函数奇偶性 教学设计]
- 格式:doc
- 大小:131.50 KB
- 文档页数:5
可编辑修改精选全文完整版函数的奇偶性教材分析:函数的奇偶性是函数的重要性质,是对函数概念的深化。
教材从观察实例开始,先动手操作实验(沿Y轴折叠偶函数图象),再观察函数图象的对称性、分析函数值表格,逐步领悟图形(函数图象)对称、点(函数图象上的点)对称、数(纵坐标)相等、式(函数式)相等之间的关系。
在建立函数奇偶性的概念之后,应用定义判断简单函数的奇偶性,讨论函数图象的对称性。
教学内容较好地渗透了数形结合的思想方法。
教学内容在教材中的呈现方式是:观察日常生活中的对称现象(产生对“对称”的感性认识)→观察数学图形(具有对称性的函数图象)→动手操作(折叠)实验→再观察思考→对称性的定性描述→尝试定量刻画→建立函数的奇偶性定义→性质讨论→问题解决与应用→再探究与引申。
学情分析:从知识储备方面,首先,学生已经学习了一次函数、二次函数、反比例函数等基本初等函数,因此可以从这些特殊的函数出发,为学习函数奇偶性提供丰富的素材;其次,学生也已经学习了轴对称图形和中心对称图形,具备一定识图能力;最后,学生刚刚学习了函数单调性,已经积累了研究函数的基本方法和初步经验。
另外,由于学生缺乏独立研究问题的经验,在函数奇偶性概念的形成过程中,特别是由图形语言到数学符号语言的转化过程中还存在一定困难,需要老师加以引导。
教学目标:知识与技能:1、从数和形两个角度理解偶函数、奇函数的概念;2、会判断一些简单函数的奇偶性。
过程与方法:在经历从图形直观感知到代数抽象概括,从特殊到一般的概念形成过程中,提高观察抽象能力以及归纳概括能力,并体会数形结合的数学思想。
情感、态度和价值观:在函数奇偶性概念形成过程中体会数学的对称美。
教学重点和难点:重点是函数的奇偶性的概念及其建立过程,判断函数的奇偶性;难点是对函数奇偶性概念的理解与认识。
教学过程:一:创设情景,揭示课题在我们日常生活中,存在许多对称的事物,(展示日常生活中常见的对称现象)比如:建筑物、美丽的蝴蝶、美丽的蜻蜓、麦当劳的标志。
高一数学《函数的奇偶性》教案设计高一数学《函数的奇偶性》教案设计(精选5篇)教案是教师为顺利而有效地开展教学活动,根据教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书。
下面是小编整理的高一数学《函数的奇偶性》教案设计,希望对大家有帮助!高一数学《函数的奇偶性》教案设计篇1一、教学目标【知识与技能】理解函数的奇偶性及其几何意义【过程与方法】利用指数函数的图像和性质,及单调性来解决问题【情感态度与价值观】体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣二、教学重难点【重点】函数的奇偶性及其几何意义【难点】判断函数的奇偶性的方法与格式三、教学过程(一)导入新课取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:1 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y 轴对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等(二)新课教学1.函数的奇偶性定义像上面实践操作1中的图象关于y轴对称的函数即是偶函数,操作2中的图象关于原点对称的函数即是奇函数(1)偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数(学生活动):仿照偶函数的定义给出奇函数的定义(2)奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)2.具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称3.典型例题(1)判断函数的奇偶性例1.(教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性(本例由学生讨论,师生共同总结具体方法步骤) 解:(略)总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数(三)巩固提高1.教材P46习题1.3 B组每1题解:(略)说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数2.利用函数的奇偶性补全函数的图象(教材P41思考题)规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称说明:这也可以作为判断函数奇偶性的依据(四)小结作业本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质课本P46 习题1.3(A组) 第9、10题, B组第2题四、板书设计函数的奇偶性一、偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数二、奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数三、规律:偶函数的图象关于y轴对称;奇函数的`图象关于原点对称高一数学《函数的奇偶性》教案设计篇2教学目标:了解奇偶性的含义,会判断函数的奇偶性。
1.3.2函数的奇偶性一、教材分析本节课是高普通高中课程标准试验教科书人教A版数学必修一第一章第三节第二小节函数的奇偶性。
本节内容属于函数领域的知识,是学生学过的函数概念的延续和拓展,又是后续研究其他具体函数的基础,是在高中数学起承上启下作用的核心知识之一。
二、学情分析在此之前,学生已经学习了图形的轴对称和中心对称,以及函数的单调性,这为本节课的学习起着铺垫作用。
从学生思维发展来看,高一学生的思维能力正在由形象经验型向抽象理论型转变,但是抽象概括能力比较薄弱,这对构造奇偶性的概念造成了一定的难度。
三、教学目标1.知识与技能:(1)理解偶函数和奇函数的概念(2)掌握用定义判断函数的奇偶性2.过程与方法:讲授法和观察法:通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题。
3.情感态度与价值观:通过对函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力力,渗透数形结合的数学思想。
四、教学重难点教学重点:奇偶函数的定义,用定义判断函数的奇偶性。
教学难点:弄清f(x)和f(−x)的关系,用定义判断函数的奇偶性。
五、教法学法教法:探究式、启发式、多媒体辅助学法:自主探究、合作交流六、教学过程1. 课题引入(1)生活中具有对称性的例子(2)根据对称性将函数图像分类(请同学回答) 2. 探究新知 (1)函数图像将以上函数图像分成两类,一类关于y 轴对称,一类关于原点对称。
(2)根据分类,完成函数值对应表,观察函数值特点关于y 轴对称x… -3 -2 -1 0 1 2 3 … f (x )=x 2 … 9 41 0 1 4 9 …x… -3 -2 -1 0 1 2 3 …f (x )=|x | … 3 210 1 2 3 …课课题引入引发学生兴趣f (x )=x 2f (−x )=x 2=f (x )Oxy||)(x x f f (−x )=|x |=f (x )yyOOxx课探究新知 课问题解决课小结 课作业布置 感受数学探究魅巩固深化学习内知识系统化举一反三灵活应偶函数的定义:如果对于函数f(x)的定义域内任意一个x,都有f(−x)=f(x),那么f(x)就叫做偶函数。
函数的奇偶性教学设计方案教学设计方案:函数的奇偶性一、教学目标:1.理解函数的奇偶性的概念和定义;2.掌握判断函数的奇偶性的方法;3.能够解决与函数奇偶性相关的问题。
二、教学重点:1.函数的奇偶性概念和定义;2.判断函数的奇偶性的方法。
三、教学难点:如何运用函数的奇偶性来解决实际问题。
四、教学内容和过程:1.引入(15分钟)首先,教师可以通过提问的方式引入,如:你们知道什么是函数的奇偶性吗?以及函数的奇偶性有什么作用呢?通过学生的回答,引导学生思考和讨论,为后续的学习做好铺垫。
2.概念和定义(20分钟)在学生具备一定预备知识的基础上,教师开始正式介绍函数的奇偶性的概念和定义。
可以通过举例子的方式来让学生更好地理解和记忆。
教师可以给出一些函数的图像,引导学生观察函数的图像特点,并通过观察总结出函数奇偶性的定义。
3.判断函数的奇偶性的方法(30分钟)接下来,教师向学生讲解判断函数的奇偶性的方法。
教师可以先给出一些简单的函数方程,然后引导学生根据函数奇偶性的定义来进行判断。
通过多个具体的例子,让学生掌握判断函数奇偶性的常用方法。
4.练习与巩固(30分钟)为加深学生对函数奇偶性的理解和掌握,教师可以设计一些小组练习题和讨论题。
学生可以在小组中合作解决问题,并在解题过程中讨论和交流。
在小组讨论结束后,教师可以选取几组代表进行汇报,提供详细讲解和解题思路。
5.实际问题的应用(25分钟)在学生掌握了函数奇偶性的概念和判断方法之后,教师可以给学生提供一些实际问题,并要求学生运用函数奇偶性的理论知识来解决问题。
通过解决实际问题,让学生理解函数奇偶性在实际应用中的作用,并培养学生的问题解决能力。
6.总结与拓展(20分钟)在教学的最后阶段,教师对本节课的内容进行总结,并与学生一起回顾学习的重点和难点。
教师可以通过提问的方式来检查学生对课堂知识的掌握程度,并适当拓展一些相关的知识点,以满足学生对函数奇偶性更深层次理解的需求。
函数的奇偶性课堂教学设计引言:函数是数学的重要概念之一,广泛应用于各个学科和领域。
在函数的学习过程中,了解函数的奇偶性质是至关重要的,它可以帮助学生更好地理解函数的性质和特点。
本文将介绍一种针对中学数学课堂的函数的奇偶性课堂教学设计。
一、教学目标1.理解函数的奇偶性质及其定义;2.能够判断给定函数的奇偶性;3.掌握奇偶函数的图像特点;4.能够利用奇偶性质进行函数的简化计算。
二、教学准备1.课件和电子白板,用于呈现教学内容;2.练习题和作业,用于巩固学生的理解。
三、教学过程1.引入:通过一个简单的问题引导学生思考函数的奇偶性质的重要性,并激发学生的学习兴趣。
老师:同学们,如果我们知道一个函数的奇偶性质,能够帮助我们做什么呢?学生:可以帮助我们更好地理解函数的特点,简化计算等。
老师:非常好!确实如此。
接下来,我们将学习函数的奇偶性质以及它的定义。
2.概念解释:通过讲解和示意图的方式,介绍函数的奇偶性质及其定义。
老师:在数学中,函数的奇偶性质是指函数在定义域内对称的性质。
一个函数被称为奇函数,当且仅当对于任意$x$,有$f(-x)=-f(x)$;一个函数被称为偶函数,当且仅当对于任意$x$,有$f(-x)=f(x)$。
让我们通过几个例子来进一步理解。
(老师通过几个具体的实例,比如二次函数、三角函数等,引导学生分析函数的奇偶性质)3.判断奇偶性:通过练习题,让学生判断给定函数的奇偶性。
老师:现在,请同学们自己判断以下函数的奇偶性,并用手举例说明。
(学生独立完成练习题,然后相互讨论和验证答案)4.奇偶函数的图像特点:介绍奇函数和偶函数的图像特点,通过图像观察和分析,加深学生对函数奇偶性质的理解。
老师:我们已经判断了给定函数的奇偶性质,现在让我们来观察一下奇函数和偶函数的图像特点。
请同学们独立完成以下练习,并描述你们观察到的规律。
(学生独立完成练习,并将自己的观察结果展示给全班)5.奇偶性在计算中的应用:通过实际问题的计算,帮助学生掌握利用奇偶性质进行函数的简化计算的方法。
函数奇偶性概念的教学设计一、教学目标1. 理解函数的奇偶性概念以及对称性质。
2. 掌握判断函数奇偶性的方法和技巧。
3. 能够应用函数奇偶性概念解决实际问题。
二、教学内容1. 函数奇偶性的定义。
2. 判断函数奇偶性的方法。
3. 函数奇偶性的性质及应用。
三、教学步骤和教学过程Step 1:引入知识(10分钟)为了引起学生对函数奇偶性的兴趣,可以通过引入一个生活实例来引导学生思考,并提出以下问题:“在你的生活中,你见过有哪些具有对称性质的事物?”“你认为这些具有对称性质的事物有什么特点?”通过引导学生的思考,让学生逐渐认识到对称性质在生活中的普遍存在。
Step 2:概念讲解(15分钟)在学生接受了引入知识的激发后,进一步引入函数的奇偶性概念。
首先给出函数奇偶性的定义,然后通过示例函数的图像展示给学生:“对于任意数x,如果函数f(-x) = f(x),则函数f(x)是偶函数。
”“对于任意数x,如果函数f(-x) = -f(x),则函数f(x)是奇函数。
”通过对定义的解释,学生可以理解函数的奇偶性在数轴上的表现。
Step 3:判断奇偶性的方法(20分钟)为了帮助学生掌握判断函数奇偶性的方法和技巧,可以通过一些具体的例子进行讲解和练习。
可以选取一些简单的函数,如多项式函数,让学生结合奇偶性的定义来判断函数的奇偶性。
同时,还可以引导学生思考这些函数在数轴上的对称性质,通过观察函数的图像来判断函数的奇偶性。
Step 4:奇偶性的性质及应用(20分钟)在学生了解了判断奇偶性的方法后,可以进一步讲解函数奇偶性的性质及其在实际问题中的应用。
可以通过具体的例子让学生理解奇偶函数的性质,如奇函数的定义域为整个实数集,偶函数的定义域为非负实数集等。
同时引导学生思考如何应用奇偶性概念解决实际问题,如在求解方程的过程中,可以根据函数的奇偶性来简化计算。
Step 5:练习和巩固(20分钟)为了巩固学生对函数奇偶性概念的理解和掌握,可以设计一些练习题,让学生进行个别或小组练习。
函数的奇偶性思政教学设计引言:函数的奇偶性是数学中的一个重要概念,也是高中数学教学中的一个重点内容。
了解函数的奇偶性不仅可以帮助学生更好地理解和应用函数,还可以培养学生的思维能力和分析能力。
本文将介绍一种以函数的奇偶性为切入点的思政教学设计。
一、教学目标1. 知识目标:了解函数的奇偶性的概念和判定方法;2. 能力目标:掌握判断函数奇偶性的基本方法,提高分析问题和解决问题的能力;3. 情感目标:培养学生独立思考、主动学习的意识,增强学生对数学的兴趣。
二、教学内容1. 函数的奇偶性概念的引入;2. 奇函数与偶函数的定义;3. 函数奇偶性的判定方法;4. 函数奇偶性在实际问题中的应用。
三、教学方法1. 结合实例引入:通过给出一些具体的例子,引导学生了解函数的奇偶性的概念和特点,培养学生对函数奇偶性的直观感受。
2. 导引式探究:组织学生小组讨论,以问题为导向,让学生自己发现判断函数奇偶性的方法,并归纳总结。
3. 教师讲解与学生实践:在学生自主探究的基础上,学生掌握了判断函数奇偶性的方法后,教师进行讲解并提供更多的例题,让学生在课堂上进行练习和实践。
4. 小组合作学习:将学生分成小组,通过小组合作的形式,让学生通过讨论和合作解决函数奇偶性相关的问题,培养学生的团队合作意识和分析问题的能力。
四、教学过程1. 引入:通过提问和讨论,引导学生思考函数的奇偶性与社会中的一些现象的关联,并引出函数奇偶性的概念。
2. 导引式探究:将学生分为小组,给出若干函数的图像,让学生观察、分析,并尝试寻找规律,发现函数的奇偶性的特点和判定方法。
3. 学生实践与教师讲解:学生自主探究后,教师进行讲解,向学生介绍奇函数与偶函数的定义,并给出判定函数奇偶性的基本方法和步骤。
4. 练习与巩固:教师在课堂上出示一些函数,让学生判断函数的奇偶性,并用图像表示出来,通过练习巩固判断函数奇偶性的方法。
5. 小组合作学习:将学生分为小组,让每个小组选择一个具体的实际问题,设计一个与函数奇偶性相关的解决思路或方法,并进行小组展示和讨论。
函数奇偶性的教学设计这是函数的奇偶教学设计一等奖,是老师和家长可以借鉴的优秀教学设计一等奖文章。
函数奇偶性的教学设计 1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国xxxx年4月份非典疫情统计:日期新增确诊病例数3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数课本P21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
《函数的奇偶性》教学设计一、教学目标课程标准对本节课的要求是:结合具体函数,了解奇偶性的含义.从认知层次的三个维度对课标进行了分解,具体如下:依据行为动词,我又从能力层次将课标进行了再分解,具体如下:由此确定的学习目标为:1.建立奇偶函数的概念:通过观察一些具体函数的对称性(关于y轴或原点对称)形成奇偶函数的直观认识。
然后通过代数运算,验证并发现数量特征对定义域中的“任意”值都成立,最后在此基础上建立奇(偶)函数的概念。
理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性.2.函数奇偶性的研究历经了从直观到抽象,从图形语言到数学语言,理解函数奇偶性概念的形成过程,让学生自主探究。
培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.3.通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力和认真钻研的数学品质。
二、教学重点与难点重点:函数奇偶性的概念和几何意义。
难点:奇偶性概念的数学化提炼过程。
三、教学过程本节课我采取“教学、评价、学习一致性”的教学设计,同时采用“点拨式自主学习与合作探究”的教学方法,借助五个环节实现本节课的学习目标.从学生熟悉的与入手,顺应了同学们的认知规律,从特殊到一般,培养学生的语言表达能力和抽象概括能力,形成偶函数的概念。
板书设计板书设计分为教师板书和学生板书两块内容,教师板书,我侧重将本节的四个主要内容展示在黑板上,便于学生理解和记忆.学生板书,我将留给学生展示课堂演板,便于对学生掌握的情况进行总结和评价.课后实践:1.课本P42练习2, P46102.设y=f(x)为R上的任一函数,判断下列函数的奇偶性:(1). F(x)=f(x)+f(- x) (2)F(x)=f(x)-f(-x)。
《函数的奇偶性》教学设计一、内容和内容解析1.内容函数的奇偶性.2.内容解析函数的奇偶性是函数的重要性质之一,从“形”的角度,函数的奇偶性揭示了函数的整体图象与函数在y轴右侧的局部图象之间的关系;从“数”的角度,函数的奇偶性刻画了函数自变量与函数值之间存在的一种特殊的数量规律.用数量关系刻画函数图象的对称性,体现了数形结合的思想.从研究方法上看,它延续了函数单调性的研究思想和方法:用数量关系刻画函数的图象性质,这也为后续进一步研究具体函数的性质提供研究的方法与角度.从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数等各种基本初等函数的基础.因此,本节课起着承上启下的重要作用.这一节利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学的学习中.从方法论的角度来看,本节教学过程中还渗透了数形结合、化归等数学思想方法.奇偶性的教学无论是在知识还是在能力方面对学生的教育起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现.奇偶性是函数的“整体性质”,是某些函数的特殊性质.奇偶性是把函数图象的对称性(几何特性)转化为代数关系,并用严格的符号语言表示,沟通了形与数,实现了从定性到定量的转化.基于以上分析,本单元的教学重点:函数奇偶性概念的形成和函数奇偶性的判断.二、目标和目标解析1.目标(1)借助函数图象,了解函数奇偶性的概念及几何意义;(2)会运用概念判断函数的奇偶性;(3)在抽象函数奇偶性的过程中感悟数学概念的抽象过程及符号表示的作用.2.目标解析达成上述目标的标志是:(1)知道函数奇偶性是把函数图象的对称性(几何特性)转化为代数关系,并用严格的符号语言表示,沟通了形与数,实现了从定性到定量的转化.(2)会用函数奇偶性的定义,按一定的步骤证明函数的奇偶性.(3)初中阶段学生对于函数的学习侧重于直观形象和定性讨论,而高中阶段研究函数,侧重于数形结合和符号逻辑语言结合,用精确的量化(符号)语言、形式推理来刻画变量之间关系和规律,即通过形式化、符号化来使函数性质数学化,在数学化的过程中培养学生的直观想象、抽象概况等思维能力和素养,感受数学符号语言的魅力.三、教学问题诊断分析学生在初中阶段已经学习了轴对称图形,中心对称图形以及它们的性质,对二次函数、反比例函数图象的对称性也非常熟悉.对于具体函数,能够观察函数图象,描述图象的对称性,能从数量关系上对函数的对称性进行初步刻画,但学生并不明确数与形转化的过程,即为什么对于定义域内任意x ,当满足()()-=f x f x 时,函数图象关于y 轴对称.通过函数单调性的理解和学习,学生初步积累了研究函数的基本方法与初步经验,学生接触到了由形象到具体,然后再由具体到一般的科学处理方法,这些对本节内容刚开始的引入和概念形成起到了很好的铺垫作用.但是学生的分析归纳能力和用数学规范语言表达的能力还比较弱,我们必须引导学生从“数”与“形”两个方面来加深对函数奇偶性本质的认识.从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题.但分析、归纳、抽象的思维能力还是比较薄弱,通过恰当的培养和引导能够使得学生的分析归纳能力得到提高.根据以上分析,确定本节课的教学难点:对关系式()()-=f x f x (或()()-=-f x f x )的理解.四、教学过程设计(一) 情景导入我们知道函数是描述事物变化规律的数学模型,函数性质是“变化中的规律性,变化中的不变性”.上一节课,我们共同学习了函数的单调性与最大(小)值,用符号语言准确地描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质,本节课,我们继续研究函数的其他性质.(二)概念的形成问题1:平面直角坐标系中的任意一点(,)P a b 关于x 轴、y 轴、坐标原点的对称点Q 、R 、S 的坐标.追问:一般地,若两点关于x 轴对称,它们的坐标之间有何关系?若关于y 轴对称呢?关于原点中心对称呢?设计意图:从学生已学知识复习导入,通过具体的点引导学生感受对称与坐标的关系,为后续奇偶性定义中的任意性做一些铺垫.问题2:画出并观察函数2()f x x =和2()g x x =-的图象,你能发现这两个函数图象有什么共同特征吗?师生活动:先由学生独立思考,教师利用PPT 展示函数图象.学生观察后,不难发现,这两个函数的图象都关于y 轴对称.那么,如何使用符号语言精准地描述“函数图象关于y 轴对称”这一特征?所以,教师继续追问.追问:对于上述两个函数,1()f 与1()f -,2()f 与2()f -,3()f 与3()f -,()f x 与()-f x 有什么关系?师生活动:先由学生独立思考,教师积极地引导学生发现,当自变量取一对相反数时,相应的两个函数值相等.追问:对于定义域内任意的一个x ,都有()()-=f x f x 成立吗?如何验证我们的猜想呢?师生活动:以2()f x x =为例,其定义域为R .对于定义域R 内任意的一个x ,都有x R -∈,()f x 与()-f x 均有意义.因为22()()f x x x -=-=,所以()()-=f x f x 是成立的.同样的,验证函数2()g x x =-,结论依然成立.设计意图:通过观察函数的图象,思考问题,提高学生分析问题、总结问题的能力.从多个具体的实例中抽象概括出共同特征,形成较为抽象的数学语言,让学生体会数学语言的严谨性和简洁性,教师给出严格的定义表述.定义:一般地,设函数()f x 的定义域为I ,如果∀∈x I ,都有-∈x I ,且()()-=f x f x ,那么函数()f x 就叫做偶函数.问题3:从偶函数的定义出发,如何证明函数()=y f x 是偶函数的充要条件是它的图象关于y 轴对称.师生活动:先由学生独立思考完成,再组织全班交流.教师积极地引导学生尝试探索,在充分交流的基础上,教师给出严格的定义表述.充分性:设P x y (,)是函数()f x 图象上任意一点,则()=y f x .因为函数()f x 的图象关于y 轴对称,所以点P 关于y 轴的对称点Q x y -(,)也在函数()f x 图象上,即()=-y f x .所以对任意的x ,都有()()-=f x f x ,所以函数()=y f x 是偶函数.必要性:设P x y (,)是函数()f x 图象上任意一点,则()=y f x .记点P 关于y 轴的对称点为Q ,则Q x y -(,).因为函数()f x 是偶函数,所以()()-=f x f x ,即()-y =f x ,所以点Q 在函数()f x 图象上,所以函数()=y f x 的图象关于y 轴对称.问题4:画出并观察函数()=f x x 和1()g x x =的图象,你能发现这两个函数图象有什么共同特征吗?师生活动:教师利用PPT 展示函数图象,学生观察图象后回答问题.不难发现,这两个函数的图象都关于原点成中心对称图形.那么,如何使用符号语言精准地描述“函数图象关于原点中心对称”这一特征?所以,教师继续追问.追问:对于上述两个函数,1()f 与1()f -,2()f 与2()f -,3()f 与3()f -,()f x 与()-f x 有什么关系?师生活动:先由学生独立思考完成,再组织全班交流.教师积极地引导学生发现,当自变量取一对相反数时,相应的函数值()f x 与()-f x 也是一对相反数.追问:对于定义域内任意的一个x ,都有()()f x f x -=-成立吗?如何验证我们的猜想呢?师生活动:以()f x x =为例,定义域为R .对于定义域R 内任意的一个x ,x R -∈,()f x 与()-f x 均有意义.因为()f x x -=-,所以()()f x f x -=-是成立的.同样的,验证函数1()g x x=,结论依然成立. 设计意图:通过观察函数的图象,思考问题,提高学生分析问题、总结问题的能力.从多个具体的实例中抽象概括出共同特征,形成较为抽象的数学语言,让学生体会数学语言的严谨性和简洁性,教师给出严格的定义表述.定义:一般地,设函数()f x 的定义域为I ,如果∀∈x I ,都有-∈x I ,且()()-=-f x f x ,那么函数()f x 就叫做奇函数.当函数()f x 是偶函数或奇函数时,称()f x 具有奇偶性.问题5:从奇函数的定义出发,如何证明函数()=y f x 是奇函数的充要条件是它的图象关于原点对称.师生活动:先由学生独立思考完成,再组织全班交流.教师积极地引导学生尝试探索,在充分交流的基础上,教师给出严格的定义表述.该问题类比问题2的证明过程.充分性:设P x y (,)是函数()f x 图象上任意一点,则()=y f x .因为函数()f x 的图象关于原点对称,所以点P 关于原点的对称点为Q x y --(,)也在函数()f x 图象上,即()-=-y f x .所以对任意的x ,都有()()-=-f x f x ,所以函数()=y f x 是奇函数.必要性:设P x y (,)是函数()f x 图象上任意一点,则()=y f x .记点P 关于原点的对称点为Q ,则Q x y --(,).因为函数()f x 是奇函数,所以()()-=-f x f x ,即()y =f x --,所以点Q 在函数()f x 图象上,所以函数()=y f x 的图象关于原点对称.(三)概念的辨析问题6:判断下列函数的奇偶性:(1)2f x x =(); (2)2()f x x =,2 0x ∈-(,];(3)3()f x x =,2 2x ∈-(,]; (4)3f x x =(),21 1 2(,]∪[,)x ∈--. 师生活动:先由学生独立思考,教师再组织全班交流.答案:(1)偶函数;(2)非奇非偶函数;(3)非奇非偶函数;(4)奇函数.设计意图:从同一个函数出发,学生更为容易进行探究活动,得出结论.我们不难发现,(1)、(4)中每一个x 、-x 同时属于定义域,所以()-f x 与()f x 都有意义.而(2)、(3)中则无法满足每一个x 、-x 同时属于定义域,所以()-f x 与()f x 无法满足都有意义.师生共同得出结论:函数具有奇偶性的前提是函数的定义域关于原点对称,如不对称,则可直接判断其为非奇非偶函数.追问:奇函数()f x 若在0x =处有定义,0()?f =师生活动:因为()f x 为奇函数,所以00()()f f -=-,200()f =,00()f =.(四)概念的深化例1 判断下列函数的奇偶性:(1)4()f x x =; (2)5()f x x =;(3)1()f x x x =+; (4)21()f x x=; (5)21()()f x x =-; (6)()=xf x x .师生活动:本例由学生独立思考、小组讨论,可让几个学生进行板书,完成后再进行点评完善.解:(1)函数4()f x x =的定义域为R .因为x R ∀∈,都有x R -∈,且44()()()f x x x f x -=-==,所以,函数4()f x x =为偶函数.(2)函数5()f x x =的定义域为R .因为x R ∀∈,都有x R -∈,且55()()()f x x x f x -=-=-=-,所以,函数5()f x x =为奇函数.(3)函数1()f x x x =+的定义域为{}0x x ≠. 因为{}0x x x ∀∈≠,都有{}0x x x -∈≠,且11()()()f x x x f x x x-=-+=-+=--, 所以,函数1()f x x x =+为奇函数. (4)函数21()f x x =的定义域为{}0x x ≠. 因为{}0x x x ∀∈≠,都有{}0x x x -∈≠,且2211()()()f x f x x x -===-, 所以,函数21()f x x=为偶函数. (5)函数21()()f x x =-的定义域为R .因为x R ∀∈,都有x R -∈,且2211()()()()f x x x f x -=--=+≠±,所以,函数21()()f x x =-为非奇非偶函数.另解:函数21()()f x x =-为初中阶段所学的二次函数,显然,其对称轴为1x =. 函数图象如下:故函数21()()f x x =-为非奇非偶函数.(6)由函数解析式可得定义域为{}0x x ≠.因为x R ∀∈,都有x R -∈,且()()xx f x f x x x --==-=--, 所以,函数()f x 为奇函数.另解:()=x f x x 1010,;-,.x x ⎧>=⎨<⎩ 函数图象如下:从图可知,函数图象关于原点对称,故()f x 是奇函数.追问:你能总结例题的解题过程,归纳一下利用定义判断函数奇偶性的基本步骤吗? 设计意图:通过追问,师生共同总结利用定义判断函数奇偶性的基本步骤,教师给出解答示范.第一步,首先确定函数的定义域,并判断其定义域是否关于原点对称;第二步,确定()-f x 与()f x 的关系;第三步,作出相应结论:若()()-=f x f x 或0()()f x f x --=,则()f x 是偶函数;若()()-=-f x f x 或0()()f x f x -+=,则()f x 是奇函数.通过具体的函数,深化学生对判断函数奇偶性的基本步骤的理解,尤其是“首先确定函数的定义域,并判断其定义域是否关于原点对称”;三是通过例题让学生能够了解有些函数是非奇非偶函数.例2 (1)判断函数3f x x x =+()的奇偶性.(2)如右图,是函数3f x x x =+()图象的一部分,你能根据()f x 的奇偶性画出它在y 轴左边的图象吗?(3)一般地,如果知道()=y f x 为偶(奇)函数,那么我们可以怎样简化对它的研究?师生活动:本例由学生独立思考,完成后教师再进行点评完善.(1)奇函数;(2)图象如下设计意图:通过思考,让学生根据奇(偶)函数的图象的对称性画函数的图象,进一步理解函数的奇偶性。
职高《函数的奇偶性》教学设计教学设计:函数的奇偶性一、教学目标1.知识目标:(1)了解函数的奇偶性的概念和基本性质。
(2)掌握判断函数的奇偶性的方法。
(3)学会应用奇偶性判断函数的性质。
2.能力目标:(1)能够判断给定函数的奇偶性。
(2)能够应用函数的奇偶性进行函数性质的分析。
二、教学准备1.教学资源:(1)黑板、白板、彩色粉笔、擦板、电脑、投影仪等。
(2)教材《职高数学》。
2.学情分析:本节课的学生是高中职教育阶段的学生,他们已经学过了函数的基本概念和性质。
本节课通过引入奇偶性的概念,能够更好地帮助学生理解和应用函数的性质。
三、教学过程1.导入新知识(1)引入奇偶性的概念:通过例子引入奇偶性的概念,如:“小明和小红分别走了100步,小明在偶数步的位置,小红在奇数步的位置。
小明和小红分别到达目的地的时候,小明和小红的位置是相同的吗?为什么?”引导学生思考,并引出奇偶性的概念。
(2)定义函数的奇偶性:引导学生回顾函数的定义,并解释什么是奇函数和偶函数,并引导学生总结奇函数和偶函数的性质。
(3)通过例题巩固概念:例如:判断函数f(x)=x^2-x是奇函数还是偶函数。
引导学生回忆函数的奇偶性的判断方法,并帮助学生进行判断。
2.拓展知识通过一些具体的例子,引导学生探索函数奇偶性的性质,如:奇函数和奇函数的和(差)是奇函数、两个奇函数的乘积是偶函数等。
3.综合应用(1)通过一些实际问题,引导学生运用奇偶性判断函数的性质。
例如:已知函数f(x)为奇函数,证明f(x)+1为奇函数。
引导学生运用奇函数的性质,证明结论。
(2)通过练习题巩固知识点,提高学生的运用能力。
四、教学方法和学法1.教学方法:(1)启发式教学法:通过启发学生思考来引入新知识,并帮助学生理解和掌握函数的奇偶性的概念和性质。
(2)问题导向式教学法:引入实际问题,通过问题引导学生探索和应用函数的奇偶性的性质。
2.学法:(1)归纳法:通过分析例子和练习,引导学生总结奇函数和偶函数的性质和判断方法。
高三数学奇偶函数教学设计引言:高中三年级是学生功夫最细致的一年,而数学又是许多学生认为最困难的科目之一。
在数学学科中,奇偶函数是高中数学中常见的一个重要概念。
因此,本文将介绍一项针对高三学生的奇偶函数教学设计,帮助学生更好地理解和掌握这一概念。
一、教学目标:1. 理解奇函数和偶函数的定义、性质和图像特点。
2. 能够判断一个函数是奇函数、偶函数还是既不是奇函数也不是偶函数。
3. 掌握奇函数和偶函数的基本性质,包括函数关系、奇函数和偶函数的运算规律等。
4. 能够通过图像来判断一个函数的奇偶性。
二、教学内容:1. 奇函数和偶函数的定义和性质。
2. 奇函数和偶函数的图像特点。
3. 奇函数和偶函数的运算规律。
三、教学方法:1. 导入新内容:通过提问和展示一些简单的函数图像,引导学生观察和思考,引发学生对奇偶函数的兴趣和好奇心。
例如,给学生展示一个对称于y轴的函数图像,并询问学生它是一个奇函数还是一个偶函数。
鼓励学生互相讨论,引导他们根据对称性质和函数的定义思考问题。
这样做可以激发学生的思考和积极性。
2. 理论讲解:对奇函数和偶函数的定义和性质进行讲解,并通过一些实例和图像加深学生对奇偶函数的理解。
重点强调奇函数和偶函数的图像特点,例如奇函数关于原点对称,而偶函数关于y轴对称。
3. 练习演算:安排一些简单的练习,让学生通过计算和画图来判断给定函数是奇函数还是偶函数。
通过大量的练习,加深学生对奇偶函数的认识和记忆。
4. 活动探究:设计一些小组活动,让学生合作并利用已学知识来解决问题。
例如,给每个小组一组函数的图像,要求他们分别判断这些函数是奇函数还是偶函数,并给出理由。
通过这些活动,培养学生的合作能力和问题解决能力。
5. 拓展应用:引导学生将奇偶函数的概念应用到实际问题中。
例如,让学生分析和描述一些具有奇偶性质的现象和图像,帮助他们更深入地理解奇偶函数的意义和应用。
四、教学评价:1. 课堂练习:通过课堂练习来检查学生对奇偶函数的掌握程度。
函数奇偶性的教案【篇一:《函数的奇偶性》教案】1.3.2《函数的奇偶性》一、教材分析1.教材所处的地位和作用“奇偶性”是人教a版第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。
奇偶性是函数的一条重要性质,教材从学生熟悉的及数、三角函数的基础。
因此,本节课起着承上启下的重要作用。
2.学情分析从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。
同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题.3.教学目标基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:【知识与技能】1.能判断一些简单函数的奇偶性。
2.能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。
【过程与方法】经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
【情感、态度与价值观】通过自主探索,体会数形结合的思想,感受数学的对称美。
从课堂反应看,基本上达到了预期效果。
4、教学重点和难点重点:函数奇偶性的概念和几何意义。
几年的教学实践证明,虽然“函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。
他们往往流于表面形式,只根据奇偶性的定义检验f(-x)=-f(x)或f(-x)=f(x)成立即可,而忽视了考虑函数定义域的问题。
因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。
因此,我把“函数的奇偶性概念”设计为本节课的重点。
在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。
难点:奇偶性概念的数学化提炼过程。
由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。
因此我把“奇偶性概念的数学化提炼过程”设计为本节课的难点。
函数的奇偶性说课稿函数的奇偶性说课稿1尊敬的各位老师:大家好,我是1号考生。
我说课的题目是《函数的奇偶性》(板书课题),根据新课标的理念,以教什么,怎么教,为什么这样教为思路,我从6个方面进行说课。
一、说设计理念根据新课程教学理念,在教学中,我以领悟为目的,练习为主线,引导学生自主学习,合作探究,在教学中,注重培养学生逻辑思维能力、创新能力、合作能力、归纳能力、及数学联系生活的能力。
即实现数学教学的知识目标,又实现育人的情感目标。
二、说教材《函数的奇偶性》是人教版第一章集合与函数概念单元的重要知识点。
全面介绍了偶函数的定义及判定,奇函数的定义及判定等两部分知识。
为后面学习指数函数、对数函数、三角函数等知识奠定了基础。
(一)教学目标:依据本节课的知识特点及新课标要求,本课的三维教学目标是:1.知识与技能目标是:理解函数的奇偶性及其几何意义,掌握判断函数奇偶性的方法。
2.过程与方法目标是:通过学生自主探索,合作学习,培养学生的观察、分析和归纳等数学能力,渗透数形结合的数学思想。
3.情感态度与价值观目标是:让学生了解数学在生活中运用的广泛性和实用性,引发学生学习数学知识的兴趣。
(二)重点、难点:重点是:函数的奇偶性及其几何意义。
难点是:判断函数的奇偶性的方法。
(三)学情分析本课的授课对象是高一年级的学生,他们思维活跃,求知欲强,他们已经初步认识了函数的概念,高一年级的学生有自主学习、合作探究的能力,但仍需要教师的指导。
三、教法学法教法:本节课采用自主探究法、启发式教学法、讨论交流法等。
学法:引导学生探究合作,归纳总结,注重对学生自主探究问题能力的培养,发挥学习小组的合作作用。
四、教学准备教师制作多媒体课件,编印导学案;学生预习课文,观察生活中具有对称美的物体或图像。
五、教学过程本节课我从导、研、练、拓、升五个环节进行说课。
环节一:创设情境,导入新课。
(导3)、该环节,用多媒体向学生展示现实生活中蝴蝶、太阳、湖面倒影等具有对称性的图像,再让学生举例函数图像是否有类似的属性?通过评价学生回答,引出本节课的标题:函数的奇偶性。
Everyone has inertia and negative emotions. Successful people know how to manage their own emotions and overcome their inertia, and illuminate and inspire those around them like the sun.悉心整理助您一臂(页眉可删)《函数奇偶性》优秀的教学设计模板(精选5篇)《函数奇偶性》优秀的教学设计1课题:1、3、2函数的奇偶性一、三维目标:知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性。
过程与方法:通过设置问题情境培养学生判断、推断的能力。
情感态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操、通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质。
二、学习重、难点:重点:函数的奇偶性的概念。
难点:函数奇偶性的判断。
三、学法指导:学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解。
对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固。
四、知识1、复习在初中学习的轴对称图形和中心对称图形的定义:2、分别画出函数f(x)=x3与g(x)=x2的图象,并说出图象的对称性。
五、学习过程:函数的奇偶性:(1)对于函数,其定义域关于原点对称:如果______________________________________,那么函数为奇函数;如果______________________________________,那么函数为偶函数。
(2)奇函数的图象关于__________对称,偶函数的图象关于_________对称。
(3)奇函数在对称区间的增减性;偶函数在对称区间的增减性。
3.2.2奇偶性(人教A版普通高中教科书数学必修第一册第三章)一、教学目标1.升华学生对于轴对称图形和中心对称图形的认识,从简单的感性体验上升到数形结合的精确认知。
能够根据具体的数学问题,用归纳和类比的方式,抽象概括出函数的奇偶性的概念,并能够用数学符号语言表达,提升学生的数学抽象素养。
2.能够根据函数奇偶性的概念,判断并证明简单函数的奇偶性,并能够用数学语言表达,提升学生的逻辑推理素养。
3.能够通过具体的函数图像,用归纳的方式,抽象概括出奇函数和偶函数的图像特征,理解图象特征和解析式特征的对应关系,体会数形结合思想,提高观察、归纳能力,提升直观想象素养。
4.能够应用函数的奇偶性解决相关问题。
5.通过演示函数图象的对称性,让学生享受数学的美感,通过从函数图象的对称性抽象出函数奇偶性的定义的过程体验数学研究的严谨性。
二、教学重难点重点函数奇偶性的概念的形成和函数奇偶性的判断与证明.难点函数奇偶性的概念的探究与理解.三、教学过程1.函数奇偶性的概念的形成1.1创设情境,引发思考【实际情境】列举生活中的对称现象。
问题1:同学们能否列举出一些图象具有轴对称性或中心对称性的函数?能否画出他们的图象?【预设的答案】过原点的一次函数、二次函数、反比例函数。
【设计意图】学生在前面学习了函数的单调性,对于研究函数性质的方法已经有了一定的了解。
尽管学生尚不知道函数的奇偶性,但是他们在初中已经学习过轴对称图形和中心对称图形。
联系生活实际,从学生熟悉的图形对称性和坐标点的对称性入手,自然地关注到函数图象的对称性问题。
【数学情境】问题2:画出并观察函数f(x)=x2和函数g(x)=2−|x|的图象,回答下列问题:1.两个函数图象有什么共同特征?2.两个函数图象上有没有横纵坐标具有特殊关系的“对应点”?【预设的答案】两个函数图象都关于y轴对称。
两个函数图象上有很多关于y轴对称的点。
【设计意图】让学生自己画出一些特殊的偶函数的图象,直观地获得偶函数的认识,锻炼学生的动手能力,激发起学生的探索欲。
《函数奇偶性》优秀的教学设计《函数奇偶性》优秀的教学设计「篇一」教学分析本节讨论函数的奇偶性是描述函数整体性质的、教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念、因此教学时,充分利用信息技术创设教学情境,会使数与形的结合更加自然、值得注意的问题:对于奇函数,教材在给出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念、教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=x与y=2x—1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明、三维目标1、理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力、2、学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想、重点难点教学重点:函数的奇偶性及其几何意义、教学难点:判断函数的奇偶性的方法与格式、课时安排:1课时教学过程导入新课思路1、同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以麦当劳的标志为例,给它适当地建立平面直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y轴对称)数学中对称的形式也很多,这节课我们就同学们谈到的与y轴对称的函数展开研究、思路2、结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x2和y=x3的图象各有怎样的对称性?引出课题:函数的奇偶性、推进新课新知探究提出问题(1)如图1所示,观察下列函数的图象,总结各函数之间的共性、图1(2)如何利用函数的解析式描述函数的、图象关于y轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征?表1x—3—2—10123f(x)=x2表2x—3—2—10123f(x)=|x|(3)请给出偶函数的定义、(4)偶函数的图象有什么特征?(5)函数f(x)=x2,x∈[—1,2]是偶函数吗?(6)偶函数的定义域有什么特征?(7)观察函数f(x)=x和f(x)=1x的图象,类比偶函数的推导过程,给出奇函数的定义和性质?活动:教师从以下几点引导学生:(1)观察图象的对称性、(2)学生给出这两个函数的解析式具有什么共同特征后,教师指出:这样的函数称为偶函数、(3)利用函数的解析式来描述、(4)偶函数的性质:图象关于y轴对称、(5)函数f(x)=x2,x∈[—1,2]的图象关于y轴不对称;对定义域[—1,2]内x=2,f(—2)不存在,即其函数的定义域中任意一个x的相反数—x不一定也在定义域内,即f(—x)=f(x)不恒成立、(6)偶函数的定义域中任意一个x的相反数—x一定也在定义域内,此时称函数的定义域关于原点对称、(7)先判断它们的图象的共同特征是关于原点对称,再列表格观察自变量互为相反数时,函数值的变化情况,进而抽象出奇函数的概念,再讨论奇函数的性质、给出偶函数和奇函数的定义后,要指明:①函数是奇函数或是偶函数称为函数的`奇偶性,函数的奇偶性是函数的整体性质;②由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则—x也一定是定义域内的一个自变量(即定义域关于原点对称);③具有奇偶性的函数的图象的特征:偶函数的图象关于y轴对称,奇函数的图象关于原点对称;④可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法;⑤函数的奇偶性是函数在定义域上的性质,是“整体”性质,而函数的单调性是函数在定义域的子集上的性质,是“局部”性质、讨论结果:(1)这两个函数之间的图象都关于y轴对称。
1.3.2函数的奇偶性教学设计
一、 学习内容分析
本节选自《普通高中课程标准数学教科书——数学必修1》(人教A 版)第一章集合与函数概念的第三节函数的基本性质第二小节内容,函数的奇偶性是继函数的单调性之后函数的第二大性质,它既是函数概念的延续和拓展,也是今后研究三角函数、二次曲线等知识的重要铺垫,而且灵活的应用函数的奇偶性常使复杂的不等式问题、方程问题、作图问题等变得简单明了。
此外具有奇偶性的函数十分有美感,因此本节课是数学美的集中体现。
二、 教学目标
1.理解偶函数、奇函数的概念,会用奇偶函数的定义去判断一个函数是否具有奇偶性;
2.掌握偶函数的图像关于y 轴对称,奇函数的图像关于原点对称的特性,了解函数具有奇偶性时,其定义域具有的特点;
3.通过函数奇偶性概念的形成过程,培养观察、比较、分析概括的能力和数形结合、从特殊到一般的数学思想方法;
4.通过函数奇偶性的学习,感受数学之美。
三、 教学重难点
1. 教学重点:函数奇偶性的定义及图像特征。
2. 教学难点:函数奇偶性概念的形成。
四、 教学过程
(一) 情境导航,引入新课
展示生活中具有轴对称、中心对称特点的事物的图片,让学生体会其美感,再让学生举例其它的具有轴对称和中心对称特点的事物。
预设:学生回答剪纸、蝴蝶、课桌、黑板……
追问:什么是轴对称图形?什么是中心对称图形?
预设:把一个图形沿着某一条直线对折,这条直线两侧的图形能完全重合,则是轴对称图形。
把一个图形绕着某个点旋转180度,这个图形能和原来的图形重合,则是中心对称图形。
(二) 构建概念,突破难点
数学中也有许多具有对称性的例子,下面我们观察2个函数图象,来看看它们的图象有什么特性。
① 2
(),f x x x R =∈
② ()2,f x x x R =-∈
师生活动:学生观察函数图像,教师提问。
问题1:仔细观察,这两个函数图象有什么共同特征?
问题2:相应的两个函数值表示如何体现这些特征的?
师生活动:学生思考、讨论后,教师请学生回答。
预设:学生回答两个函数图象都关于y 轴对称;
在函数值表中,当自变量x 取一对相反数时,相应的两个函数值相等,如2()f x x =中,
(-3)9(3)
(-2)4(2)(-11(1)
f f f f f f ======)
问题3:那么函数2()()2f x x f x x ==-与 对定义域R 上的任何一个x 是否都有()()f x f x -= ?
师生活动:教师让学生先思考并讨论,再请学生回答。
多媒体展示:教师在学生回答之后,再用几何画板演示并提问。
问题:4:在2()f x x = 的图像上任取一点P ,那么点P 关于y 轴对称的点'P 是否在函数2()f x x =的图像上?
接着教师拖动点P ,学生发现'P 始终落在函数图象上。
类似的对函数()2f x x =-也进行演示。
教师标出点P 与'P 的坐标,让学生观察,并回答问题5.
问题5:观察点P 和'P 的坐标变化,你能得出什么猜想?你能证明这个猜想吗?
预设:学生猜想,对函数2()f x x =定义域R 上的任何一个x 都有()()f x f x -=。
学生证明:222(),()()()x R f x x f x x x f x ∈=-=-==任取, 。
问题6:借助几何画板我们直观感受了函数2
()()2f x x f x x ==-与的图像上点的特征,
又证明了函数2()f x x =定义域R 上的任何一个x 都有()()f x f x -=,那么你能再举一些满足上述特征的函数吗?给这样的函数取一个名字并且下一个定义吗?
师生活动:学生举例、取名、下定义,教师修正并给出准确的名字和定义。
一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数。
那么我们就知道了,偶函数的图像一定是关于y 轴对称的,图像关于y 轴对称的函数一定是偶函数。
问题7:下面请大家判断一下2
(),[1,2]f x x x =∈-是否是偶函数? 当2--2[-1,2]x x ==∉时,
,因此(2)f -没有定义。
即在定义域[-1,2]中存在x ,不满足()()f x f x -=,所以2(),[1,2]f x x x =∈-不是偶函数。
问题8:从刚才的问题我们可以发现,同样一个对应关系,如果定义域变了,它就可能不是偶函数,因此偶函数的定义域必须具备什么特征?我们判断一个函数是否是偶函数的方法有什么?
预设:偶函数的定义域必须要关于原点对称。
方法:
① 首先判断定义域是否关于原点对称,若不对称,则一定不是偶函数;
② 从定义出发,证明函数是否对于定义域内任何一个x ,都有()()f x f x -=; ③ 从图像出发,观察函数图像是否关于y 轴对称。
(三) 合作探究,类比发现
请大家再观察函数1()(),(0)f x x x R f x x x
=∈=≠,与的图像, 类比刚才我们研究偶函数的过程,请大家回答以下问题。
问题1:仔细观察,这两个函数图象有什么共同特征?
问题2:相应的两个函数值表示如何体现这些特征的?
预设:学生回答两个函数图象都关于原点对称;
在函数值表中,当自变量x 取一对相反数时,相应的两个函数值也是相反数,如
()f x x =中,
(-3)3(3)
(-2)2(2)(-11(1)
f f f f f f =-=-=-=-=-=-)
问题3:那么函数1()(),(0)f x x x R f x x x
=∈=≠,与 对定义域上的任何一个x 是否都有()()f x f x -=- ?若有,请仿照刚才证明偶函数的过程,证明这个结论。
预设:学生证明:(),()()()x R f x x f x x x f x ∈=-=-=-=-任取,。
师生活动:学生证明结论,教师用几何画板演示任取1()(),(0)f x x x R f x x x
=∈=≠,与上的点P ,其对称点'P 仍在该函数图象上。
问题4:那么你能再举一些符合这种特征的函数吗?能给这样的函数取一个名字并且下一个定义吗?
师生活动:学生举例、取名、下定义,教师修正并给出准确的名字和定义。
一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 就叫做奇函数。
那么我们就知道了,奇函数的图像一定是关于原点对称的,图像关于原点对称的函数一定是奇函数。
问题5:那么所有的函数都具有奇偶性吗?若不是,请举例。
预设:学生有的说都具有,有的说不是,并举例:()21f x x =+ 、2()21f x x x =++等。
问题6:那么通过举例我们发现,有些函数不具有奇偶性,我们就称它们为非奇非偶函数,那么有没有函数既是奇函数又是偶函数呢?
预设:学生通过联立()()f x f x -=-和()()f x f x -=,求得()0,f x x R =∈或x ∈ 任意的关于原点对称的对称区间。
那么我们称这一类函数为既奇又偶函数。
问题7:我们研究函数的奇偶性对我们研究函数有什么帮助吗?
引导学生从对称性出发,想到可以由自变量取正值时的图像和性质来推断函数在整个定义域内的图像和性质,达到“事半功倍”的效果。
(四) 讲练结合,巩固新知
例1. 判断下列函数的奇偶性。
(
)42352(1)()3;
1(2)();(3)()(4)()1;
(5)()((6)()f x x x f x x x
f x f x x f x x f x =+=-==+=-=
例2. 判断此函数的奇偶性。
(1),0()(1),0x x x f x x x x +>⎧=⎨-<⎩
变式:已知()f x 是定义在R 上的奇函数,且当0()(1)x f x x x >=-时,,
()f x 求的解析式。
结论:()0(0)0.f x x f ==若函数是奇函数,且在时有定义,则
(五) 课时小结,知识建构
(六)布置作业,回归拓展
1.完成《课时作业》1.3.2
2.完成书上课后作业。