复平面内对应的点为(1,2)在第一象限.故选:A. 【点睛】本题主要考查了复数的除法运算法则,以及共轭复数的概念和复数的几何意义,其中解答中熟记复数的除法的运算法则,准确化简、运算是解答的关键,着重考查推理与运算能力.二、填空题13.【分析】设由知点在以为圆心1为半径的圆上及圆的内部表示点与点的距离数形结合即可得到答案【详解】设由可得此式表示复平面上的点在以为圆心1为半径的圆上及圆的内部此式表示点与点的距离故所以的最小值为故答案1【分析】设,,z a bi a b R =+∈,由||1z i +,知点(,)P a b 在以1)A -为圆心,1为半径的圆上及圆的内部,2z i =(,)P a b 与点(2)B 的距离,数形结合即可得到答案. 【详解】设,,z a bi a b R =+∈,由||1z i +可得22((1)1a b -++≤,此式表示复平面上的点(,)P a b 在以1)A -为圆心,1为半径的圆上及圆的内部,2232(3)(2)z i a b +-=++-,此式表示点(,)P a b 与点(3,2)B -的距离,故22min 1(23)31PB AB =-=+-=211-.所以32z i +-的最小值为211-. 故答案为:211- 【点睛】本题考查复数的几何意义,考查学生数形结合思想以及数学运算求解能力,是一道中档题.14.【分析】根据复数的几何意义得到对应向量的表示再结合向量的平行四边形法则以及余弦定理求解出的值【详解】设在复平面中对应的向量为对应的向量为如下图所示:因为所以所以又因为所以所以所以又故答案为:【点睛】 解析:6【分析】根据复数的几何意义得到对应向量的表示,再结合向量的平行四边形法则以及余弦定理求解出12z z -的值. 【详解】设12,z z 在复平面中对应的向量为12,OZ OZ ,12z z +对应的向量为3OZ ,如下图所示:因为123z z i +,所以12312z z =+=+,所以222131221cos 1224OZ Z +-∠==⨯⨯,又因为1312180OZ Z Z OZ ∠+∠=︒,所以12131cos cos 4Z OZ OZ Z ∠=-∠=-, 所以222211212122cos 1416Z Z OZ OZ OZ OZ Z OZ =+-⋅⋅∠=++=,所以216Z Z =,又12216z z Z Z -==, 6. 【点睛】结论点睛:复数的几何意义:(1)复数(),z a bi a b R =+∈←−−−→一一对应复平面内的点()(),,Z a b a b R ∈; (2)复数(),z a bi a b R =+∈ ←−−−→一一对应平面向量OZ .15.0【分析】先化简再利用建立方程最后解得实数的值【详解】解:∵∴∵∴解得:故答案为:0【点睛】本题考查复数的运算复数的几何意义求参数是基础题解析:0 【分析】先化简4422a a z i +-=+,再利用z ==后解得实数a 的值. 【详解】解:∵ ()14i z a i +=+, ∴ ()()4(1)4(4)(4)4411(1)222a i i a i a a i a a z i i i i +-+++-+-====+++-∵z =,∴z ==解得:0a =, 故答案为:0. 【点睛】本题考查复数的运算,复数的几何意义求参数,是基础题.16.【分析】设利用列方程组解方程组求得题目所求两个数【详解】设依题意有即所以将代入得;将代入解得;将代入得结合解得或所以对应的数为故答案为:【点睛】本小题主要考查复数运算属于中档题 解析:2i ±【分析】设()12,,,,z a bi z c di a b c d R =+=+∈,利用12124,5z z z z +=⋅=列方程组,解方程组求得题目所求两个数. 【详解】设()12,,,,z a bi z c di a b c d R =+=+∈,依题意有12124,5z z z z +=⋅=,即()()45a c b d i ac bd ad bc i ⎧+++=⎪⎨-++=⎪⎩,所以405a cb d ac bd ad bc +=⎧⎪+=⎪⎨-=⎪⎪+=⎩.将=-b d 代入0ad bc +=,得a c =;将a c =代入4a c +=,解得2a c ==;将2a c ==代入5ac bd -=,得1bd =-,结合=-b d 解得11b d =⎧⎨=-⎩或11b d =-⎧⎨=⎩.所以对应的数为2i +、2i -. 故答案为:2i ± 【点睛】本小题主要考查复数运算,属于中档题.17.【分析】先写出的三角形式再进行化简整理即可【详解】设则∴∴解得故答案为:【点睛】本题考查复数三角形式的定义属基础题解析:1+【分析】 先写出1z z-的三角形式,再进行化简整理即可. 【详解】 设01z z z -=,则001,arg 23z z π==,∴011cos sin 2334z ππ⎛⎫+= ⎪⎝⎭=,∴1144z z -=+,解得13z i =+.故答案为:1+. 【点睛】本题考查复数三角形式的定义,属基础题.18.4【解析】【分析】方法一:根据绝对值不等式|a|﹣|b|≤|a+b|≤|a|+|b|求出|z+3+4i|的最小值即可方法二:利用复数的几何意义求解即可【详解】方法一:∵复数z 满足|z|=1∴|z+3解析:4【解析】【分析】方法一:根据绝对值不等式|a |﹣|b |≤|a +b |≤|a |+|b |,求出|z +3+4i |的最小值即可.方法二:利用复数的几何意义求解即可【详解】方法一:∵复数z 满足|z|=1,∴|z+3+4i|≥|3+4i|﹣|z|=5﹣1=4,∴|z+3+4i|的最小值是4.方法二:复数z 满足|z|=1,点z 表示以原点为圆心、1为半径的圆.则|z+3+4i|表示z 点对应的复数与点(﹣3,﹣4)之间的距离,圆心O 到点(﹣3,﹣4)之间的距离d ==5,∴|z+3+4i|的最小值为5﹣1=4,故答案为4.【点睛】本题考查了不等式的应用问题,也考查了复数的几何意义及运算问题,属基础题.19.四【分析】(1)利用复数的加法法则计算即可;(2)利用复数的减法法则计算即可;(3)由题意可得则且据此可得的取值范围(4)由题意可得结合可得据此确定其所在的象限即可【详解】(1)(2)(3)因为所以解析:1i --62i -(,5)-∞四【分析】(1)利用复数的加法法则计算()()2332i i -+-+即可;(2)利用复数的减法法则计算()()423i i +--+即可;(3)由题意可得12(2)(3)i z z b a z =+=-+-,则2b <且3a <,据此可得+a b 的取值范围.(4)由题意可得122i z =-+,21z i =-,结合21z z z =-可得33z i =-,据此确定其所在的象限即可.【详解】(1)()()(23)(32)23321i i i i i -+-+=-+-+=--.(2)()()(4)(23)42362i i i i i +--+=++-=-.(3)因为13i z b =-,22i z a =-+,所以12(2)(3)i z z b a z =+=-+-,又复数z 对应的点在第三象限,所以2030b a -<⎧⎨-<⎩,所以2b <且3a <, 所以5a b +<,故+a b 的取值范围为(,5)-∞.(4)因为复数1z 对应的点为(2,2)-,复数2z 对应的点为(1,1)-,所以122i z =-+,21z i =-,又复数21z z z =-,所以1i (22i)33i z =---+=-,所以复数z 对应的点为(3,3)-,在第四象限【点睛】本题主要考查复数的加法、减法运算,复数所在象限的判定等知识,意在考查学生的转化能力和计算求解能力.20.【分析】先根据复数除法得再根据共轭复数概念得【详解】因为所以即【点睛】本题重点考查复数的概念与复数相等属于基本题复数的实部为虚部为模为对应点为共轭为解析:2i +【分析】 先根据复数除法得z ,再根据共轭复数概念得z .【详解】因为()1243i z i +=+,所以43212i z i i+==-+,即2.z i =+ 【点睛】本题重点考查复数的概念与复数相等,属于基本题.复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi三、解答题21.(1)2.(2)4p =,8q =.【分析】(1)根据纯虚数的定义求出m 的值即可;(2)将2mi -+代入方程20x px q ++=,得到关于p ,q 的方程组,解出即可.【详解】(1)复数22(56)(3)m m m m i -++-是纯虚数, 2256030m m m m ⎧-+=∴⎨-≠⎩解得:2?30?3m m m m ==⎧⎨≠≠⎩或且 2m ∴=(2) 2mi -+是方程20x px q ++=的一个根由(1)可得2m =,即:22i -+是方程20x px q ++=的一个根2(22)(22)0i p i q ∴-++-++=即(2)(28)0p q p i -++-=20280p q p -+=⎧∴⎨-=⎩解得:4p =,8q =.【点睛】本题解题关键是掌握纯虚数定义和复数相等求参数方法,考查了分析能力和计算能力,属于中档题.22.(I )11z i =-或11z i =-+(II )4,1m n =-=【分析】(I )设1z x yi =+,得出2z 的表达式,根据12(1)(1)z i z i -=+和1z =方程组求得,x y 的值,进而求得1z 的值.(II )根据(I )的结论确定1z 的值.代入11m z n i z +=+运算化简,根据复数相等的条件列方程组,解方程组求得,m n 的值. 【详解】解:(I )设1z x yi =+(x ,y ∈R ),则2z =-x+yi ,∵z 1(1-i )=2z (1+i ),|1z,∴22()(1)()(1)2x yi i x yi i x y +-=-++⎧⎨+=⎩, ∴11x y =⎧⎨=-⎩或11x y =-⎧⎨=⎩,即11z i =-或11z i =-+ (II )∵1z 的虚部大于零,∴11z i =-+,∴11z i =--, 则有(1)1m i n i i +--=+-+,∴12112m n m ⎧--=⎪⎪⎨⎪--=⎪⎩,∴41m n =-⎧⎨=⎩. 【点睛】 本小题主要考查复数的概念,考查复数的模、复数相等、复数的虚部等知识,属于基础题. 23.(1)6;(2)p =或p =±【分析】(1)将134x i =+代入方程,将复数化为一般形式,利用复数相等可求得实数p 的值; (2)列出韦达定理,由121x x -=可得出关于p 的等式,由此可解得实数p 的值.【详解】(1)已知关于x 的方程()2250x px p R -+=∈的一根为134x i =+,所以,()()()()23434251832440i p i p p i +-++=-+-=,所以,1832440p p -=-=,解得6p ;(2)2100p ∆=-,由题意得121225x x p x x +=⎧⎨=⎩. 若0∆≥,即2100p ≥,则121x x -===,解得p =;若∆<0,即100p <,由2250x px -+=,可得22210024p p x ⎫-⎛⎫⎪-== ⎪⎪⎝⎭⎝⎭,解得12p x =+,22p x =,则121x x i -===,解得p =±.综上所述,p =或p =±【点睛】关键点点睛:解本题的关键在于以下两点:(1)在解第一问时,可利用实系数的二次方程的两个虚根互为共轭复数来求解; (2)在解第二问时,应对二次方程是否有实根进行分类讨论,并结合韦达定理求解. 24.(1)0;(2)2i -;(3)516;(4)10101010i - 【分析】根据复数的乘除运算法则及乘方运算,即可计算出(1)(2)的值;利用复数模的运算性质可求出(3)的值;利用分组求和及i 的运算性质可求出(4)的值.【详解】 (1) 5566232322(1)(1)(1)(1)[(1)][(1)]11(1)(1)(1)(1)11i i i i i i i i i i i i i i +-+-+-+=+=+-+-++--- 3333(2)(2)44022i i i i -=+=-=. (2)因为21(1)21(1)(1)2i i i i i i i ++===--+,21(1)21(1)(1)2i i i i i i i ---===-++-, 所以20192019201945043201920319111(22221)i i i i i i i i i i ⨯+-=--==+-⎛⎫⎛⎫ ⎪ ⎪-+=⎝⎭=-⎝⎭.545488(43)(1)|(43)(1)|(42)|(42||)|||||i i i i ⋅--==++545454884|43|1||525|42|2516i i -⨯====+⋅⨯. (4) 23201920202320192020i i i i i +++++(234)(5678)(2017201820192020)i i i i i i =--++--+++--+(22)(22)(22)+i i i =-+-+- 505(22)i =⨯-10101010i =-.【点睛】本题主要考查复数的乘除运算,乘方运算,复数的模的运算性质及i 的运算性质,属于中档题.25.1z =59,i -287.z i =--【分析】明确复数1z ,2z 的实部与虚部,结合加减法的运算规则,即可求出复数z ,从而用,x y 表示出z ,接下来根据复数相等的充要条件列出关于,x y 的方程组求解,即可得出1z ,2z .【详解】∵12z z z =- ()()()()344253x y y x i y x x y i =++---++ ()()342x y y x ⎡⎤=+--⎣⎦ ()()453y x x y i ⎡⎤+-++⎣⎦ ()()534x y x y i =-++. ∴()()534z x y x y i =--+.又∵132z i =+∴531342x y x y -=⎧⎨+=-⎩∴21x y =⎧⎨=-⎩∴()()1321142z i =⨯-+--⨯ 59,i =-∴()()24122523187.z i i ⎡⎤⎡⎤=⨯--⨯-⨯+⨯-=--⎣⎦⎣⎦【点睛】本题主要考查复数代数形式的加减运算、共轭复数的定义以及复数相等的充要条件,属于中档题.复数相等的性质是:若两复数相等则它们的实部与虚部分别对应相等.26.(1)3a =;(2)118. 【分析】(1)求出1z 和2z ,由复数12z z +是实数,可求得实数a 的值;(2)求出1OZ 和2OZ ,利用平面向量的数量积求出12cos Z OZ ∠,进一步求出12sin Z OZ ∠,结合三角形的面积公式可求得所求四边形的面积.【详解】(1)由题意可得()213105z a i a =--+, ()22251z a i a =+--,则()2123221551z z a a i a a+=+++-+-, 由于复数12z z +是实数,则221505010a a a a ⎧+-=⎪+≠⎨⎪-≠⎩,解得3a =;(2)由(1)可得138z i =+,21z i =-+,则点13,18Z ⎛⎫ ⎪⎝⎭,()21,1Z -, 因此,以1OZ 、2OZ 为邻边的平行四边形的面积为121118S Z Z =⨯=. 【点睛】本题考查利用复数类型求参数,同时也考查了四边形面积的计算,涉及平面向量数量积的应用,考查计算能力,属于中等题.。
一、选择题1.复数()()2222z a a a a i =-+--对应的点在虚轴上,则( )A .2a ≠,或1a ≠B .2a ≠,且1a ≠C .2a =,或0a =D .0a = 2.已知复数z 满足2||230z z --=的复数z 的对应点的轨迹是( ) A .1个圆 B .线段 C .2个点 D .2个圆3.已知12,z z C ∈,121z z ==,12z z +=12z z -=( )A .0B .1C D .2 4.能使得复数()32z a aia R =-+∈位于第三象限的是( ) A .212a i -+为纯虚数 B .12ai +模长为3C .3ai +与32i +互为共轭复数D .0a > 5.若a b 、为非零实数,则以下四个命题都成立:①10a a+≠;②()2222a b a ab b +=++;③若a b ,=则a b =±;④若2a ab =,则a b ,=则对于任意非零复数a b 、,上述命题中仍为真命题的个数为( )个. A .1 B .2 C .3 D .46.213(1)i i +=+( ) A .3122i - B .3122i + C .3122i -- D .3122i -+ 7.,A B 分别是复数12,z z 在复平面内对应的点,O 是原点,若1212z z z z +=-,则OAB ∆一定是A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 8.已知复数2a i i +-是纯虚数(i 是虚数单位),则实数a 等于 A .-2B .2C .12D .-1 9.“复数3i ia z -=在复平面内对应的点在第三象限”是“0a ≥”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 10.已知(,)a bi a b R +∈是11i i +-的共轭复数,则a b +=( ) A .1- B .12- C .12 D .111.复数11i i +-的实部和虚部分别为a ,b ,则a b +=( ) A .1 B .2 C .3 D .412.若复数2(1)34i z i+=+,则z =( ) A .45 B .35 C .25 D .25二、填空题13.已知集合{}11M z z =+=,{}i N z z i z =+=-,则M N =______. 14.若复数z 满足12i z i ⋅=+,其中i 是虚数单位,则z 的虚部为________.15.复数(1sin )(cos sin )z θθθ=++-i 是实数,[]0,2θπ∈则θ=______.16.已知复数(,是虚数单位)的对应点在第四象限,且,那么点在平面上形成的区域面积等于____17.已知复数z 满足43(z i i i+=为虚数单位),则z 的共轭复数z =____. 18.已知复数z 满足(12)43i z i +=+,则z = _________________; 19.已知,则 =____.20.给出下列四种说法:①-2i 是虚数,但不是纯虚数;②两个复数互为共轭复数,当且仅当其和为实数;③已知 x y R ,∈,则 x i 1i y +=+ 的充要条件为x y 1==;④如果让实数a 与 ai 对应,那么实数集与纯虚数集一一对应.其中正确说法的为 __________.三、解答题21.当实数m 取什么值时,复数224(6)Z m m m i =-+--分别满足下列条件? (1)复数Z 实数;(2)复数Z 纯虚数;(3)复平面内,复数Z 对应的点位于直线y x =-上.22.已知复数z 满足2z =,2z 的虚部为2,(1)求复数z ;(2)设22,,z z z z -在复平面上对应点分别为,,A B C ,求ABC ∆的面积. 23.(1)在复数范围内解方程()232i z z z i i -++=+(i 为虚数单位) (2)设z 是虚数,1z zω=+是实数,且12ω-<<(i )求z 的值及z 的实部的取值范围;(ii )设11z zμ-=+,求证:μ为纯虚数; (iii )在(ii )的条件下求2ωμ-的最小值.24.已知复数2z i =+(i 是虚数单位)是关于x 的实系数方程20x px q ++=根.(1)求p q +的值;(2)复数w 满足z w ⋅是实数,且w =w 的值.25.设复数12,z z 满足12122210z z iz iz +-+=.(1)若12,z z 满足212z z i -=,求12,z z .(2)若1z =k ,使得等式24z i k -=恒成立?若存在,试求出k 的值;若不存在,请说明理由.26.已知1251034.z i z i =+=-,(1)若12z z ,若在复平面上对应的点分别为A,B ,求AB 对应用的复数(2)若12111z z z z =+,求【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用复数的运算性质和几何意义即可得出.【详解】解:由于复数()()2222z a a a a i =-+--对应的点在虚轴上,因此, 220a a -=,解得2a =,或0a =故选C【点睛】熟练掌握复数的运算性质和几何意义是解题的关键. 2.A解析:A【详解】 因为2||230z z --=,所以3z =,3z = (负舍)因此复数z 的对应点的轨迹是以原点为圆心以3为半径的圆,选A.3.B解析:B【分析】 利用复数加法、减法和模的运算化简已知条件,由此求得12z z -.【详解】设12,z a bi z c di =+=+,则()()12z z a c b d i +=+++,()()12z z a c b d i -=-+-. 依题意得:22221,1a b c d +=+=,12z z +=⇒()()223a c b d +++=⇒()222223a b c d ac bd +++++=⇒()21ac bd +=.所以12z z -==1==.故选:B【点睛】本小题主要考查复数运算,属于中档题. 4.A解析:A【分析】分析四个选项中的参数a ,判断是否能满足复数()32z a aia R =-+∈是第三象限的点.【详解】 322z a ai a ai =-+=--由题意可知,若复数在第三象限,需满足200a a -<⎧⎨-<⎩,解得:02a <<, A.212z a i =-+是纯虚数,则12a =,满足条件;B.123z ai =+==,解得:a =a =C. 3ai +与32i +互为共轭复数,则2a =-,不满足条件;D.0a >不能满足复数z 在第三象限,不满足条件.故选:A【点睛】本题考查复数的运算和几何意义,主要考查基本概念和计算,属于基础题型.5.B解析:B【解析】【分析】根据复数的概念和性质,利用复数的代数形式的运算法则,即可得出正确选项.【详解】解:对于①,当a i =时,10a a+=,即①不成立, 对于②,根据复数代数形式的运算法则,满足乘法公式,即②在正确,对于③,在复数C 中,1i =,则1,a b i ==时,a b ≠±,即③错误,对于④,根据复数代数形式的运算法则可得,若2a ab =,则a b ,=即④正确, 综上可得上述命题中仍为真命题的序号为②④,故选B.【点睛】本题考查了复数的概念和性质及复数的代数形式的运算法则,属基础题.6.A解析:A【分析】首先计算2(1)i +,之后应用复数的除法运算法则,求得结果.【详解】 ()21313312221ii i i i ++==-+, 故选A.【点睛】该题考查的是有关复数的运算,属于简单题目.7.C解析:C【解析】 因为1212z z z z +=-,所以22||OA OB OA OB OA OB OA OB +=-∴+=- , 因此0OA OB OA OB ⋅=∴⊥ ,即OAB 一定是直角三角形,选C. 8.C解析:C【解析】 2a i i +-21255a a i -+=+是纯虚数,所以21210,0552a a a -+=≠∴=,选C. 9.A解析:A【详解】因为33ai z a i i-==--,所以由题设可得00a a -<⇒>,因此0a >是0a ≥的充分不必要条件,故应选答案A .10.A解析:A【解析】【分析】 先利用复数的除法运算法则求出11i i+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】 ()()21(1)21112i i i i i i ++===-+-i , ∴a +bi =﹣i ,∴a =0,b =﹣1,∴a +b =﹣1,故选:A .【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题. 11.A解析:A【分析】利用两个复数代数形式的除法运算性质,把复数化为最简形式,得到其实部和虚部的值,进而求得结果.【详解】21(1)21(1)(1)2i i i i i i i ++===--+, 所以0,1a b ==, 所以1a b +=,故选:A.【点睛】思路点睛:该题考查的是有关复数的问题,解题思路如下:(1)利用复数除法运算法则先化简复数11i i+-; (2)确定出复数的实部和虚部各是多事; (3)进而求得a b +的值.12.C解析:C【分析】先求出8625i z -=,再求出||z 得解. 【详解】 由题得()()()()212342863434343425i i i i i z ii i i +-+====+++-,所以102255z ===. 故选:C二、填空题13.【分析】根据复数的几何意义可知代表的是圆上代表的是线利用线与圆的位置关系可知结果【详解】的几何意义是以点为圆心1为半径的圆表示到点和点的距离相等的点的集合是线段的垂直平分线也就是轴的几何意义是轴与圆 解析:{}0,2-【分析】 根据复数的几何意义,可知11z +=代表的是圆上,i z i z +=-代表的是线,利用线与圆的位置关系,可知结果.【详解】11z +=的几何意义是以点()1,0-为圆心,1为半径的圆.i i z z +=-表示到点()0,1A 和点()0,1B -的距离相等的点的集合,是线段AB 的垂直平分线,也就是x 轴.M N ⋂的几何意义是x 轴与圆的公共点对应的复数,故0z =或2z =-,{}0,2M N ∴⋂=-.【点睛】本题考查复数的几何意义,属中档题.14.-1【分析】利用复数的运算法则求出根据虚部的概念即可得出【详解】∴的虚部为故答案为【点睛】本题考查了复数的运算法则复数的分类考查了推理能力与计算能力属于基础题解析:-1【分析】利用复数的运算法则求出z ,根据虚部的概念即可得出.【详解】()()212122i i i z i i i +-+===--, ∴z 的虚部为1-,故答案为1-.【点睛】本题考查了复数的运算法则、复数的分类,考查了推理能力与计算能力,属于基础题. 15.或【解析】【分析】由复数的虚部为0求得再由的范围得答案【详解】是实数即又或故答案为:或【点睛】本题主要考查了复数的代数表示法实部虚部的概念利用三角函数求角属于中档题 解析:4π或54π. 【解析】【分析】 由复数z 的虚部为0求得tan θ,再由θ的范围得答案. 【详解】(1sin )(cos sin )z i θθθ=++-是实数,cos sin 0θθ∴-=,即tan 1θ=,又[0,2],θπ∈4πθ∴=或54π, 故答案为:4π或54π 【点睛】 本题主要考查了复数的代数表示法,实部、虚部的概念,利用三角函数求角,属于中档题. 16.π【分析】先把复数分母有理化再根据z 在第四象限和|z|≤2可得关于xy 的不等式组进而可得点P 在平面上形成的区域面积【详解】由题得z=x+yi1+i=x+y+(y-x)i2z 在第四象限则有x+y2>0解析:【分析】先把复数分母有理化,再根据z 在第四象限和,可得关于x ,y 的不等式组,进而可得点P 在平面上形成的区域面积.【详解】 由题得,z 在第四象限,则有,整理得,由得,化简得,则点在不等式组所表示的平面区域内,如图阴影部分:则其面积.【点睛】本题考查复数的运算和复数的模,与线性规划相结合,有一定综合性.17.【分析】利用复数的运算法则共轭复数的定义即可得出结果【详解】由可得即所以故答案是:【点睛】该题考查的是有关复数的问题涉及到的知识点有复数的运算法则以及共轭复数的概念属于简单题目解析:34i -+【分析】利用复数的运算法则、共轭复数的定义即可得出结果.【详解】 由43z i i +=可得34z i i=-,即23434z i i i =-=--, 所以34z i =-+,故答案是:34i -+.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的运算法则以及共轭复数的概念,属于简单题目.18.【分析】先根据复数除法得再根据共轭复数概念得【详解】因为所以即【点睛】本题重点考查复数的概念与复数相等属于基本题复数的实部为虚部为模为对应点为共轭为解析:2i +【分析】 先根据复数除法得z ,再根据共轭复数概念得z .【详解】因为()1243i z i +=+,所以43212i z i i+==-+,即2.z i =+ 【点睛】本题重点考查复数的概念与复数相等,属于基本题.复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭为.-a bi19.-2-3i 【解析】分析:化简已知的等式即得a 的值详解:由题得(1-i)31+i-3i=a ∴a=(1-i)4(1+i)(1-i)-3i=-2i·-2i2-3i=-2-3i 故答案为-2-3i 点睛:(1)解析:-2-3i【解析】分析:化简已知的等式,即得 a 的值.详解:由题得,故答案为-2-3i点睛:(1)本题主要考查复数的综合运算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)本题是一个易错题,已知没有说“a”是一个实数,所以它是一个复数,如果看成一个实数,解答就错了. 20.③【解析】分析:①根据纯虚数的定义可判断;②根据共轭复数的定义可判断;③根据复数相等的性质可判定;④根据纯虚数的定义可判断详解:①因为是虚数也是纯虚数错误;②两个复数的和为实数时这两个复数不一定是共解析:③.【解析】分析:①根据纯虚数的定义可判断;②根据共轭复数的定义可判断;③根据复数相等的性质可判定;④根据纯虚数的定义可判断.详解:①因为2i -是虚数也是纯虚数,错误;②两个复数的和为实数时,这两个复数不一定是共轭复数,如1i -和3i +,这两个复数的和为实数,但这两个复数不是共轭复数,错误;③已知,x y R ∈,则i 1i x y +=+的充要条件为1x y ==,正确;④如果让实数a 与i a 对应,那么实数集与纯虚数集不是一一对应的,如当0a =时,错误,故答案为③.点睛:本题主要通过对多个命题真假的判断,主要综合考查复数的基本概念,属于中档题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.三、解答题21.(1)2m =-或3m =;(2)2m =;(3)2m =-或52m =. 【分析】(1)由虚部为0,求解m 值;(2)由实部为0且虚部不为0,列式求解m 值;(3)由实部与虚部的和为0,列式求解m 值.【详解】解:由题可知,复数224(6)Z m m m i =-+--,(1)当Z 为实数时,则虚部为0,由260m m --=,解得:2m =-或3m =;(2)当Z 纯虚数时,实部为0且虚部不为0, 由224060m m m ⎧-=⎨--≠⎩,解得:2m =; (3)当Z 对应的点位于直线y x =-上时,则0x y +=,即:实部与虚部的和为0,由224(6)0m m m -+--=,解得:2m =-或52m =. 【点睛】本题考查复数的基本概念,以及复数的代数表示法及其几何意义,属于基础题. 22.(1)1i +或1i --;(2)1【分析】(1)设z =a +bi (a ,b ∈R ),由已知列关于a ,b 的方程组,求解可得复数z ; (2)分类求得A 、B 、C 的坐标,再由三角形面积公式求解.【详解】解:(1)设z =a +bi (a ,b ∈R ),由已知可得:22ab ==⎪⎩2221a b ab ⎧+=⎨=⎩, 解得11a b =⎧⎨=⎩或11a b =-⎧⎨=-⎩. ∴z =1+i 或z =﹣1﹣i ;(2)当z =1+i 时,z 2=2i ,z ﹣z 2=1﹣i ,∴A (1,1),B (0,2),C (1,﹣1),故△ABC 的面积S 12=⨯2×1=1; 当z =﹣1﹣i 时,z 2=2i ,z ﹣z 2=﹣1﹣3i ,∴A (﹣1,﹣1),B (0,2),C (﹣1,﹣3),故△ABC 的面积S 12=⨯2×1=1. ∴△ABC 的面积为1.【点睛】 本题考查复数的乘方和加减运算,考查复数相等的条件和复数的几何意义,以及三角形的面积的求法,考查运算能力,属于中档题.23.(1)12z =-±;(2)(i )1z =;1,12a ⎛⎫∈- ⎪⎝⎭(ii )证明见解析;(iii )1 【分析】(1)利用待定系数法,结合复数相等构造方程组来进行求解;(2)(i )采用待定系数法,根据实数的定义构造方程即可解得z 和ω,利用ω的范围求得a 的范围;(ii )利用复数的运算进行整理,根据纯虚数的定义证得结论;(iii )将2ωμ-整理为123t t ⎛⎫+- ⎪⎝⎭,1,22t ⎛⎫∈ ⎪⎝⎭,利用基本不等式求得最小值. 【详解】(1)()()()()()23235512225i i i i z z z i i i i i ----++====-++- 设(),z x yi x y R =+∈,则2221x y xi i ++=-22121x y x ⎧+=∴⎨=-⎩,解得:12x y ⎧=-⎪⎪⎨⎪=⎪⎩122z ∴=-± (2)(i )设z a bi =+(,a b R ∈且)0b ≠2222221a bi a b a bi a bi a b i a bi a b a b a b ω-⎛⎫⎛⎫∴=++=++=++- ⎪ ⎪++++⎝⎭⎝⎭ω为实数 220b b a b∴-=+,整理可得:221a b += 即1z = ()21,2a ω∴=∈- 1,12a ⎛⎫∴∈- ⎪⎝⎭(ii )()()()()()222211*********a bi a bi z a bi a b bi z a bi a bi a bi a b μ--+-------====++++++-++ 由(i )知:221a b +=,则1b i a μ=-+ 1,12a ⎛⎫∈- ⎪⎝⎭且0b ≠ 01b a ∴-≠+ μ∴是纯虚数(iii )()()22222211212221111b a a a a a a a a a a a ωμ--++-=+=+=+=++++令1a t +=,则1,22t ⎛⎫∈ ⎪⎝⎭,1a t =- ()2222111232123t t t t t t t t ωμ-+-+-+⎛⎫∴-===+- ⎪⎝⎭ 12t t+≥(当且仅当1t =时取等号) 2431ωμ∴-≥-= 即2ωμ-的最小值为:1【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,利用待定系数法结合复数相等的条件进行转化是解决本题的关键.运算量较大,综合性较强.24.(1) 1p q += (2) 42w i =-或42i -+.【解析】【分析】(1)实系数方程20x px q ++=虚根是互为共轭复数的,得出另一根为2i -,根据韦达定理即可得解.(2) 设(),w a bi a b R =+∈,由z w ⋅是实数,得出关于a b ,的方程,又w =a b ,的另一个方程,联立即可解得a b ,的值,即得解.【详解】(1)实系数方程20x px q ++=虚根是互为共轭复数的,所以由共轭虚根定理另一根是2i -,根据韦达定理可得4,5,1p q p q =-=+=.(2)设(),w a bi a b R =+∈()()()()222a bi i a b a b i R +⋅+=-++∈,得20a b +=又w =2220a b +=,所以4,2a b ==-或4,2a b =-=,因此42w i =-或w=42i -+.【点睛】本题考查了实系数一元二次方程的虚根成对原理、根与系数的关系,复数的乘法及模的运算,考查了推理能力与计算能力,属于中档题.25.(1)123,5z i z i ==-或12,z i z i =-=-.(2)存在,k =【分析】(1)由条件可得211230z iz --=,设1z a bi =+,即可算出(2)由条件得212212iz z z i -=+,然后22212iz z i-=+22427z i -= 【详解】(1)由212z z i -=,可得212z z i =-,代入已知方程得()()1111222210z z i iz i z i -+--+=, 即211230z iz --=.令()1,z a bi a b =+∈R , 所以()22230a b i a bi +---=, 即()222320a b b ai +---=, 所以2223020a b b a ⎧+--=⎨-=⎩,解得03a b =⎧⎨=⎩或01a b =⎧⎨=-⎩. 所以123,5z i z i ==-或12,z i z i =-=-. (2)由已知得212212iz z z i-=+,又1z =所以22212iz z i-=+22222132iz z i -=+, 所以()()()()22222121322iz iz z i z i ---=+-, 整理得()()224427z i z i -+=,所以22427z i -=,即24z i -=,所以存在常数k =,使得等式24z i k -=恒成立.【点睛】设()1,z a bi a b =+∈R ,利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.26.(1)214i --(2)552i -【详解】 (1)()()2134i 510i 214.AB z z i =-=--+=--所以AB 对应用的复数为214i --. (2)由题得121212111z z z z z z z +=+= 1212552z z z i z z ∴==-+。
上海交通大学附属中学2014届高三数学一轮突破单元检测训练:数系的扩充与复数的引入本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题 (本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数(是虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B2.复数z 满足i z i -=+3)1(,则复数z 的虚部是( )A . 2iB . -2 iC . 2D . -2【答案】D 3.若复数i x x )1()1(2-+-为纯虚数,则实数x 的值为( )A .-1B .0C .1D .-1或1【答案】A 4.已知向量OZ 与OZ '关于x 轴对称,(0,1)j =,则满足不等式20OZ j ZZ '+⋅≤的点Z(x,y)的集合用阴影表示为( )【答案】C5.已知复数1i z i=-(i 为虚数单位)则复数z 在复平面对应的点位于( ) A .第一象限B .第二象限 C.第三象限 D .第四象限 【答案】B6.在复平面内,复数21i +对应的点与原点的距离是( )A . 1B .C . 2D .【答案】B7.已知复数z 满足3)3i z i +⋅=,则z 等于( )A . 34B . 32-C . 34D . 32+【答案】A8.设a,b 为实数,若复数i bi a i +=++121,则( ) A .31,22a b == B . 3,1a b == C . 13,22a b == D . 1,3a b == 【答案】A9.已知i 为虚数单位,复数121i z i +=-,则复数z 在复平面上的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B10.设456124561212,,z i i i i z i i i i =++++=⋅⋅⋅⋅则12,z z 的关系是( ) A . 12z z = B . 12z z =- C . 121z z =+ D . 无法确定【答案】A11.在复平面内,复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C12.设a ,b ∈R.“a=O ”是‘复数a+bi 是纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B第Ⅱ卷(非选择题 共90分)二、填空题 (本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.2z mi =+,m R ∈,若11z i -+对应点在第二象限,则m 的取值范围为____________ 【答案】(1,1)-14.已知复数z 满足1(z i iz i +=-是虚数单位),则z =____________.【答案】i - 15.i 是虚数单位,若复数1()1bi z b i +=∈+R 为纯虚数,则b= 。
上海交通大学附属中学2008-2009学年度第一学期高三摸底考试数学试卷(满分150分,120分钟完成,答案一律写在答题纸上)一、填空题(本大题满分48分)1、集合=2、若幂函数的图象不过原点,则实数的值为3、设复数,,若对应的点在上,则的值为4、下列表中的对数值有且仅有一个是错误的:请将错误的一个改正为=5、是关于对称的奇函数,,,则6、已知ΔABC的三个内角所对边的长分别为,向量,,若,则∠等于7、已知, =, =,若||≤,若△ABC是直角三角形,则8、一个正方体表面展开图中,五个正方形位置如图阴影所示第六个正方形在编号1到5的位置,则所有可能位置的编号是________9、抛物线上的点到抛物线的准线距离为,到直线的距离为,则的最小值是________10、如图,将网格中的三条线段沿网格线上下或左右平移,组成一个首尾相连的三角形,则三条线段一共至少需要移动格11、定义在上的函数满足,且函数为奇函数,给出下列命题:(1)函数的周期为,(2)函数关于点对称,(3)函数关于轴对称。
其中正确的是12、若为的各位数字之和,如,,则;记,,…,,,则二、选择题(本大题满分16分)的是( )13、如图,ABCD-A1B1C1D1为正方体,下面结论错误..A. BD∥平面CB1D1B. AC1⊥BDC. AC1⊥平面CB1D1D. 异面直线AD与CB1角为60°14、给出下列四个命题:①若zC, ,则zR; ②若zC, ,则z是纯虚数;③若zC, ,则z=0或z=i; ④若则.其中真命题的个数为()A. 1个B. 2个C. 3个D.4个15、已知函数是偶函数,其定义域为,则点的轨迹是()A. 直线B. 圆锥曲线C. 线段D. 点16、设, 则对任意正整数, 都成立的是()A.B.C.D.三、解答题(本大题满分86分)17、(12分)已知关于的不等式:(1)当时,求该不等式的解集;(2)当时,求该不等式的解集.18、(12分)是平面上的两个向量,且互为垂直.(1)求的值;(2)若的值.19、(14分)设,求满足下列条件的实数的值:至少有一个正实数,使函数的定义域和值域相同。
上海交通大学附属中学2007-2008学年度第一学期高三数学期中试卷(理科)(满分150分,120分钟完成。
答案一律写在答题纸上。
)命题:宋向平、史立明 审核:杨逸峰一、填空题(每小题4分,共48分)1. 复数Z=22(23)(1)m m m i --+-为纯虚数,则实数m=2. 已知1312sin =θ, ∈θ[ 0, 2π], 则=2tan θ3.函数y =的定义域是 4. 不等式11x-≥2的解集为 5. 函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如右图所示,则ω= ,ϕ= .6. 在极坐标系中,若过点()4,0且与极轴垂直的直线交曲线6cos ρθ=于,A B 两点,则=AB .7. 在三角形ABC 中,角2...., 2sin cos 212B CA B C a b c A +-=所对的边分别为且 则角A 的大小为8. 若关于x 的方程04)4(2=++++mi x i x (∈m R )有实数根,则m 等于 9. 函数2arcsin(1)y x =-的单调递增区间是 : 10. 函数22(12)y x x x =-≤≤反函数是 . 11. 方程)3sin(||lg π+=x x 有___个实数根。
12. 已知α、β是实数,给出下列四个论断:(1)||||||βαβα+=+,(2)||||βαβα+≤-,(3)22||>α,22||>β,(4)5||>+βα.以其中的两个论断为条件,其余两个论断作为结论,写出你认为正确的一个命题:______二、选择题(每小题4分,共16分)5题13. 已知集合M={|4k πθθ=,k Z ∈},N={|cos 20x x =},P={|sin 21αα=},则下列关系式中成立的是( )A . P N M ⊂⊂B .P N M =⊂ C. P N M ⊂= D. P N M == 14. 定义:复数b ai +是z a bi =+(a 、b R ∈)的转置复数....,记为z b ai '=+;复数a bi -是z a bi =+(a 、b R ∈)的共轭复数....,记为z a bi =-.给出下列三个命题: ①z i z '=⋅; ② 0z z ''+=; ③12120z z z z ''⋅+⋅=;其中真命题的个数为( ) A .0 B .1 C .2 D .3 15. 已知函数f (x )≠-1,且对定义域内任意x 总有关系1()()1()f x f x f x π-+=+,那么下列结论中一定正确的是 ( )A. f (x )不一定有周期性B. f (x )是周期为π的函数C. f (x )是周期为2π的函数D. f (x )是周期为2π的函数 16. 已知函数①()3ln f x x =;②12()f x x-=;③()3x f x e =;④()3cos f x x =.其中对于()f x 定义域内的任意一个自变量1x ,都存在唯一一个自变量2x ,3成立的函数是( )A .①②B .②③C .③④D .②③④三、解答题17.(本小题满分16分)复数21i z ⎤-=是实系数一元二次方程210ax bx ++=(),a b R ∈的一个根,求(1)a 和b 的值;(2)若u z ci =+()c R ∈,且u ≤,求c 的取值范围。
一、复数选择题1.复数21i=+( ) A .1i -- B .1i -+C .1i -D .1i +2.设复数1iz i=+,则z 的虚部是( ) A .12B .12iC .12-D .12i -3.复数3(23)i +(其中i 为虚数单位)的虚部为( ) A .9iB .46i -C .9D .46-4.设复数(,)z a bi a R b R =+∈∈,它在复平面内对应的点位于虚轴的正半轴上,且有1z =,则a b +=( )A .-1B .0C .1D .25.若复数(2)z i i =+(其中i 为虚数单位),则复数z 的模为( )A .5BC .D .5i 6.在复平面内复数Z=i (1﹣2i )对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.复数312iz i=-的虚部是( ) A .65i -B .35iC .35D .65-8.若复数1z i =-,则1zz=-( )A B .2C .D .49.若复数z 满足421iz i+=+,则z =( ) A .13i + B .13i -C .3i +D .3i -10.若复数2i1ia -+(a ∈R )为纯虚数,则1i a -=( )A B C .3D .511.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( ) A .22z += B .22z i +=C .24z +=D .24z i +=12.复数2ii-的实部与虚部之和为( )A .35B .15-C .15D .3513.已知i 是虚数单位,a 为实数,且3i1i 2ia -=-+,则a =( ) A .2B .1C .-2D .-114.复数()()212z i i =-+,则z 的共轭复数z =( ) A .43i +B .34i -C .34i +D .43i -15.设复数满足(12)i z i +=,则||z =( )A .15B C D .5二、多选题16.已知复数12z =-+(其中i 为虚数单位,,则以下结论正确的是( ). A .20zB .2z z =C .31z =D .1z =17.若复数z 满足()234z i i +=+(i 为虚数单位),则下列结论正确的有( )A .z 的虚部为3B .z =C .z 的共轭复数为23i +D .z 是第三象限的点18.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( )A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 19.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限20.已知复数12ω=-(i 是虚数单位),ω是ω的共轭复数,则下列的结论正确的是( ) A .2ωω= B .31ω=-C .210ωω++=D .ωω>21.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =22.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限23.已知复数z 的共轭复数为z ,且1zi i =+,则下列结论正确的是( )A .1z +=B .z 虚部为i -C .202010102z =-D .2z z z +=24.下面四个命题,其中错误的命题是( )A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数25.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =26.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i --27.已知i 为虚数单位,下列说法正确的是( ) A .若,x y R ∈,且1x yi i +=+,则1x y == B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于128.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=29.(多选)()()321i i +-+表示( ) A .点()3,2与点()1,1之间的距离 B .点()3,2与点()1,1--之间的距离 C .点()2,1到原点的距离D .坐标为()2,1--的向量的模30.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )A .|z |=B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为12i -+D .复数z 在复平面内对应的点在直线2y x =-上【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.C 【分析】根据复数的除法运算法则可得结果. 【详解】 . 故选:C 解析:C 【分析】根据复数的除法运算法则可得结果. 【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-.故选:C2.A 【分析】根据复数除法运算整理得到,根据虚部定义可得到结果. 【详解】 ,的虚部为. 故选:.解析:A 【分析】根据复数除法运算整理得到z ,根据虚部定义可得到结果. 【详解】()()()1111111222i i i i z i i i i -+====+++-,z ∴的虚部为12.故选:A .3.C 【分析】应用复数相乘的运算法则计算即可. 【详解】 解:所以的虚部为9.故选:C.解析:C 【分析】应用复数相乘的运算法则计算即可. 【详解】解:()()()32351223469i i i i +=-++=-+ 所以()323i +的虚部为9. 故选:C.4.C 【分析】根据复数的几何意义得. 【详解】∵它在复平面内对应的点位于虚轴的正半轴上,∴,又,∴, ∴. 故选:C .解析:C 【分析】根据复数的几何意义得,a b . 【详解】∵z 它在复平面内对应的点位于虚轴的正半轴上,∴0a =,又1z =,∴1b =, ∴1a b +=. 故选:C .5.B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】 ,所以, 故选:B解析:B 【分析】由已知等式,利用复数的运算法则化简复数,即可求其模. 【详解】(2)21z i i i =+=-,所以|z |=故选:B6.A 【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚解析:A【解析】试题分析:根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.解:∵复数Z=i(1﹣2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选A点评:本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.7.C【分析】由复数除法法则计算出后可得其虚部.【详解】因为,所以复数z的虚部是.故选:C.解析:C【分析】由复数除法法则计算出z后可得其虚部.【详解】因为33(12)366312(12)(12)555i i i iii i i+-===-+--+,所以复数z的虚部是35.故选:C.8.A【分析】将代入,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】由,得,则,故选:A.解析:A 【分析】 将1z i =-代入1zz-,利用复数的除法运算化简,再利用复数的求模公式求解. 【详解】由1z i =-,得2111z i i ii z i i---===---,则11zi z=--==-,故选:A.9.C 【分析】首先根据复数的四则运算求出,然后根据共轭复数的概念求出. 【详解】 ,故. 故选:C.解析:C 【分析】首先根据复数的四则运算求出z ,然后根据共轭复数的概念求出z . 【详解】()()()()421426231112i i i iz i i i i +-+-====-++-,故3z i =+. 故选:C.10.B 【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】 由复数()为纯虚数,则 ,则 所以 故选:B解析:B 【分析】把给出的复数化简,然后由实部等于0,虚部不等于0求解a 的值,最后代入模的公式求模. 【详解】由()()()()()()21i 2221112a i a a ia i i i i ----+-==++- 复数2i1i a -+(a ∈R )为纯虚数,则202202a a -⎧=⎪⎪⎨+⎪≠⎪⎩ ,则2a =所以112ai i -=-=故选:B11.B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数对应的点为,所以 ,满足则 故选:B解析:B 【分析】利用复数模的计算公式即可判断出结论. 【详解】因为复数z 对应的点为(,)x y ,所以z x yi =+x ,y 满足22(2)4x y ++=则22z i +=故选:B12.C 【分析】利用复数代数形式的乘除运算化简得答案. 【详解】,的实部与虚部之和为. 故选:C 【点睛】易错点睛:复数的虚部是,不是.解析:C 【分析】利用复数代数形式的乘除运算化简得答案. 【详解】()()()2+1212222+555i i i i i i i i -+===-+--,2i i ∴-的实部与虚部之和为121555-+=. 故选:C易错点睛:复数z a bi =+的虚部是b ,不是bi .13.B 【分析】 可得,即得. 【详解】 由,得a =1. 故选:B .解析:B 【分析】可得3(2)(1)3ai i i i -=+-=-,即得1a =. 【详解】由23(2)(1)223ai i i i i i i -=+-=-+-=-,得a =1. 故选:B .14.D 【分析】由复数的四则运算求出,即可写出其共轭复数. 【详解】 ∴, 故选:D解析:D 【分析】由复数的四则运算求出z ,即可写出其共轭复数z . 【详解】2(2)(12)24243z i i i i i i =-+=-+-=+∴43z i =-, 故选:D15.B 【分析】利用复数除法运算求得,再求得. 【详解】 依题意, 所以. 故选:B解析:B利用复数除法运算求得z ,再求得z . 【详解】 依题意()()()12221121212555i i i i z i i i i -+====+++-,所以z ==故选:B二、多选题 16.BCD 【分析】计算出,即可进行判断. 【详解】 ,,故B 正确,由于复数不能比较大小,故A 错误; ,故C 正确; ,故D 正确. 故选:BCD. 【点睛】本题考查复数的相关计算,属于基础题.解析:BCD 【分析】计算出23,,,z z z z ,即可进行判断. 【详解】12z =-+,221313i i=22z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 1222z ,故C 正确;2213122z,故D 正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.17.BC【分析】利用复数的除法求出复数,利用复数的概念与几何意义可判断各选项的正误.【详解】,,所以,复数的虚部为,,共轭复数为,复数在复平面对应的点在第四象限. 故选:BD.【点睛】本题考解析:BC【分析】利用复数的除法求出复数z ,利用复数的概念与几何意义可判断各选项的正误.【详解】()234z i i +=+,34232i z i i+∴=-=-+,所以,复数z 的虚部为3-,z =共轭复数为23i +,复数z 在复平面对应的点在第四象限.故选:BD.【点睛】 本题考查复数的四则运算、虚部、模、共轭复数以及几何意义,考查计算能力,属于基础题.18.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.19.BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数,所以其虚部为,即A 错误;,故B 正确;解析:BCD【分析】根据复数的概念判定A 错,根据复数模的计算公式判断B 正确,根据共轭复数的概念判断C 正确,根据复数的几何意义判断D 正确.【详解】因为复数1z i =+,所以其虚部为1,即A 错误;z ==B 正确;复数z 的共轭复数1z i =-,故C 正确;复数z 在复平面内对应的点为()1,1,显然位于第一象限,故D 正确.故选:BCD.【点睛】本题主要考查复数的概念,复数的模,复数的几何意义,以及共轭复数的概念,属于基础题型.20.AC根据复数的运算进行化简判断即可.【详解】解:∵所以,∴,故A 正确,,故B 错误,,故C 正确,虚数不能比较大小,故D 错误,故选:AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:∵12ω=-所以122ω=--,∴213142422ωω=--=--=,故A 正确,32111312244ωωω⎛⎫⎛⎫⎛⎫==---=--= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,故B 错误,21111022ωω++=--++=,故C 正确, 虚数不能比较大小,故D 错误,故选:AC .【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键.属于中档题.21.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.22.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项.【详解】依题意1ω==,所以A 选项正确;2211312242422ω⎛⎫=-+=--=-- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;22111122212ω----====-⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,2⎛- ⎝⎭,在第三象限,故D 选项错误. 故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.23.ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由可得,,所以,虚部为;因为,所以,.故选:ACD .【解析:ACD【分析】先利用题目条件可求得z ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.【详解】由1zi i =+可得,11i z i i+==-,所以12z i +=-==,z 虚部为1-;因为2422,2z i z =-=-,所以()5052020410102z z ==-,2211z z i i i z +=-++=-=.故选:ACD .【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题. 24.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.25.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.26.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.27.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 28.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥,此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】 本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题.29.ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A 说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B ;整理原式等于2i +,也等于2i --,即可判断选项C,D【详解】由复数的几何意义,知复数32i +,1i +分别对应复平面内的点()3,2与点()1,1,所以()()321i i +-+表示点()3,2与点()1,1之间的距离,故A 说法正确,B 说法错误;()()3212i i i +-+=+,2i +可表示点()2,1到原点的距离,故C 说法正确;()()()()3211322i i i i i +-+=+-+=--,2i --可表示表示点()2,1--到原点的距离,即坐标为()2,1--的向量的模,故D 说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模30.AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】,A 正确;复数z 在复平面内对应的点的坐标为,在第三象限,B 不正确;z 的共轭复数为,C 正确;复数z 在复平面内对解析:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.【详解】||z ==A 正确;复数z 在复平面内对应的点的坐标为(1,2)--,在第三象限,B 不正确;z 的共轭复数为12i -+,C 正确;复数z 在复平面内对应的点(1,2)--不在直线2y x =-上,D 不正确.故选:AC【点睛】本小题主要考查复数的有关知识,属于基础题.。
上海交通大学附属中学2007-2008学年度第二学期高一数学期终试卷(满分100分,90分钟完成,答案一律写在答题纸上)一、填空题(本大题共12小题,每小题3分,共计36分)1、已知m >0时)1lg()10lg(10mm x +=,则x 的值为_____________; 2、设)(1x f-是函数)1(log )(2+=x x f 的反函数,若8)](1[)](1[11=+⋅+--b fa f,则b a +的值为__________;3、已知f (x )是定义域为{x |x ∈R 且x ≠0}的偶函数,在区间(0,+∞)上是增函数,若 f (1)< f (lg x ) ,则x 的取值范围是_______________;4、已知A 、B 为两个锐角,且1tan tan tan tan ++=⋅B A B A ,则cos (A +B )的值是______;5、已知钝角α的终边经过点P (θ2sin ,θ4sin ),且21cos =θ,则α的值为____________; 6、电流强度I (安)随时间t (秒)变化的函数I=)20,0,0)(sin(πϕωϕω<<>>+⋅A t A 的图象如图所 示,则当501=t 秒时,电流强度是 安;7、将函数x x f y sin )(=的图象向右平移4π个单位后,再作关于x 轴对称的曲线,得到函数x y 2sin 21-=,则()f x 是_____; 8、函数)arccos(2x x y -=的值域为______; 9、曲线)4cos()4sin(2ππ-+=x x y 和直线21=y 在y 轴右侧的交点按横坐标从小到大依次记为P 1,P 2,P 3,…,则 | P 2P 4 | 等于______;10、△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边。
如果a 、b 、c 成等差数列,30B ∠=,△ABC 的面积为23,那么b =______; 11、根据右边的框图,请写出所打印数列的全部项的 和_____;12、已知等比数列{a n }及等差数列{b n },其中b 1=0,公差0≠d 。
上海交通大学附中2008—2009学年度第一学期高三摸底考试英语试卷(满分150分,150分钟完成,答案一律写在答题纸上)听力部分I.Listening Comprehension:(30% )Part A Short ConversationsDirections: In Part A, you will hear ten short conversations between two speakers.At the end of each conversation, a question will be asked about what was said.The conversations and the questions will be spoken only once.After you hear a conversation and the question about it, read the four possible answers on your paper and decide which one is the best answer to the question you have heard.1.A.He doesn’t like the song.B.He doesn’t speak French.C.He is in no mood for singing.D.He can’t sing today.2.A.Peter has been fired.B.Peter has changed his job.C.Peter is still working in the company.D.Peter wants to leave the company.3.A.Stay in the office.B.Have her hair arranged.C.Buy some birthday presents.D.Go to Miss White’s home.4.A.The man doesn’t like her any more.B.The man never noticed her hairstyle before.C.The man is telling a lie.D.The man never praises her.5.A.12.B.6.C.24 D.186.A.Someone may enter the house through the open windows.B.There may be a strong wind and heavy rain tonight.C.The man may catch cold if he leaves the windows open.D.The windows may be broken during the night.7.A.She found it interesting.B.She found it enjoyable.C.She found it boring.D.She found it informative.8.A.To buy a piano.B.To play the music.C.To listen to her sing.D.To sing together with her.9.A.On a fishing boat.B.In an ocean park.C.In a gift shop.D.In a restaurant.10.A.In a hotel.B.In a school.C.In a hospital.D.In a police station.Part B PassagesDirections: In Part B, you will hear two short passages, and you will be asked three questions on each of the passages.The passages will be read twice, but the questions will be spoken once.When you hear a question, read the four possible answers on your paper and decide which one would be the best answer to the question you have heard.Questions 11 through 13 are based on the following passage .11.A.Boston.B.Vancouver.C.Canada.D.Teheran.12.A.Because he couldn’t refuse his friend.B.Because he was busy all evening.C.Because Mike’s line was busy.D.Because he preferred writing a letter.13.A.Some tapes.B.Some presents.C.His overseas friend.D.Nothing.Questions 14 through 16 are based on the following passage .14.A.Fashion model.B.Film actress.C.Social activist.D.Cinema manager.15.A.In 1958.B.In 1960 C.In 1971.D.1978.16.A.Don’t They?B.Klute.C.Julia.D.Coming Home.Part C Longer ConversationsDirections: In Part C, you will hear two longer conversations.The conversations will be read twice.After you hear each conversation, you are required to fill in the numbered blanks with the information you have heard.Write your answers on your answer sheet.17-24做在答题纸上。
一、选择题1.设()()2225322z t t t t i =+-+++,其中t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限B .z 一定不为纯虚数C .z 对应的点在实轴的下方D .z 一定为实数 2.在复平面内,复数1i +与13i +分别对应向量OA 和OB ,其中O 为坐标原点,则AB =( )AB C .2 D .4 3.下列各式的运算结果为纯虚数的是 A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i) 4.若复数(1a i z i i +=-是虚数单位)为纯虚数,则实数a 的值为( ) A .-2B .-1C .1D .2 5.若复数z 满足12z i i •=+,则z 的共轭复数的虚部为( ) A .i B .i -C .1-D .1 6.若复数()234sin12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( ) A .6π B .3π C .23π D .3π或23π 7.在复平面内,O 是原点,,,OA OC AB 对应的复数分别为-2+i ,3+2i, 1+5i ,那么BC 对应的复数为( )A .4+7iB .1+3iC .4-4iD .-1+6i 8.设复数z 满足()13i z i +=+,则z =( )A .2B .2C .D 9.已知复数z 满足()211i i z+=-(i 为虚数单位),则复数z =( ) A .1i + B .1i -+C .1i -D .1i -- 10.在复平面内,复数201812z i i =++对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限 11.已知复数1z i =+,z 为z 的共轭复数,则1z z +=( ) A .32i + B .132i + C .332i + D .12i + 12.已知复数123,,z z z 满足:1233421, 41, 1z i z i z z i +-=-=-=-,那么3132+z z z z --的最小值为( )A .2B .C .2D .二、填空题13.i 是虚数单位,若84i z z +=+,则z =___________.14.定义运算a c ad bcb d =-,复数z 满足z 1i 1i i =+,则复数z =______. 15.复数31+i i 1i+-的值是______.16.设复数z ,满足11z =,22z =,12z z i +=,则12z z -=____________.17.设i 为虚数单位,复数z 满足()()21z i +=,则z =______. 18.复数3(2) i (,)z x y x y =++-∈R ,且||2z =,则点(,)x y 的轨迹是_____________.19.若复数 z =21i i-,则3z i + =__________ 20.若复数z 满足12i z i ⋅=+,其中i 是虚数单位,则z 的实部为________.三、解答题21.已知m R ∈,复数2(1i)(5i 3)(46i)z m m =+-+-+,当m 为何值时,(1)z 为实数?(2)z 为虚数?(3)z 为纯虚数?(4)z 在复平面内对应的点在第四象限?22.已知复数z 1=2+a i (其中a ∈R 且a >0,i 为虚数单位),且21z 为纯虚数.(1)求实数a 的值;(2)若11iz z =-,求复数z 的模||z . 23.已知关于t 的一元二次方程2(2)2()0(,)t i t xy x y i x y ++++-=∈R .(1)当方程有实根时,求点(,)x y 的轨迹;(2)求方程实根的取值范围.24.已知复数()2227656 ()1a a z a a i a R a -+=+--∈-,实数a 取什么值时,z 是:①实数?②虚数?③纯虚数?25.(1)已知()232z z z i i ++=-,求复数z ;(2)已知复数z 满足2z z-为纯虚数,且1z i -=,求复数z . 26.已知O 为坐标原点,向量1OZ 、2OZ 分别对应复数1z 、2z ,且()213105z a i a =+-+,()()22251z a i a R a =+-∈-.若12z z +是实数. (1)求实数a 的值; (2)求以1OZ 、2OZ 为邻边的平行四边形的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据()2222110t t t ++=++>,2253t t +-可正可负也可为0,即可判定.【详解】()2222110t t t ++=++>,z ∴不可能为实数,所以D 错误; z ∴对应的点在实轴的上方,又z 与z 对应的点关于实轴对称,z 对应的点在实轴的下方,所以C 正确;213,25302t t t -<<+-<,z 对应的点在第二象限,所以A 错误; 21,25302t t t =+-=,z 可能为纯虚数,所以B 错误; ∴C 项正确.故选:C【点睛】此题考查复数概念的辨析,关键在于准确求出实部和虚部的取值范围.2.C解析:C【分析】利用复数的几何意义、向量的模长公式和坐标运算,即可求解,得到答案.【详解】因为复数1i +与13i +分别对应向量OA 和OB ,所以向量(1,1)OA =和(1,3)OB =,所以(0,2)AB OB OA =-=,则202AB AB ===,故选C .【点睛】本题主要考查了复数的几何意义、向量的模长计算和坐标运算,着重考查了推理能力和计算能力,属于基础题.3.A解析:A【分析】利用复数的四则运算,再由纯虚数的定义,即可求解.【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确;对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确;对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确;对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A.【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题. 4.C解析:C【分析】 利用复数代数形式的除法运算化简复数1a i z i+=-,再根据实部为0且虚部不为0求解即可. 【详解】 ()()()()i 1i i 11i 1i 1i 1i 22a a a a z +++-+===+-+-为纯虚数, 1010a a +≠⎧∴⎨-=⎩,即1a =,故选C. 【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题. 复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.5.D解析:D【解析】【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.【详解】12iz i =+,()12i iz i i ∴-⋅=-+,2z i =-+则z 的共轭复数2z i =+的虚部为1.故选D .【点睛】本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.6.B解析:B【解析】分析:由题意得到关于sin ,cos θθ的方程组,求解方程组结合题意即可求得三角函数值,由三角函数值即可确定角的大小.详解:若复数()23412z sin cos i θθ=-++为纯虚数,则: 234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 1cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=. 本题选择B 选项.点睛:本题主要考查纯虚数的概率,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.7.C解析:C【解析】BC BA AO OC AB OA OC =++=--+15(2)3244i i i i =----+++=-,选C.8.D解析:D【解析】分析:先根据复数除法得z ,再根据复数的模求结果.详解:因为()13i z i +=+,所以31(3)(1)212i z i i i i +==+-=-+,因此z =选D.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi9.B解析:B【解析】因为()211i i z+=-,所以22(1)112i i z i i i ==+=-- ,选B. 10.C解析:C【解析】 因为201812z i i =++()()22231122555i i i i i i --=+=-=--+- ,复数201812z i i=++对应的点的坐标为31,55⎛⎫-- ⎪⎝⎭ ,故复数201812z i i=++对应的点位于第三象限,故选C. 11.B解析:B【分析】由复数1z i =+,得到1z i =-,进而得到121z i z i++=-,根据复数的除法运算法则,即可求解.【详解】 由题意,复数1z i =+,可得1z i =-,则()()()()2112131112i i z i i z i i i +++++===--+. 故选:B.【点睛】本题主要考查了复数的除法运算,以及共轭复数的概念及应用,其中解答中熟练应用复数的除法运算的法则,以及熟记复数的共轭复数的概念是解答的关键,着重考查运算与求解能力.12.A解析:A【分析】先求出复数123,,z z z 对应的点的轨迹,再利用数形结合分析得解.【详解】1421, z i +-=表示1z 的轨迹是以A (4,2)-为圆心,以1为半径的圆;2 41, z i -=表示2z 的轨迹是以B (0,4)为圆心,以1为半径的圆;331z z i -=-,表示3z 的轨迹是直线y x =,如图所示:3132+z z z z --表示直线y x =上的点C 到圆A 和圆B 上的点的距离,先作出点B (0,4)关于直线y x =的对称点D (4,0),连接AD , 与直线y x =交于点C . 3132+z z z z --的最小值为2||||||2(44)222172CE CF AD +=-=++=. 故选:A【点睛】关键点点睛:解答本题的关键是能由复数方程得到复数对应的点的轨迹,通过数形结合分析得到动点处于何位置时,3132+z z z z --取到最小值.意在考查学生对复数的轨迹问题的理解掌握水平.二、填空题13.【分析】先设复数再求得最后利用复数相等即可求得【详解】解:设复数则所以所以根据复数相等得:解得所以故答案为:【点睛】本题考查复数的相等概念共轭复数复数的模等是基础题解析:34i +【分析】先设复数(),,z a bi a b R =+∈,再求得22z a b =+. 【详解】解:设复数(),,z a bi a b R =+∈,则22z a bi a b =-=+ 所以2284z a a b bi i z =++=++, 所以根据复数相等得:2284a ab b ⎧⎪++=⎨=⎪⎩,解得34a b =⎧⎨=⎩, 所以34z i =+,故答案为:34i +【点睛】本题考查复数的相等概念,共轭复数,复数的模等,是基础题.14.【分析】根据新运算定义得到即运算化简即得解【详解】由得得故答案为:【点睛】本题考查了复数的四则运算考查了学生新概念理解数学运算的能力属于基础题解析:2i -【分析】 根据新运算定义,得到z 1i 1i i =+,即i i 1i z -=+,运算化简即得解. 【详解】 由z 1i 1i i =+,得i i 1i z -=+,得12i 2i iz +==-. 故答案为:2i -【点睛】本题考查了复数的四则运算,考查了学生新概念理解,数学运算的能力,属于基础题. 15.0【分析】先利用复数的除法运算计算再计算相加即得解【详解】【点睛】本题考查了复数的四则运算考查了学生数学运算能力属于基础题解析:0【分析】 先利用复数的除法运算计算1+i 1i-,再计算3 i ,相加即得解. 【详解】 ()()()231i 1i 2i i i i 01i 1i 1i 2+++=-=-=--+. 【点睛】本题考查了复数的四则运算,考查了学生数学运算能力,属于基础题. 16.【分析】根据复数的几何意义得到对应向量的表示再结合向量的平行四边形法则以及余弦定理求解出的值【详解】设在复平面中对应的向量为对应的向量为如下图所示:因为所以所以又因为所以所以所以又故答案为:【点睛】【分析】根据复数的几何意义得到对应向量的表示,再结合向量的平行四边形法则以及余弦定理求解出12z z -的值.【详解】设12,z z 在复平面中对应的向量为12,OZ OZ ,12z z +对应的向量为3OZ ,如下图所示:因为123z z i +,所以12312z z =+=+,所以222131221cos 1224OZ Z +-∠==⨯⨯, 又因为1312180OZ Z Z OZ ∠+∠=︒,所以12131cos cos 4Z OZ OZ Z ∠=-∠=-, 所以222211212122cos 1416Z Z OZ OZ OZ OZ Z OZ =+-⋅⋅∠=++=, 所以216Z Z =,又12216z z Z Z -==,6.【点睛】结论点睛:复数的几何意义:(1)复数(),z a bi a b R =+∈←−−−→一一对应复平面内的点()(),,Z a b a b R ∈;(2)复数(),z a bi a b R =+∈ ←−−−→一一对应平面向量OZ .17.【分析】根据复数的除法运算化简求得再结合复数的模的运算公式即可求解【详解】由则所以故答案为:【点睛】本题主要考查了复数的除法运算以及复数的模的运算其中解答中熟记复数的运算法则以及复数模的计算公式是解 解析:2【分析】根据复数的除法运算,化简求得13z i =-,再结合复数的模的运算公式,即可求解.【详解】由()2223(3)23223i i i i =-+=-, 则22232(13)2(13)131313(13)(13)i i i z i i i i i ---====-+++-, 所以132z i =-=.故答案为:2.【点睛】本题主要考查了复数的除法运算,以及复数的模的运算,其中解答中熟记复数的运算法则,以及复数模的计算公式是解答的关键,着重考查推理与运算能力.18.以为圆心2为半径的圆【分析】根据复数模的定义确定复数对应点满足条件化简即得轨迹【详解】解:∵∴即点的轨迹是以为圆心2为半径的圆故答案为:以为圆心2为半径的圆【点睛】本题考查复数模的定义以及圆的方程含 解析:以(3,2)-为圆心,2为半径的圆【分析】根据复数模的定义确定复数对应点满足条件,化简即得轨迹.【详解】解:∵||2z =,∴22(3)(2)4x y ++-=,即点(,)x y 的轨迹是以(3,2)-为圆心,2为半径的圆.故答案为:以(3,2)-为圆心,2为半径的圆【点睛】本题考查复数模的定义以及圆的方程含义,考查基本分析求解能力,属基础题. 19.【解析】分析:先化简复数z 再求再求 的值详解:由题得所以故答案为:点睛:(1)本题主要考查复数的运算共轭复数和复数的模的计算意在考查学生对这些知识的掌握水平和基本的运算能力(2)复数的共轭复数【解析】分析:先化简复数z,再求3z i +,再求3z i + 的值. 详解:由题得2i 2i(1i)22i 1i 1i (1i)(1i)2z +-+====-+--+,所以31312,3z i i i i z i +=--+=-+∴+==点睛:(1)本题主要考查复数的运算、共轭复数和复数的模的计算,意在考查学生对这些知识的掌握水平和基本的运算能力.(2) 复数(,)z a bi a b R =+∈的共轭复数,z a bi =-||z =20.2【解析】分析:先根据复数的除法运算进行化简再根据复数实部概念求结果详解:因为则则的实部为点睛:本题重点考查复数相关基本概念如复数的实部为虚部为模为对应点为共轭复数为解析:2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为12i z i ⋅=+,则12i 2i iz +==-,则z 的实部为2. 点睛:本题重点考查复数相关基本概念,如复数+i(,)a b a b ∈R 的实部为a 、虚部为b 、、对应点为(,)a b 、共轭复数为i a b -.三、解答题21.(1)6m =或1m =-(2)6m ≠且1m ≠-(3)4m =(4)46m <<【分析】由题意得解得22(34)(56)z m m m m i =--+--,(1)由2560m m --=,求出m 即可;(2)2560m m --≠,即可得出m ; (3)由22340560m m m m ⎧--=⎨--≠⎩,解得m 范围; (4)根据象限特征,由22340560m m m m ⎧-->⎨--<⎩,解得m 范围. 【详解】解:()()()21i 5i 346i z m m =+-+-+=()()223456i m m m m --+--,(1)由2560m m --=得6m =或1m =-,即当6m =或1m =-时,z 为实数;(2)由2560m m --≠得6m ≠且1m ≠-,即当6m ≠且1m ≠-时,z 为虚数;(3)由22340{560m m m m --=--≠,,得4m =, 即当4m =时,z 为纯虚数;(4)由22340{560m m m m -->--<,,解得46m <<, 即当46m <<时,z 在复平面内对应的点在第四象限.【点睛】本题考查复数的有关概念及其运算法则、方程与不等式的解法,考查推理能力与计算能力.22.(1)a =2.(2)|z |=2.【分析】(1)根据复数的运算,求得21z 244a ai =-+,由21z 为实数,列出方程组,即可求解; (2)化简复数得2z i =,利用复数的模的计算公式,即可求解.【详解】(1)z = (2 + a i)2 = 4-a 2 + 4a i ,因为z 为纯虚数, 所以解得a =2.(2)z 1=2+2i ,z ====2i , ∴|z |=2.【点睛】本题主要考查了复数的基本概念和复数的分类,其中解答中熟记复数的基本运算公式和复数的基本概念是解答此类问题的关键,着重考查了推理与运算能力,属于基础题. 23.(1)轨迹是以点(1,1)-为圆心.(2)[4,0]-.【分析】(1)由复数相等的定义化简得出0t y x =-,将其代入200220t t xy ++=中即可得出所求点的轨迹方程;(2)将方程的根转化为直线与圆的交点问题,由圆心到直线的距离小于等于半径,即可求得方程实根的取值范围.【详解】解:(1)设方程实根为0t .根据题意得200(2)2()0(,)t i t xy x y i x y ++++-=∈R ,即()()2000220t t xy t x y i ++++-=. 根据复数相等的充要条件,得20002200t t xy t x y ⎧++=⎨+-=⎩① 由①得0t y x =-,代入200220t t xy ++=得2()2()20y x y x xy -+-+=即22(1)(1)2x y -++=.所以所求的点的轨迹方程是22(1)(1)2x y -++=,轨迹是以点(1,1)-为圆心为半径的圆.(2)由(1)得圆心为(1,1)-,半径r =直线0t y x =-与圆有公共点,2,即022t +,所以040t -.故方程实根的取值范围是[4,0]-.【点睛】本题主要考查了复数相等的定义以及直线与圆的位置关系,属于中档题.24.①6a =;②1a ≠±且6a ≠;③无解.【分析】对于复数z a bi =+(),a b R ∈,若0b =,则z 为实数;若0b ≠,则z 为虚数;若0b ≠且0a =,则z 为纯虚数;得到不等式解得;【详解】解:()2227656 ()1a a z a a i a R a -+=+--∈- ①若复数z 是实数,则22560,10,a a a ⎧--=⎨-≠⎩即16,1,a a a =-=⎧⎨≠±⎩或即6a =.②若复数z 是虚数,则22560,10,a a a ⎧--≠⎨-≠⎩即16,1,a a a ≠-≠⎧⎨≠±⎩且即1a ≠±且6a ≠. ③若复数z 是纯虚数,则222560,760,10,a a a a a ⎧--≠⎪-+=⎨⎪-≠⎩即16161a a a a a ≠-≠⎧⎪==⎨⎪≠±⎩且,且,,此时无解.【点睛】本题考查复数的基本概念,需注意实部的分母不能为零,属于基础题.25.(1)1-±;(2)2z i =或1z i =-+或1z i =+.【分析】(1)设复数(),z a bi a b R =+∈,根据复数的运算法则和复数相等得出关于a 、b 的方程组,解出这两个未知数,即可得出复数z ;(2)设复数(),z a bi a b R =+∈,根据2z z-为纯虚数和1z i -=列出关于a 、b 的方程组,解出这两个未知数,可得出复数z .【详解】(1)设复数(),z a bi a b R =+∈,由()232z z z i i ++=-,得()22232a b ai i ++=-,根据复数相等得22322a b a ⎧+=⎨=-⎩,解得1a b =-⎧⎪⎨=⎪⎩1z =-; (2)设复数(),z a bi a b R =+∈, 则()()()222222222a bi a b z a bi a bi a b i z a bi a bi a bi a b a b -⎛⎫⎛⎫-=+-=+-=-++ ⎪ ⎪++-++⎝⎭⎝⎭, 由题意可得2220a a a b -=+,2220b b a b+≠+. ()11z i a b i -=+-=1=,所以有()()()2222222222202011a a b a b b a b a b a b ⎧+-⎪=+⎪⎪++⎪≠⎨+⎪⎪+-=⎪⎪⎩,解得02a b =⎧⎨=⎩或11a b =±⎧⎨=⎩. 因此,2z i =或1z i =-+或1z i =+.【点睛】本题考查复数的求解,常将复数设为一般形式,根据复数的相关运算列举出方程组进行求解,考查运算求解能力,属于中等题.26.(1)3a =;(2)118. 【分析】(1)求出1z 和2z ,由复数12z z +是实数,可求得实数a 的值;(2)求出1OZ 和2OZ ,利用平面向量的数量积求出12cos Z OZ ∠,进一步求出12sin Z OZ ∠,结合三角形的面积公式可求得所求四边形的面积.【详解】(1)由题意可得()213105z a i a =--+, ()22251z a i a =+--,则()2123221551z z a a i a a+=+++-+-, 由于复数12z z +是实数,则221505010a a a a ⎧+-=⎪+≠⎨⎪-≠⎩,解得3a =;(2)由(1)可得138z i =+,21z i =-+,则点13,18Z ⎛⎫ ⎪⎝⎭,()21,1Z -, 因此,以1OZ 、2OZ 为邻边的平行四边形的面积为121118S Z Z =⨯=. 【点睛】本题考查利用复数类型求参数,同时也考查了四边形面积的计算,涉及平面向量数量积的应用,考查计算能力,属于中等题.。
上海交通大学附属中学2008-2009学年度第一学期高二数学摸底试卷(满分100分,90分钟完成,答案一律写在答题纸上)一、填空题(每题3分,共30分)1、函数y=cos2xcosx-sin2xsinx 的最小正周期是__________2、函数y=sinx, x [,π]的反函数是_______________________∈π23、方程2sin2x+1=0在[-2π,2π]内解的个数是____________。
4、在△ABC 中,若a=5,b=4,B=300, 则这样的三角形有__________个。
5、把函数y=cos (x+)的图象向右平移φ个单位,所得的图象关于y 轴对称,则φ34π的最小正值是____________。
6、在等比数列{}中,已知,, 则____________n a 11=a 22-=a =4a 7、已知数列{}的通项公式=,则该数列的前12项的和为__________n a n a 12cos πn 8、若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有_________项。
9、在由正数组成的数列{}中,,记数列{}的前n 项的和为S n ,对任意正n a 21=a n a 整数n ,都有,则的表达式为________1)(11=+++n n n s s a n s 10、函数f (x)的定义域为D ,若对任意的x 1,x 2∈D ,有 |f (x 1)-f (x 2)|≤1,则称函数y=f (x)为Storm 函数。
设函数f (x)=a sin(x+),x ∈[0,π]是Storm 函数,则实数a 的6π最大值是_________二、选择题:(每题3分,共12分)11、下列各式中错误的是( )A 、sin (arcsin )=B 、cos(arccos )=2121π3π3C 、arctg (tg )=D 、arccos (cos )=π3π332π32π12、已知f(k)=k+(k+1)+(k+2)+…+2k (k ),则( )*N ∈ A 、f(k+1)-f(k)=2k+2 B 、f(k+1)-f(k)=3k+3C 、f(k+1)-f(k)=4k+2D 、f(k+1)-f(k)=4k+313、已知数列{}的前n 项和,那么( )n a 4)1(2+=n n a s A 、此数列一定是等差数列 B 、此数列一定是等比数列C 、此数列不是等差数列,就是等比数列D 、以上说法都不正确14、关于x 的函数f(x)=sin(x+有以下命题)ϕ (1)对于任意的,f(x)都是非奇非偶函数ϕ (2)不存在,使f(x)既是奇函数又是偶函数ϕ (3)存在,使f(x)是奇函数ϕ (4)对任意,f(x)都不是偶函数ϕ 其中正确命题的个数有( )A、0 B 、1 C 、2 D 、3三、解答题:15、(8分)已知sin =, α53παπ<<2 (1)求tan2的值;(4分) (2)求tan 的值。
一、选择题1.已知复数z 满足:21z -=,则1i z -+的最大值为( )A .2B 1C 1D .3 2.下列各式的运算结果为纯虚数的是A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i)3.设i 为虚数单位,复数z 满足21ii z=-,则复数z 的共轭复数等于( ) A .1-iB .-1-iC .1+iD .-1+i4.设x ∈R ,则“1x =”是“复数()()211z x x i =-++为纯虚数”的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件5.“复数3iia z -=在复平面内对应的点在第三象限”是“0a ≥”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件6.若复数z 满足()11z i i --⋅=+,则z =( )A BC .D .37.已知复数 1cos isin z αα=+ 和复数2cos isin z ββ=+,则复数12z z ⋅的实部是( ) A .()sin αβ-B .()sin αβ+C .()cos αβ-D .()cos αβ+8.已知复数z 满足()211i i z+=-(i 为虚数单位),则复数z =( )A .1i +B .1i -+C .1i -D .1i --9.复数21iz i+=-,i 是虚数单位,则下列结论正确的是A .z =B .z 的共轭复数为31+22i C .z 的实部与虚部之和为1 D .z 在复平面内的对应点位于第一象限10.复数11ii+-的实部和虚部分别为a ,b ,则a b +=( ) A .1B .2C .3D .411.已知复数1z i =+,z 为z 的共轭复数,则1zz+=( ) A .32i+ B .132i+ C .332i+ D .12i+12.若(),a bia b i+∈R 与()21i +互为共轭复数,则+a b 的值为( ) A .2B .2-C .3-D .3二、填空题13.已知虚数(),2z x yi x yi =+-+(x ,y R ∈)的模为4,则23z i +-的取值范围为________. 14.若z a bi =+,21zR z∈+,则实数a ,b 应满足的条件为________. 15.已知23i i z z +-=,i z C ∈,1,2i =,122z z -=,则12z z +的最大值为______.16.若23i -是方程()220,x px q p q R ++=∈的一个根,则p q +=______.17.若复数(2)(1)()z a a i a R =-++∈对应的点位于第二象限,则z 的取值范围是_______.18.已知复数032z i =+,其中i 是虚数单位,复数z 满足003z z z z ⋅=+,则复数z 的模等于__________. 19.已知复数z 满足43(zi i i+=为虚数单位),则z 的共轭复数z =____. 20.已知复数集合{i |1,1,,}A x y x y x y R =+≤≤∈221133{|(i),}44B z z z z A ==+∈,其中i 为虚数单位,若复数z A B ∈,则z 对应的点Z 在复平面内所形成图形的面积为________三、解答题21.当实数m 取什么值时,复数224(6)Z m m m i =-+--分别满足下列条件? (1)复数Z 实数; (2)复数Z 纯虚数;(3)复平面内,复数Z 对应的点位于直线y x =-上.22.已知复数z 1=2+a i (其中a ∈R 且a >0,i 为虚数单位),且21z 为纯虚数. (1)求实数a 的值; (2)若11iz z =-,求复数z 的模||z . 23.已知z 为复数,2z i +为实数,且(12)i z -为纯虚数,其中i 是虚数单位. (1)求复数z ;(2)若复数z 满足1z ω-=,求ω的最小值.24.(1)已知1-(其中i 为虚数单位)是关于x 的方程1x ba x+=的一个根,求实数a ,b 的值;(2)从0,2,4,6中任取2个数字,从1,3,5,7中任取1个数字,一共可以组成多少个没有重复数字的三位数?25.已知12z z 、是实系数一元二次方程的两个虚根,它们满足方程()122195z i z i +-=+,求2212z z +. 26.(1)已知()232z z z i i ++=-,求复数z ; (2)已知复数z 满足2z z-为纯虚数,且1z i -=,求复数z .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】复数方程|2|1z -=转化成实数方程()2221x y -+=,再由复数模定义|1|z i -+表示(1,1)-与圆上任一点(,)x y 间距离.【详解】解:设z x yi =+,由|2|1z -=得圆的方程()2221x y -+=,又|1|z i -+(1,1)-与圆上任一点(,)x y 间距离.则由几何意义得x ma |1|11z i -+==,故选:B . 【点睛】本题主要考查复数模的计算和几何意义,属于中档题.2.A解析:A 【分析】利用复数的四则运算,再由纯虚数的定义,即可求解. 【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确; 对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确; 对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确; 对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题.3.B解析:B 【分析】利用复数的运算法则解得1z i =-+,结合共轭复数的概念即可得结果. 【详解】 ∵复数z 满足21ii z =-,∴()()()2121111i i i z i i i i +===---+, ∴复数z 的共轭复数等于1i --,故选B. 【点睛】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.4.A解析:A 【解析】分析:先化简“复数()()211z x x i =-++为纯虚数”,再利用充要条件的定义判断.详解:因为复数()()211z x x i =-++为纯虚数,所以210, 1.10x x x ⎧-=∴=⎨+≠⎩ 因为“x=1”是“x=1”的充要条件,所以“1x =”是“复数()()211z x x i =-++为纯虚数”的充分必要条件.故答案为A.点睛:(1)本题主要考查纯虚数的概念,考查充要条件的判断,意在考查学生对这些知识的掌握水平.(2) 复数(,)z a bi a b R =+∈为纯虚数0,0a b =⎧⇔⎨≠⎩不要把下面的b≠0漏掉了. 5.A解析:A 【详解】因为33aiz a i i-==--,所以由题设可得00a a -<⇒>,因此0a >是0a ≥的充分不必要条件,故应选答案A .6.A解析:A 【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】由()11z i i --⋅=+,得()()21111i i i z i i i +-+--===--,则2z i =-+,∴z ==故选:A 【点睛】本题主要考查了复数的除法运算,复数的模的运算,属于中档题.7.D解析:D 【解析】分析:利用复数乘法运算法则化简复数,结合两角和的正弦公式、两角和的余弦公式求解即可. 详解:()()12cos cos cos cos z z isin isin ααββαβ⋅=++=()()2cos cos cos i sin isin i sin sin isin αβαβαβαβαβ+++=+++,∴实部为()cos αβ+,故选D.点睛:本题主要考查的是复数的乘法,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++运算的准确性,否则很容易出现错误.8.B解析:B 【解析】因为()211i i z+=-,所以22(1)112i iz i i i ==+=-- ,选B. 9.D解析:D 【分析】利用复数的四则运算,求得1322z i =+,在根据复数的模,复数与共轭复数的概念等即可得到结论. 【详解】 由题意()()()()22121313111122i i i i z i i i i i ++++====+--+-,则22z ==,z的共轭复数为1322z i =-, 复数z 的实部与虚部之和为2,z 在复平面内对应点位于第一象限,故选D . 【点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化,其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为a bi -. 10.A解析:A 【分析】利用两个复数代数形式的除法运算性质,把复数化为最简形式,得到其实部和虚部的值,进而求得结果. 【详解】21(1)21(1)(1)2i i ii i i i ++===--+, 所以0,1a b ==, 所以1a b +=, 故选:A. 【点睛】思路点睛:该题考查的是有关复数的问题,解题思路如下:(1)利用复数除法运算法则先化简复数11ii+-; (2)确定出复数的实部和虚部各是多事;(3)进而求得a b +的值.11.B解析:B 【分析】由复数1z i =+,得到1z i =-,进而得到121z iz i++=-,根据复数的除法运算法则,即可求解. 【详解】由题意,复数1z i =+,可得1z i =-,则()()()()2112131112i i z i i z i i i +++++===--+. 故选:B. 【点睛】本题主要考查了复数的除法运算,以及共轭复数的概念及应用,其中解答中熟练应用复数的除法运算的法则,以及熟记复数的共轭复数的概念是解答的关键,着重考查运算与求解能力.12.A解析:A 【分析】把两个复数都化为(,)a bi a b R +∈形式,然后由共轭复数定义求得,a b ,从而得结论. 【详解】 因为()2i a bi a bi b ai i i++==-,()212i i +=,又1a bi +与()21i -互为共轭复数,所以0b =,2a =.则2a b +=.故选:A .二、填空题13.【分析】由模长公式易得设()表示的几何意义为点到点的距离结合图形求出距离的范围即可得解【详解】因为虚数()的模为4所以有故点的轨迹是以圆心半径为的圆设()表示的几何意义为点到点的距离由图可知点到点的 解析:[]1,9【分析】由模长公式易得()22216x y -+=,设z x yi =+(x ,y R ∈),23z i +-表示的几何意义为点(,)x y 到点(2,3)B -的距离,结合图形求出距离的范围即可得解. 【详解】因为虚数()2x yi -+(x ,y R ∈)的模为4,所以有()22216x y -+=,故点(,)x y 的轨迹是以圆心(2,0)A ,半径为4r =的圆,设z x yi =+(x ,y R ∈),23z i +-表示的几何意义为点(,)x y 到点(2,3)B -的距离, 由图可知,点(,)x y 到点(2,3)B -的距离的最大值为AB r +,最小值为AB r -, 又因为22(22)(30)5AB =--+-=,所以点(,)x y 到点(2,3)B -的距离的最大值为9,最小值为1, 则23z i +-的取值范围为[]1,9. 故答案为[]1,9.【点睛】本题考查复数的模和复数的几何意义,解题关键是根据复数的模长公式,得到x 和y 关系式,根据条件作出图形利用数形结合求解,考查逻辑思维能力和运算求解能力,考查数形结合思想,属于常考题.14.或【分析】根据复数的运算得出再由复数是实数的条件得出实数应满足的条件【详解】因为故有所以或即或是ab 应满足的条件故答案为:或【点睛】本题考查复数的运算和复数的概念属于中档题解析:0b =或221a b += 【分析】根据复数的运算得出21+z z ()()()222222222212114a a b ab b b a i a b a b+-++--=+--,再由复数是实数的条件得出实数a ,b 应满足的条件. 【详解】()22222211()1212z a bi a bi a biz a bi a abi b a b abi +++===+++++-+-+()()222222212()14ab abia bi ab a b+--=++--()()()22222222222112214a a b b a b i a bi ab a b a b+-++--+=+--()()()2222322222212214a a b ab b a b b a b i a b a b+-+++--=+--()()()222222222212114a a b ab b b a i a b a b+-++--=+--因为21zR z∈+,故有()2210b b a --=,所以0b =或2210b a --=, 即0b =或221a b +=是a ,b 应满足的条件. 故答案为:0b =或221a b +=. 【点睛】本题考查复数的运算和复数的概念,属于中档题.15.4【分析】本题先将分别代入然后相加再运用复数模的三角不等式可计算出的最大值【详解】由题意可知则当与对应的向量反向共线时等号成立故的最大值为4故答案为:4【点睛】本题主要考查复数的模的计算以及复数模的解析:4 【分析】本题先将1z ,2z 分别代入23i i z z +-=,然后相加,再运用复数模的三角不等式可计算出12z z +的最大值. 【详解】 由题意,可知1123z z +-=,2223z z +-=,则12121212126222z z z z z z z z z z =++-+-≥++-=++,当12z -与22z -对应的向量反向共线时,等号成立.124z z ∴+≤.故12z z +的最大值为4. 故答案为:4. 【点睛】本题主要考查复数的模的计算,以及复数模的三角不等式的运用,不等式的计算能力.本题属基础题.16.38;【分析】假设另外一个根为根据是实数结合韦达定理可得结果【详解】假设另外一个根为是方程的一个根则①由可知是的共轭复数所以②把②代入①可知所以故答案为:38【点睛】本题重在考查是实数掌握复数共轭复解析:38; 【分析】假设另外一个根为z ,根据z z 是实数,结合韦达定理,可得结果. 【详解】假设另外一个根为z ,23i -是方程()220,x px q p q R ++=∈的一个根,则()232232p i z q i z ⎧-+=-⎪⎪⎨⎪-=⎪⎩① 由,p q R ∈,可知z 是23i -的共轭复数, 所以32z i =-- ② 把②代入①可知1226p q =⎧⎨=⎩所以38p q +=故答案为:38 【点睛】本题重在考查z z 是实数,掌握复数共轭复数的形式,属基础题17.【分析】根据复数的几何意义可知复数对应的点的坐标为再根据该点位于第二象限得即而再用二次函数法求其取值范围【详解】因为复数对应的点的坐标为又因为该点位于第二象限所以解得所以因为所以故答案为:【点睛】本解析:⎫⎪⎪⎣⎭【分析】根据复数的几何意义,可知复数(2)(1)()z a a i a R =-++∈对应的点的坐标为21a a -+(,),再根据该点位于第二象限,得2010a a -<⎧⎨+>⎩即1a 2-<< ,而||z ===范围. 【详解】因为复数(2)(1)()z a a i a R =-++∈对应的点的坐标为()21a a -+,, 又因为该点位于第二象限, 所以20,10,a a -<⎧⎨+>⎩解得1a 2-<<.所以||z ===因为1a 2-<<,所以||z ⎫∈⎪⎪⎣⎭.故答案为:2⎡⎫⎪⎢⎪⎣⎭【点睛】本题主要考查复数的几何意义,复数的模,还考查运算求解的能力,属于中档题.18.【分析】可设出复数z 通过复数相等建立方程组从而求得复数的模【详解】由题意可设由于所以因此解得因此复数的模为:【点睛】本题主要考查复数的四则运算相等的条件比较基础解析:2【分析】可设出复数z ,通过复数相等建立方程组,从而求得复数的模. 【详解】由题意可设z a bi =+,由于003z z z z ⋅=+,所以(32)(23)(33)(23)a b a b i a b i -++=+++,因此32332323a b a a b b -=+⎧⎨+=+⎩,解得132a b =⎧⎪⎨=-⎪⎩,因此复数z= 【点睛】本题主要考查复数的四则运算,相等的条件,比较基础.19.【分析】利用复数的运算法则共轭复数的定义即可得出结果【详解】由可得即所以故答案是:【点睛】该题考查的是有关复数的问题涉及到的知识点有复数的运算法则以及共轭复数的概念属于简单题目 解析:34i -+【分析】利用复数的运算法则、共轭复数的定义即可得出结果. 【详解】 由43z i i +=可得34zi i=-,即23434z i i i =-=--, 所以34z i =-+, 故答案是:34i -+. 【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的运算法则以及共轭复数的概念,属于简单题目.20.【分析】先由复数的几何意义确定集合所对应的平面区域再确定集合所对应的平面区域由复数可得复数对应的点在复平面内所形成图形即为集合与集合所对应区域的重叠部分结合图像求出面积即可【详解】因为复数集合所以集解析:72【分析】先由复数的几何意义确定集合A 所对应的平面区域,再确定集合B 所对应的平面区域,由复数z A B ∈⋂,可得复数z 对应的点Z 在复平面内所形成图形即为集合A 与集合B 所对应区域的重叠部分,结合图像求出面积即可. 【详解】因为复数集合{i |1,1,,}A x y x y x y R =+≤≤∈,所以集合A 所对应的平面区域为1x =±与1y =±所围成的正方形区域;又221133{|,}44B z z i z z A ⎛⎫==+∈ ⎪⎝⎭,设1z a bi =+,且1a ≤, 1b ≤, ,a b R ∈, 所以()()()21333333444444z i z i a bi a b a b i ⎛⎫⎛⎫=+=++=-++⎪ ⎪⎝⎭⎝⎭,设2z 对应的点为(),x y ,则()()3434x a b y a b ⎧=-⎪⎪⎨⎪=+⎪⎩,所以3232a x y b y x ⎧=+⎪⎪⎨⎪=-⎪⎩,又1a ≤,1b ≤,所以33223322x y y x ⎧-≤+≤⎪⎪⎨⎪-≤-≤⎪⎩, 因为复数z A B ∈⋂,z 对应的点Z 在复平面内所形成图形即为集合A 与集合B 所对应区域的重叠部分,如图中阴影部分所示,由题意及图像易知:阴影部分为正八边形,只需用集合A 所对应的正方形区域的面积减去四个小三角形的面积即可.由321x y y ⎧+=⎪⎨⎪=⎩得112B ⎛⎫ ⎪⎝⎭,,由321x y x ⎧+=⎪⎨⎪=⎩得112C ⎛⎫⎪⎝⎭,, 所以11172242222S =⨯-⨯⨯⨯=阴影. 故答案为72【点睛】本题主要考复数的几何意义,以及不等式组所表示平面区域问题,熟记复数的几何意义,灵活掌握不等式组所表示的区域即可,属于常考题型.三、解答题21.(1)2m =-或3m =;(2)2m =;(3)2m =-或52m =. 【分析】(1)由虚部为0,求解m 值;(2)由实部为0且虚部不为0,列式求解m 值; (3)由实部与虚部的和为0,列式求解m 值. 【详解】解:由题可知,复数224(6)Z m m m i =-+--, (1)当Z 为实数时,则虚部为0,由260m m --=,解得:2m =-或3m =; (2)当Z 纯虚数时,实部为0且虚部不为0,由224060m m m ⎧-=⎨--≠⎩,解得:2m =;(3)当Z 对应的点位于直线y x =-上时,则0x y +=,即:实部与虚部的和为0,由224(6)0m m m -+--=,解得:2m =-或52m =. 【点睛】本题考查复数的基本概念,以及复数的代数表示法及其几何意义,属于基础题. 22.(1)a =2.(2)|z |=2. 【分析】(1)根据复数的运算,求得21z 244a ai =-+,由21z 为实数,列出方程组,即可求解; (2)化简复数得2z i =,利用复数的模的计算公式,即可求解. 【详解】(1)z = (2 + a i)2 = 4-a 2 + 4a i , 因为z 为纯虚数, 所以解得a =2. (2)z 1=2+2i ,z ====2i ,∴|z |=2. 【点睛】本题主要考查了复数的基本概念和复数的分类,其中解答中熟记复数的基本运算公式和复数的基本概念是解答此类问题的关键,着重考查了推理与运算能力,属于基础题. 23.(1)=42z i -(2)251 【详解】试题分析:(1)求复数z 时采用待定系数法,首先=(,)z a bi a b R +∈设,代入已知条件得到关于,a b 的方程,从而解得,a b ,得到复数z (2)采用待定系数法得到复数ω实虚部的关系式,进而结合两点间距离公式得到ω的最小值 试题(1)=(,)z a bi a b R +∈设,则2(2)z i a b i +=++,因为2z i +为实数,所以有20b +=①(12)(12)()2(2)i z i a bi a b b a i -=-+=++-,因为(12)i z -为纯虚数,所以20,20a b b a +=-≠,② 由①②解得4,2a b ==-. 故=42z i -.(2)因为=42z i -,则42z i =+,设(,)x yi x y R ω=+∈,因为1z ω-=,即22(4)(2)1x y -+-=又ωω的最小值即为原点到圆22(4)(2)1x y -+-=上的点距离的最小值,因为原点到点(4,2)=r=1,原点在圆外, 所以ω的最小值即为1.考点:1.待定系数法;2.复数运算及相关概念;3.数形结合法 24.(1)2a b ==;(2)120. 【分析】(1)根据题意,将1x =-代入方程1x b a x +=1=,变形可得1()14b i a ++-=,由复数相等的定义分析可得答案; (2)根据题意,分2种情况讨论:①选出的3个数字中含有0,②选出的3个数字中不含0,求出每种情况三位数的数目,由加法原理计算可得答案. 【详解】(1)根据题意,1是方程1x b a x +=1=,变形可得:1()14b i a ++=,则有11404b a a ⎧+=⎪⎪⎪-=⎪⎩,解可得2a b ==;(2)根据题意,分2种情况讨论:①选出的3个数字中含有0,此时有2111342248C C C A =种情况,即有48个没有重复数字的三位数;②选出的3个数字中不含0,此时有21334372C C A =种情况,即有72个没有重复数字的三位数;故可以组成4872120+=个没有重复数字的三位数. 【点睛】本题主要考查复数的除法运算、复数相等以及排列组合的应用,属于基础题. 25.-190 【分析】根据12z z 、是实系数一元二次方程的两个虚根,可知12,z z 互为共轭复数,由此设出12,z z 的表达式,代入()122195z i z i +-=+,由此求得12,z z ,进而求得2212z z +的值.【详解】由于12z z 、是实系数一元二次方程的两个虚根,所以12,z z 互为共轭复数,设12,,(,)z a bi z a bi a b R =+=-∈,代入()122195z i z i +-=+得()()()2195a bi i a bi i ++--=+,化简得()395a b b a i i -+-=+,所以395a b b a -=⎧⎨-=⎩,解得7,12a b ==.所以()()2222122249144190z z a b +=-=-=-. 【点睛】本小题主要考查实系数一元二次方程虚根成对,考查复数相等的概念,考查复数乘方运算,考查方程的思想,属于基础题.26.(1)1-±;(2)2z i =或1z i =-+或1z i =+. 【分析】(1)设复数(),z a bi a b R =+∈,根据复数的运算法则和复数相等得出关于a 、b 的方程组,解出这两个未知数,即可得出复数z ; (2)设复数(),z a bi a b R =+∈,根据2z z-为纯虚数和1z i -=列出关于a 、b 的方程组,解出这两个未知数,可得出复数z . 【详解】(1)设复数(),z a bi a b R =+∈,由()232z z z i i ++=-,得()22232ab ai i ++=-,根据复数相等得22322a b a ⎧+=⎨=-⎩,解得1a b =-⎧⎪⎨=⎪⎩1z =-;(2)设复数(),z a bi a b R =+∈,则()()()222222222a bi a b z a bi a bi a b i z a bi a bi a bi a b a b -⎛⎫⎛⎫-=+-=+-=-++ ⎪ ⎪++-++⎝⎭⎝⎭, 由题意可得2220a a a b -=+,2220bb a b +≠+. ()11z i a b i -=+-=1=,所以有()()()2222222222202011a ab a b b a b a b a b ⎧+-⎪=+⎪⎪++⎪≠⎨+⎪⎪+-=⎪⎪⎩,解得02a b =⎧⎨=⎩或11a b =±⎧⎨=⎩. 因此,2z i =或1z i =-+或1z i =+. 【点睛】本题考查复数的求解,常将复数设为一般形式,根据复数的相关运算列举出方程组进行求解,考查运算求解能力,属于中等题.。
上海交通大学附属中学2007-2008学年度第二学期高二数学期中试卷本试卷共有22道试题,满分100分,考试时间90分钟。
请考生用钢笔或圆珠笔将答案写在答题纸上命题:杨德胜 审核:杨逸峰一、填空题(本大题满分36分)本大题共有12题,只要求直接填写结果,每个空格填对得3分,否则一律得零分。
1.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于,A B 两点,则直线AB 的方程是__________.2.圆心在x 轴上,半径为5,以A (2,-3)为中点的弦长是27的圆的方程为 。
3.在直角坐标系xOy 中,有一定点A (2,1)。
若线段OA 的垂直平分线过抛物线22(0)y px p =>的焦点,则该抛物线的准线方程是 。
4.已知双曲线22145x y -=,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为 。
5.将参数方程⎩⎨⎧=+=θθsin 2cos 21y x (θ为参数)化为普通方程,所得方程是_________ 。
6.若,a b 为非零实数,则下列四个命题都成立: ①10a a+≠; ②()2222a b a ab b +=++; ③若a b =,则a b =±; ④若2a ab =,则a b =。
则对于任意非零复数,a b ,上述命题仍然成立的序号是 。
7. 已知R m ∈,复数i m m m m m z )32(1)2(2-++-+=,若i z 421+=,则=m 。
8.已知5 4log 21≥+i x ,则实数x 的取值范围是_______。
9.已知2,ai b i ++是实系数一元二次方程20x px q ++=的两根,则p q +的值为 。
10.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有 。
A.1440种B.960种C.720种11.把1+(1+x )+(1+x)2+…+(1+x )n 展开成关于x 的多项式,其各项系数和为a n ,则112lim--∞→nn n a a 等于 。
上海交通大学附属中学2008-2009学年《复数》单元测试卷
高二( )班 姓名_________________学号_______成绩___________
1. 复数z =i 23-,Im z = 。
2. 若复数()()2563i z m m m =-++-是纯虚数,则实数m = 。
3. 复数
i
i i )
1)(1(+-在复平面中所对应的点到原点的距离是 。
4. 已知z ∈C,则命题“z 是纯虚数”是命题“
R z
z
∈-2
21”的__________条件。
5. 复数Z 满足()1243i Z i +=+,那么Z=________。
6. 若复数z 满足z +
2
1|z |=-1+2i ,则z = 。
7. 设O 是原点,向量,
O A O B
对应的复数分别为23,
32i i --+,那么向量BA
对应
的复数是____________。
8.
若复数z =
2z +48z z +=_______。
9. 已知复数z 满足|z|=1,则|z+iz+1|的最小值为__________。
10. 设非零复数x 、y 满足02
2=++y xy x ,则代数式2008
2008
⎪
⎪⎭
⎫
⎝⎛++⎪
⎪⎭
⎫
⎝⎛+y x y y x x 的值
是____________。
11. 设f (n )=n
n
i i
-+(n ∈N ),则集合{f (n )}中元素的个数为( )
A .4
B .3
C .2
D .1
12. 已知12,z z 都是虚数,则12z z = 的一个必要不充分条件是 ( ) A. 120z z += B. 21z z = C. 12z z = D. 12z z =
13. 有下列命题: ① 若z ∈C ,则z 2≥0;② 若z 1,z 2∈C ,z 1-z 2>0,则z 1>z 2;③若1z ,2z ∈C ,
则|1z +2z |=|1z |+|2z |.④z 1+z 2∈R ⇔21z z =其中,正确命题的个数为( ) A .0 B .1 C .2 D .3
14. 设x C ∈,方程2
||||0x x -=的解集为 ( )
A .{0,1}
B .{0,1,1}-
C .{0,1,1,,}i i --
D .以上都不对
15. 当m 为何实数时,复数z =2
223225
m m m ---+(m 2
+3m -10)i ;(1)是实数;(2)是虚数;
(3)是纯虚数。
16. (1)复数z 满足(1+2i )z +(3-10i )z =4-34i ,求z 。
(2)若ω=-2
1+
2
3i ,ω3=1,计算6
6
2
2
+。
17. 已知复数z 满足|z -2|=2,z +4z
∈R ,求z 。
18. 已知z 是复数,i
z i z -+22、
均为实数(i 为虚数单位),且复数2)(i a z +在复平面上
对应的点在第一象限,求实数a 的取值范围。
19. 关于x 的方程a (1+ i )x 2+(1+a 2i )x +a 2+i =0 (a ∈R )有实根,求a 的值及方程的根。
20. 已知关于t 的方程2
20t t a -+=的一个根为1.()a R +∈
(1)求方程的另一个根及实数a 的值;
(2)是否存在实数m ,使对x R ∈时,不等式22
log ()22[1,2]a x a m km k k +≥-+∈-对恒
成立?若存在,试求出实数m 的取值范围;若不存在,请说明理由。
参考答案
1、2-
2、2
3、2
4、充分不必要
5、 2+i
6、-
3
8+2i
7、i 55- 8、i - 9、12-
10、–1 11、B 12、D 13、A 14、D
15、解:此题主要考查复数的有关概念及方程(组)的解法. (1)z 为实数,则虚部m 2
+3m -10=0,即22
3100
250
m m m ⎧+-=⎨-≠⎩, 解得m =2,∴ m =2时,z 为实数。
(2)z 为虚数,则虚部m 2+3m -10≠0,即2
2
3100
250m m m ⎧+-≠⎨-≠⎩
, 解得m ≠2且m ≠±5. 当m ≠2且m ≠±5时,z 为虚数。
(3)222
2320
3100250
m m m m m ⎧--=⎪
+-≠⎨⎪-≠⎩,解得m =-21, ∴当m =-21时,z 为纯虚数。
16、(1)解:设z =x +yi (x , y ∈R ),则(1+2i )(x +yi )+(3-10i )(x -yi ) =4-34i ,
整理得(4x -12y )-(8x +2y )i =4-34i . ∴ 41248234
x y x y -=⎧⎨
+=⎩, 解得41
x y =⎧⎨
=⎩, ∴ z =4+i .
(2
)解:6
6
2
2
+
=6
66626
(([()]2
2
i i i ωω-+-=⋅+=
-2
17、解:设z =x +yi , x , y ∈R ,则
z +
4z
=z +
2
2
2
2
2
2
44()44()z x yi x y x yi x y i zz
x y x y
x y
-=++
=+
+-
+++,
∵ z +
4z
∈R ,∴ 22
4y
y x y
-
+=0, 又|z -2|=2, ∴ (x -2)2+y 2=4,
联立解得,当y =0时, x =4或x =0 (舍去x =0, 因此时z =0),
当y ≠0时
, 1x y =⎧⎪⎨=⎪⎩z =1±3,
∴ 综上所得 z 1=4,z 2=1+3i ,z 3=1-3i . 18、设R)∈+=y x yi x z 、(,i y x i z )2(2++=+ ,由题意得 2-=y .
i x x i i x i
i x i
z )4(5
1)22(5
1)2)(2(5
1222-+
+=
+-=--=-
由题意得 4=x . ∴ i z 24-=. ∵ 2)(ai z +i a a a )2(8)412(2-+-+=
根据条件,可知⎩⎨⎧>->-+0
)2(80
4122a a a ,解得 62<<a ,∴ 实数a 的取值范围是)6,2(.
19、
20、(1)
另一根为1-
(1)(3)4
a i ∴==
(2)设存在实数m 满足条件,不等式为22422log (4),m km k x -+≤+
2
4
l o g (4)
x + 的最小值为1, 2221m k m k ∴-+≤对[1,2]k ∈-恒成立,
即22(1)10m k m -+-≤对[1,2]k ∈-恒成立, 设2()2(1)1g k m k m =-+-
则2
2
(1)230(2)430
g m m g m m ⎧-=+-≤⎪⎨=-+≤⎪⎩
解得3113
m m -≤≤⎧⎨
≤≤⎩ 1m ∴=,
因此存在1m =满足条件.。