重庆巴蜀中学2012级初一下半期考试_数学试卷
- 格式:doc
- 大小:1.18 MB
- 文档页数:5
重庆市巴蜀中学校2023-2024学校七年级下学期第二次月考数学试题一、单选题1.在下列实数中,无理数是( )A .0.6B C .227D 2.以下调查中,适合抽样调查的是( ) A .调查乘坐飞机的旅客是否携带违禁物品 B .调查某品牌台灯的使用寿命C .学校在给老师订制校服前对尺寸大小的调查D .调查某班学生每天睡眠的时间3.下列各组三条线段的长度,能组成三角形的是( ) A .2cm 3cm 4cm 、、 B .1cm 4cm 5cm 、、 C .6cm 3cm 2cm 、、D .2cm 5cm 8cm 、、4.若a b >,则下列不等式成立的是( ) A .33a b -<-B .22a b ->-C .44a b< D .0a b ->5.如图,直线a b P ,点A 在直线a 上,点B 、C 在直线b 上,且AB AC ⊥,若240∠=︒,则1∠的度数为( )A .30︒B .40︒C .45︒D .50︒6.下列说法中,正确的是( )A .1的平方根和立方根都是1B 5±C .8的立方根是2D .27的算术平方根是37.若x a y b =⎧⎨=⎩是方程231x y +=-的一个解,则694a b ++的值是( )A .2-B .1C .3D .782的值在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间9.我国古代数学名著《张邱建算经》中记载:今有清酒一斗直粟九斗,醑酒一斗直粟四斗.今持粟五斛,得酒七斗,问清、醑酒各几何?意思是:现有一斗清酒价值9斗谷子,一斗醑酒价值4斗谷子,现在拿50斗谷子,共换了7斗酒,问清、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( ) A .79450x y x y +=⎧⎨+=⎩B .74950x y x y +=⎧⎨+=⎩C .50794x y x y +=⎧⎪⎨+=⎪⎩D .50749x y x y +=⎧⎪⎨+=⎪⎩10.如图,在平面直角坐标系中,有若干个整数点(横纵坐标都是整数的点),其顺序按图中“→”方向排列,从第一个点开始的坐标依次为()0,0,()1,0,()1,1,⋯根据这个规律探索可得,第2024个点的坐标为( )A .()63,24-B .()64,24-C .()63,23-D .()64,23-11.关于x 的不等式组()4436231x x x a x -⎧-≥-⎪⎨⎪->-⎩有且只有三个整数解,关于y 、z 的方程组424y z ay z -=-⎧⎨-=⎩的解为正整数,则满足条件的所有整数a 的和为( )A .15B .18C .22D .2512.已知0a b c d >>>>,现将a ,b ,c ,d 全部放入运算||()---WWWW 的W 中,然后进行去绝对值与去括号运算,称此为“绝对括号操作”.例如:()a b c d a b c d ---=--+,()d b c a b d c a ---=--+,……,下列说法:①一定存在两种“绝对括号操作”,使其运算结果相等; ②当运算结果为a b c d +--时,有8种不同的“绝对括号操作”;③所有的“绝对括号操作”共有6种不同运算结果.其中正确的个数是( )A .0B .1C .2D .3二、填空题13=. 14.如图,在象棋盘上建立平面直角坐标系,若棋子“马”的坐标为()2,3,棋子“车”的坐标为()1,3-,则棋子“炮”的坐标为.15.已知a 、b 满足|2|0a b +-=,则2a b +的平方根为.16.已知关于x 、y 的方程组22243x y mx y m +=⎧⎨+=-⎩的解满足3x y +=,则m 的值为.17.如图,C 、D 两点在线段AB 上,::1:2:4AC CD BD =,点M 为线段BC 的中点,点N 为线段CD 的中点,且4MN =,则AB =.18.如图,在ABC V 中,AD 为中线,E 为AC 上一点,2CE AE =,连接BE 与AD 交于点O ,若ABC V 的面积为18,则BOD V 的面积为.19.某高铁站客流量大,一天早上有m 个人在入口处等候安检,设等候安检的人数按固定速度增加,且每个安检口每分钟通过安检的人数也是固定的.若同时开放3个安检口,需要25分钟恰好不出现排队现象(即排队的人数刚好安检完毕);若同时开放5个安检口,需要10分钟恰好不出现排队现象.为了减少旅客排队的时间,车站希望3分钟内不出现排队现象,则至少需要开放个安检口.20.对于任意一个四位自然数M abcd =,若M 满足各个数位上的数字均不为0,且十位数字与个位数字的和等于千位数字与百位数字的差的5倍,则称四位数M 为“千寻数”.例如:5346,因为4610+=,532-=,1025=⨯,所以5346是“千寻数”.将“千寻数”M abcd =的千位数字移到个位数字的右边得到一个新数M bcda '=,令()1199M M F M a d -=-'-,()11M M G M '+=,若()F M 能被15整除,且()()G M F M -能被7整除,则满足条件的“千寻数”M 的最大值与最小值之差为.三、解答题21.解下列二元一次方程组:(1)34121y x x y -=⎧⎨+=⎩ (2)12163216x y x y --⎧=+⎪⎨⎪+=⎩ 22.解下列一元一次不等式(组):(1)12432x x ⎛⎫--≥- ⎪⎝⎭(并把解集表示在下列数轴上)(2)421332x x x -≥-⎧⎪⎨-->⎪⎩23.如图,在平面直角坐标系中,已知ABC V 三个顶点的坐标分别为()()()1,23,12,4A B C --、、.(1)将ABC V 平移至A B C '''V 的位置,点A 、B 、C 分别与点A '、B '、C '对应,若(1,3)A '-,请你在图中画出A B C '''V ,并写出点B '、C '的坐标; (2)求A B C '''V 的面积.24.如图,AC DB ∥,、AB CD 相交于点E ,点F 、G 是线段EB BD 、上的点,连接FG ,180C FGD ∠+∠=︒.(1)求证:FG CD ∥;(2)若60CAB ∠=︒,45BDC ∠=︒,求GFB ∠的度数.25.某校为了提高同学们对科技与生活融合的了解,决定开设A :“AI +物流”、B :“AI +建筑”、C :“AI +机器人”、D :“AI +航天”四门选修专业课程,若每个同学必须选择一门且只能选择一门,现面向部分同学进行了“你喜欢的专业”的随机问卷调查,并根据调查数据绘制了如图所示两幅不完整的统计图:请根据以上信息,完成下列问题:(1)本次参加问卷调查的同学人数为________;“D ”在扇形统计图中所对应的圆心角为________度;(2)请将条形统计图补充完整;(3)若该校共有学生2500人,估计选C “AI +机器人”的人数为多少人?26.某景区提供豪华型和舒适型两种型号的观光车租用,其中豪华型车每辆可乘坐5人,两种观光车的单人票价不同(均按人数收费),若40人租用豪华型车,30人租用舒适型车共需940元;若30人租用豪华型车,40人租用舒适型车共需880元. (1)求两种观光车的单人票价;(2)某公司组织员工去该景区游玩,景区现有16辆豪华型车和若干辆舒适型车供租用.为了提高游玩体验,公司和景区管理部门协调决定优先租用豪华型观光车,如果豪华型观光车租完,再租用舒适型观光车,景区管理部门并在观光车的租赁总费用中优惠200元.若景区管理部门希望该公司人均观光车的费用不低于12元,求该公司租用观光车的员工人数范围. 27.在平面直角坐标系中,矩形ABCD 的边AD 、BC 平行于y 轴,AB 、DC 平行于x 轴,其中点A 的坐标为()4,3-,点C 的坐标为()2,1-.(1)如图1,连接AC ,将线段AC 平移至线段A C '',使得点A '落在x 轴上,点C '到y 轴的距离是3,则C '的坐标为________;(2)如图2,现有一动点M ,从A 点出发沿A B C D →→→的路径向终点D 运动,在运动过程中是否存在点M ,使点C 、O 、M 围成的三角形面积等于四边形ABCD 面积的112,若存在,求出点M 的坐标,若不存在,请说明理由;(3)如图3,当点M 在线段AB 上,MO 与x 轴负半轴的夹角为60︒时,N 是线段MO 上一点,以N 为顶点在直线OM 的左侧作90RNT ∠=︒,且10RNM ∠=︒,RN 交AB 于点S ,作A S N∠的角平分线SP ;将R N T ∠绕着点N 以每秒5︒的速度逆时针旋转,记为R NT ''∠,当NT '与x轴平行时,R NT ''∠改为以每秒3︒的速度顺时针旋转,RNT ∠开始运动的同时ASP ∠绕点S 以每秒2︒的速度逆时针旋转,记为A SP ''∠,当SP '在AB 下方且BSP RNM '∠=∠时,整个运动停止.设运动时间为t 秒,当A SP ''∠的一边和R NT ''∠的一边互相平行时,请直接写出满足条件的t 的值.。
初姓 名 考号 顺序号密 封 线 内 不 能 答 题重庆一中初2012级09-10学年度下期半期考试数 学 试 卷 2010.5(满分:150分;考试时间:120分钟)一、精心选一选(每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目1、单项式3m 的系数是( )A. -2B. 2C. 3D. 3 2、下列长度的三根木棒首尾顺次相接,不能..做成三角形框架的是( ) A.5cm 、7cm 、10cm B.7cm 、10cm 、13cm C.5cm 、7cm 、13cmD.5cm 、10cm 、13cm3、如图3所示是用相同的正方形砖铺成的地板,一宝物藏在某一块下面,宝物在黑色..区域的概率是( ) A.21 B. 49 C. 59D. 1 4、下列数据中,精确的数据是( ) A. 中国人口数约为1223,890,000人 B. 俄罗斯的国土面积约为17,070,0002km C. 小明今天做了5道作业题D. 小明今天做作业花了30分钟5、下列说法正确的是( )A.统一发票有“中奖”和“不中奖”两种情形,所以中奖的概率是21. B. 投掷一枚均匀的硬币,正面朝上的概率是21. C. 投掷一枚均匀骰子,每种点数出现的概率都是61,所以每投6次,一定会出现一次“1点”. D. 投掷一枚图钉,钉尖朝上、朝下的概率一样. 6、如图6,△ACE ≌△DBF ,∠E =∠F,AD=8,BC=2, 则AB 的长度等于( )A .2B .8C .6D .37、如图7,AB ∥CD ,如果∠DHG =2∠AGE , 则∠DHG 等于( )A .60 °B .90°C .120°D .150° 8、已知在现存的动物中最大的是生活在海洋中的蓝鲸,体重可达200吨,它体重的百万分之一会和第3题ADABCD EFGH第7题ABOCD第9题哪一种动物接近( )A .蚊子B .燕子C .狗D .大象 9、如图,AB ∥CD ,AD ,BC 相交于O 点,∠BAD=35°, ∠BOD=76°,则∠C 的度数是( )A. 31°B. 35°C. 41°D. 76° 10、如图,在ΔABC 中,∠A=52O,∠ABC 与∠ACB 的角平分线交于点D 1,∠ABD 1与∠ACD 1的角平分线交于 点D 2,依次类推,∠ABD 4与∠ACD 4的角平分线交于 点D 5,则∠BD 5C 的度数是( ) A .86°B .56°C .94°D .68°11、生物学家发现一种病毒的长度约为0.000034mm,用科学记数法表示为 mm 。
重庆巴蜀中学七年级下册数学期末试卷测试卷(含答案解析)一、解答题1.已知,AB ∥DE ,点C 在AB 上方,连接BC 、CD . (1)如图1,求证:∠BCD +∠CDE =∠ABC ;(2)如图2,过点C 作CF ⊥BC 交ED 的延长线于点F ,探究∠ABC 和∠F 之间的数量关系;(3)如图3,在(2)的条件下,∠CFD 的平分线交CD 于点G ,连接GB 并延长至点H ,若BH 平分∠ABC ,求∠BGD ﹣∠CGF 的值.2.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.3.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答. 问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.4.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;5.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数; (3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.二、解答题6.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论.7.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a 从空气中射入水中,再从水中射入空气中,形成光线b ,根据光学知识有12,34∠=∠∠=∠,请判断光线a 与光线b 是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC 的夹角为40︒,问如何放置平面镜MN ,可使反射光线b 正好垂直照射到井底?(即求MN 与水平线的夹角) (3)如图3,直线EF 上有两点A 、C ,分别引两条射线AB 、CD .105BAF ∠=︒,65DCF ∠=︒,射线AB 、CD 分别绕A 点,C 点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t ,在射线CD 转动一周的时间内,是否存在某时刻,使得CD 与AB 平行?若存在,求出所有满足条件的时间t .8.如图1,//AB CD ,E 是AB 、CD 之间的一点.(1)判定BAE ∠,CDE ∠与AED ∠之间的数量关系,并证明你的结论;(2)如图2,若BAE ∠、CDE ∠的两条平分线交于点F .直接写出AFD ∠与AED ∠之间的数量关系;(3)将图2中的射线DC 沿DE 翻折交AF 于点G 得图3,若AGD ∠的余角等于2E ∠的补角,求BAE ∠的大小.9.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明; (3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明.10.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.三、解答题11.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.12.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.13.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.14.【问题探究】如图1,DF ∥CE ,∠PCE=∠α,∠PDF=∠β,猜想∠DPC 与α、β之间有何数量关系?并说明理由; 【问题迁移】如图2,DF ∥CE ,点P 在三角板AB 边上滑动,∠PCE=∠α,∠PDF=∠β. (1)当点P 在E 、F 两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P 在E 、F 两点外侧运动时(点P 与点A 、B 、E 、F 四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2)15.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)【参考答案】一、解答题1.(1)证明见解析;(2);(3). 【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒. 【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE , CFDE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠, BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE , CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒, F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠, ABC F BCF ∴∠-∠=∠, CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE , GM DE ∴,MGN DFG ∴∠=∠,BH 平分ABC ∠,FN 平分CFD ∠, 11,22ABH AB D C CF DFG ∴∠=∠∠∠=,由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒,又BGD MGH MGDCGF DGN MGN MGD∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.2.(1)100;(2)75°;(3)n=3. 【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3. 【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641nn ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n nn n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN , ∵MN //GHl ∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180° ∴∠NAO +∠AOB +∠OBH =360° ∵∠NAO =116°,∠OBH =144° ∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒, ∴58NAC ∠=︒,又∵MN //GH , ∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒ ∵BD 平分OBG ∠, ∴18DBF ∠=︒, 又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒; ∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒; (3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641nMAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601nBKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意. 【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.3.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析 【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC=解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析 【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°; (2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒,128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下:如图3,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由:如图5,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.4.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.5.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG =∠GCF =25°,再根据PQ ∥CE ,即可得出∠CPQ =∠ECP =65°;(3)设∠EGC =4x ,∠EFC =3x ,则∠GCF =4x -3x =x ,分两种情况讨论:①当点G 、F 在点E 的右侧时,②当点G 、F 在点E 的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB =100°,AB ∥CD ,∴∠ECQ =80°,∵∠PCF =∠PCQ ,CG 平分∠ECF ,∴∠PCG =∠PCF +∠FCG =12∠QCF +12∠FCE =12∠ECQ =40°;(2)∵AB ∥CD∴∠QCG =∠EGC ,∠QCG +∠ECG =∠ECQ =80°,∴∠EGC +∠ECG =80°,又∵∠EGC -∠ECG =30°,∴∠EGC =55°,∠ECG =25°,∴∠ECG =∠GCF =25°,∠PCF =∠PCQ =12(80°-50°)=15°,∵PQ ∥CE ,∴∠CPQ =∠ECP =65°;(3)设∠EGC =4x ,∠EFC =3x ,则∠GCF=∠FCD =4x -3x =x ,①当点G 、F 在点E 的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.二、解答题6.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.7.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.8.(1),见解析;(2);(3)60°【分析】(1)作EF//AB ,如图1,则EF//CD ,利用平行线的性质得∠1=∠BAE ,∠2=∠CDE ,从而得到∠BAE +∠CDE =∠AED ;(2)如图2,解析:(1)BAE CDE AED ∠+∠=∠,见解析;(2)12AFD AED ∠=∠;(3)60° 【分析】(1)作EF //AB ,如图1,则EF //CD ,利用平行线的性质得∠1=∠BAE ,∠2=∠CDE ,从而得到∠BAE +∠CDE =∠AED ;(2)如图2,由(1)的结论得∠AFD =∠BAF +∠CDF ,根据角平分线的定义得到∠BAF =12∠BAE ,∠CDF =12∠CDE ,则∠AFD =12(∠BAE +∠CDE ),加上(1)的结论得到∠AFD =12∠AED ;(3)由(1)的结论得∠AGD =∠BAF +∠CDG ,利用折叠性质得∠CDG =4∠CDF ,再利用等量代换得到∠AGD =2∠AED -32∠BAE ,加上90°-∠AGD =180°-2∠AED ,从而可计算出∠BAE 的度数.【详解】解:(1)BAE CDE AED ∠+∠=∠理由如下:作//EF AB ,如图1,//AB CD ,//EF CD ∴.1BAE ∴∠=∠,2CDE ∠=∠,BAE CDE AED ∴∠+∠=∠;(2)如图2,由(1)的结论得AFD BAF CDF ∠=∠+∠,BAE ∠、CDE ∠的两条平分线交于点F ,12BAF BAE ∴∠=∠,12CDF CDE ∠=∠, 1()2AFD BAE CDE ∴∠=∠+∠,BAE CDE AED ∠+∠=∠,12AFD AED ∴∠=∠; (3)由(1)的结论得AGD BAF CDG ∠=∠+∠,而射线DC 沿DE 翻折交AF 于点G ,4CDG CDF ∴∠=∠,11422()22AGD BAF CDF BAE CDE BAE AED BAE ∴∠=∠+∠=∠+∠=∠+∠-∠= 322AED BAE ∠-∠, 901802AGD AED ︒-∠=︒-∠,390218022AED BAE AED ∴︒-∠+∠=︒-∠, 60BAE ∴∠=︒.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.9.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠, 11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.10.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=, ∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.三、解答题11.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD ,∵AE 是角平分线,∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B ,∴∠CEF=∠CFE ;[变式思考]相等,理由如下:证明:∵AF 为∠BAG 的角平分线,∴∠GAF=∠DAF ,∵∠CAE=∠GAF ,∴∠CAE=∠DAF ,∵CD 为AB 边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE ;[探究延伸]∠M+∠CFE=90°,证明:∵C 、A 、G 三点共线 AE 、AN 为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM ,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B ,∠CFE=∠EAC+∠ACD ,∠ACD=∠B ,∴∠CEF=∠CFE ,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.12.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案;(2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可.【详解】(1)∵CB ∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB ,OE 平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF)=12∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不发生变化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.13.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=12a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=12∠CAE,∠ACF=12∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=12∠CAE-12∠ACB=12(∠CAE-∠ACB)=12∠B;(2)由(1)可得,∠F=12∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+12∠ABG,进而得到∠F+∠H=90°+12∠CBG=180°.解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=12a;(2)由(1)可得,∠F=12∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=12∠AGB,∠GAH=12∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣12(∠AGB+∠GAB)=180°﹣12(180°﹣∠ABG)=90°+12∠ABG,∴∠F+∠H=12∠ABC+90°+12∠ABG=90°+12∠CBG=180°,∴∠F+∠H的值不变,是定值180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.14.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2)(2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β15.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.。
重庆市巴蜀中学校2023-2024学年下学期七年级期末数学试题一、单选题1.下列四个数中,最小的数是( )A B .0C .0.5-D .π-2.下列调查中,适合采用抽样调查的是( ) A .旅客上飞机前的安检B .对“长征五号”遥八运载火箭零部件的检查C .调查我校初一某班的身高情况D .日光灯管厂要检测一批护眼灯管的使用寿命3.如图,ABC V 沿射线BC 方向平移到DEF V ,若7,3BC CE ==,则平移的距离为( )A .2B .8C .4D .54.已知a b <,则下列结论正确的是( ) A .33a b ->- B .33a b +>+ C .22a b +>+D .55ab >5.如图,数学课上老师布置了“测量锥形瓶内部底面的内径”的探究任务,善思小组想到了以下方案:如图,用螺丝钉将两根小棒AD ,BC 的中点O 固定,只要测得C ,D 之间的距离,就可知道内径AB 的长度.此方案依据的数学定理或基本事实是( )A .边角边B .三角形的稳定性C .边边边D .全等三角形的对应角相等6.估算4 ) A .在0到1之间 B .在1到2之间 C .在2到3之间D .在3到4之间7.如图,长方形的两个顶点在正五边形的边上,若142∠=︒,则2∠的大小为( )A .12︒B .24︒C .42︒D .48︒8.下列命题是真命题的是( ) A .两直线平行,同旁内角相等 B .两边和一角相等的两个三角形全等C .三角形三条角平分线的交点到三角形三个顶点的距离相等D .两条平行线被第三条直线所截,同位角的平分线互相平行 9.如图,在ABC V 中,点D 在AC 上,ABD △沿BD 翻折到EBD △,且DE B C ∥,若70C ∠=︒,则DBC ∠的度数为( )A .70︒B .65︒C .55︒D .50︒10.我国古典数学文献《算法统宗》中有一个“听客分银”的问题:“隔墙听得客分银,不知人数不知银,七两分之多4两,九两分之少半斤”其大意为:隔着墙听见客人在分银子,按每人7两分银子,余下4两;按每人9两分银子,又缺8两(这里半斤等于8两),设有客x 人,银有y 两,根据题意列方程组为( )A .7498y xy x -=⎧⎨+=⎩B .7498x yx y +=⎧⎨-=⎩C .7498x y x y =+⎧⎨=-⎩D .7894x y x y +=⎧⎨-=⎩11.在Rt ABC △中,90B ??,点D 是AB 上,点E 在BC 上,CE DE =,180C ADE ∠+∠=︒,若3,8BD AC ==,则AD 的长为( )A .32B .2C .52D .312.对于两个多项式,若2111P a x b x c =++,2222Q a x b x c =++满足下列两种情形之一: (1)10a ≠,20a =; (2)12a a =,12b b >;则称多项式P 为“较大”多项式,多项式Q 为“较小”多项式.对于两个多项式21111A a x b x c =++和22222A a x b x c =++,若将1A 和2A 中“较大”多项式和“较小”多项式的差记作3A ,则称这样的操作为一次“优选作差”操作;再对2A 和3A 进行“优选作差”操作得到4A ,……,以此类推,经过n 次操作后得到的序列1A ,2A ,3A ,…n A 称为“优选作差”序列{}n A .现对211A x =-,22A x x =+进行n 次“优选作差”操作得到“优选作差”序列{}n A ,则下列说法:①20251A x =+;②212107613A A A x x +++=--…;③当2025n =时,“优选作差”序列{}n A 中满足12k k k A A A ++-=的正整数k 有1348个. 其中正确的个数是( )A .0B .1C .2D .3二、填空题 13.4的平方根是.14.在平面直角坐标系中,已知点P 的坐标为()2,5m -,点Q 的坐标为()8,23m -,且PQ x ∥轴,则PQ =.15.已知一个等腰三角形的两边a ,b 满足()263120b a b -++-=,则此三角形周长为. 16.已知方程组332221y x my x m ⎧-=⎪⎨⎪+=+⎩的解x ,y 满足33y x -=,则m =.17.如图,在ABC V 中,点D 为BC 中点,连接AD .点E 为AB 上一点,连接CE 交AD 于F .若3C F E F=,2AEF S =V ,则ABC S =V .18.若关于x 的不等式组133241x x x a x +⎧<-+⎪⎨⎪->+⎩有且只有2个奇数解,且关于y 的方程233ya y +-=-解为整数.则符合条件的所有整数a 的和为. 19.如图,点D 是ABC V 外一点,DB DC =,连接,DA BDC BAC ∠=∠,过点D 作DE AB ⊥于E ,10,4AB AC ==,则AE =.20.如果A 与B 均为两位自然数,A 的十位数字比B 的十位数字大1,A 与B 的个位数字之和为6,记A B M ⨯=,则称M 为A 与B 的“六顺数”,例如32与24,32的十位数字比24的十位数字大1,个位数字之和为6,3224768⨯=,故三位自然数768是32与24的“六顺数”.已知2268为A 与B 的“六顺数”,则A B -=,若M 为A 与B 的“六顺数”,规定:()P M A B =+,()2Q M A B =-,()()()P M G M Q M =,已知()G M 能被7整除,则符合条件的M 为.三、解答题21.解二元一次方程组 (1)28325x y x y -=⎧⎨+=⎩(2)()()()32242255x y yx y x y ⎧--=⎪⎨⎪+=++⎩22.(1)解不等式:2132x x -<+,并将解集表示在下列数轴上.(2)解不等式组: ()223321123x x x x ⎧+≥+⎪⎨+--<⎪⎩23.6月2日,中国航天又创造了一个新的历史时刻——嫦娥六号探测器成功着陆在月球背面的神秘领域,并采集两公斤珍贵的月壤样品.这一壮举不仅是中国航天事业的重大突破,也将为人类对月球奥秘的探索带来全新的启示.学校准备调查七年级学生对“嫦娥探月工程”有关知识的了解程度.设定“非常了解/A ”“比较了解/B ”,“了解一点/C ”,“不了解/D ”四个了解程度项进行调查.(1)在确定调查方案时,小明同学设计了三种方案:方案一:调查七年级的部分女生;方案二:调查七年级的部分男生;方案三:到七年级每个班去随机调查一定数量的学生.请问其中最有代表性的一个方案是________.(2)小明采用了最有代表性的方案,用收集到的数据绘制出两幅不完整的统计图,请你根据图中信息,完成下列任务:①补全条形统计图;②求扇形统计图中m ,n 的值;(3)学校七年级共有2300人,求“比较了解”的学生大约有多少人? 24.在四边形ABCD 中,,AB CD BD ∥为对角线.(1)尺规作图:在线段BD 上找一点E ,使得DCE ADB ∠=∠;(保留作图痕迹,不写作法) (2)在(1)条件下,若BD CD =,求证:AD CE =.25.今年1月份,我校初一年级举行了“巧手匠心,数我最行”制作新年礼物盒的活动,某班用若干张完全相同的正方形纸板进行裁剪,已知每张正方形纸板可裁剪为如图1中两种样式中的一种(样式一、二裁剪的小长方形与小正方形是完全相同的)用裁剪下来的小长方形与小正方形做成如图2所示的横式与竖式的无盖新年礼物盒,图3分别是两类新年礼物盒的一种展开图.(1)该班甲组同学们计划制作横式与竖式的新年礼物盒各12个,甲组同学需要按照样式一和样式二各裁剪多少张正方形纸板才能恰好完成计划;(2)该班乙组同学们计划制作横式与竖式的新年礼物盒共33个,现同学们已经将20张正方形纸板按样式一裁剪,5张正方形纸板按样式二裁剪,根据已裁剪的材料乙组同学有多少种制作方案.26.如图,在平面直角坐标系中,点(),0A a ,()0,B b 30b -=,5AB =.(1)如图1,将线段AB 平移至11A B ,点A 的对应点为()16,4A -,连接1AA 、1AB . ①点1B 的坐标为________; ②求11AA B V 面积是多少?(2)如图2,点34,2M ⎛⎫-- ⎪⎝⎭,MN y ⊥轴于N ,点P 以每秒32个单位长度的速度从B 出发向A运动,同时另一动点Q 以每秒1个单位长度的速度从M 出发,在射线MA 上运动,当点P 运动到A 时两点都停止运动,当3BPO AQN S S =△△时,求运动时间t 的值(单位:秒). 27.如图1,在ABC V 中,点D 、E 在BC 边上,连接AD 、AE ,满足AD BD CE ==,且45ABD BAD ∠=∠=︒,点F 在AB 上,连接EF 交AD 于点G .(1)若EF 平分AEB ∠,4DEA DAE ??,求AGF ∠的度数; (2)如图2,若EF AC ∥,连接DF ,证明:AFE BFD ∠=∠;(3)在(2)的条件下,如图3,BQ DF ⊥于点Q ,点M 、N 在边AC 上,且AM CN =,连接DM 、DN ,已知10AD =,6DQ =,8BQ =,20021EF =,直接写出DM DN +的最小值.。
重庆市2012年初中毕业暨高中招生考试·数学本卷难度:适中难度系数:0.62易错题:10较难题:26(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-b2a,4ac-b24a),对称轴为x=-b2a.一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在对应的括号内.1. 在-3,-1,0,2这四个数中,最小的数是()A. -3B. -1C. 0D. 22. 下列图形中,是轴对称图形的是()3. 计算(ab)2的结果是()A. 2abB. a2bC. a2b2D. ab24. 已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A. 45°B. 35°C. 25°D. 20°第4题图第6题图5. 下列调查中,适宜采用全面调查(普查)方式的是()A. 调查市场上老酸奶的质量情况B. 调查某品牌圆珠笔芯的使用寿命C. 调查乘坐飞机的旅客是否携带了危禁物品D. 调查我市市民对伦敦奥运会吉祥物的知晓率6. 已知:如图,BD平分∠ABC,点E在BC上,EF∥AB.若∠CEF=100°,则∠ABD的度数为()A. 60°B. 50°C. 40°D. 30°7. 已知关于x的方程2x+a-9=0的解是x=2,则a的值为()A. 2B. 3C. 4D. 58. 2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t ,小丽与比赛现场的距离为s .下面能反映s 与t 的函数关系的大致图象是( )9. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( )第9题图A. 50B. 64C. 68D. 7210. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为x =-12,下列结论中,正确的是( )第10题图A. abc >0B. a +b =0C. 2b +c >0D. 4a +c <2b二、填空题(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在对应的横线上. 11. 据报道,2011年重庆主城区私家车拥有量近380000辆.将数380000用科学记数法表示为 . 12. 已知△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则△ABC 与△DEF 的面积之比为 . 13. 重庆农村医疗保险已经全面实施.某县七个村中享受了住院医疗费用报销的人数分别为:20,24,27,28,31,34,38,则这组数据的中位数是 .14. 一个扇形的圆心角为120°,半径为3,则这个扇形的面积为 .(结果保留π)15. 将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是 .16. 甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4-k )张,乙每次取6张或(6-k )张(k 是常数,0<k <4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有 张.三、解答题(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17. 计算:4+(π-2)0-|-5|+(-1)2012+(13)-2.18. 已知:如图,AB =AE ,∠1=∠2,∠B =∠E .求证:BC =ED .第18题图19. 解方程:2x -1=1x -2.20. 已知:如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求△ABC 的周长.(结果保留根号)第20题图四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21. 先化简,再求值:(3x +4x 2-1-2x -1)÷x +2x 2-2x +1,其中x 是不等式组⎩⎪⎨⎪⎧x +4>0,2x +5<1的整数解.22. 已知:如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx (k ≠0)的图象交于一、三象限内的A 、B 两点,第22题图与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=2 5.(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.23. 高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:第23题图(1)该校近四年保送生人数的极差是________.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进入高中阶段的学习情况,请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.24. 已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD 于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.第24题图五、解答题(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题给出必要的演算过程或推理步骤.25. 企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y 1(吨)与月份x (1≤x ≤6,且x 取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的污水量y 2(吨)与月份x (7≤x ≤12,且x 取整数)之间满足二次函数关系式y 2=ax 2+c ,其图象如图所示.1至6月,污水厂处理每吨污水的费用z 1(元)与月份x 之间满足函数关系式z 1=12x ,该企业自身处理每吨污水的费用z 2(元)与月份x 之间满足函数关系式:z 2=34x -112x 2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y 1,y 2与x 之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W (元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%.为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:231≈15.2,419≈20.5,809≈28.4)第25题图26. 已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E为BC边上一点,以BE为边作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同侧.(1)当正方形的顶点F恰好落在对角线AC上时,求BE的长;(2)将(1)问中的正方形BEFG沿BC向右平移,记平移中的正方形BEFG为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为t ,正方形B ′EFG 的边EF 与AC 交于点M ,连接B ′D ,B ′M ,DM .是否存在这样的t ,使△B ′DM 是直角三角形?若存在,求出t 的值;若不存在,请说明理由;(3)在(2)问的平移过程中,设正方形B ′EFG 与△ADC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围.第26题解图①重庆市2012年初中毕业暨高中招生考试1. A2. B3. C 【解析】原式=a 2b 2.4. A 【解析】由∠ACB =12∠AOB (同弧所对的圆周角是所对的圆心角的一半),得∠ACB =45°.5. C 【解析】A. 数量较大,普查的意义或价值不大,应选择抽样调查;B. 数量较大,具有破坏性的调查,应选择抽样调查;C. 事关重大的调查往往选用普查;D. 数量较大,普查的意义或价值不大,应选择抽样调查.6. B 【解析】∵EF ∥AB ,∠CEF =100°,∴∠ABC =∠CEF =100°,又∵BD 平分∠ABC ,∴∠ABD = 50°.7. D 【解析】∵方程2x +a -9=0的解是x =2,∴2×2+a -9=0,解得a =5.故选D.8. B 【解析】根据小丽的行驶情况,行走——返回——聊天——行走;距离先减少,再增加,不变,再减少,逐一排除.9. D 【解析】先根据题意求出第n 个图形五角星的个数的表达式,再把n =6代入即可求出答案.第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第n 个图形中共有五角星的个数为2×n 2,所以第⑥个图形中五角星的个数为2×62=72.10. D 【解析】A. ∵开口向上,∴a >0,∵图象与y 轴交于负半轴,∴c <0,∵对称轴在y 轴左侧,∴-b 2a <0,∴b >0,∴abc <0,故本选项错误;B. ∵对称轴:x =-b 2a =-12,∴a =b ,而a ≠0,故本选项错误;C. 当x =1时,a +b +c =2b +c <0,故本选项错误;D. ∵对称轴为x =-12,图象与x 轴的一个交点的取值范围为x 1>1,∴与x 轴的另一个交点的取值范围为x 2<-2,∴当x =-2时,4a -2b +c <0,即4a +c <2b ,故本选项正确.11. 3.8×105 12. 9∶1 13. 2814. 3π 【解析】根据扇形面积公式S 扇形=n πR 2360得,n =120°,R =3,故S 扇形=n πR 2360=120π×32360=3π.15. 15 【解析】因为将长度为8厘米的木棍截成三段,每段长度均为整数厘米,共有5种情况,分别是1,1,6;1,2,5;1,3,4;2,3,3;4,2,2;其中能构成三角形的有2,3,3一种情况,所以截成的三段木棍能构成三角形的概率是15.16. 108 【解析】设(4-k )抽了m 次,(6-k )抽了n 次.则m (4-k )+4(15-m )=n (6-k )+6(17-n ),所以k (n -m )=42,又∵17-n ≥1,∴n ≤16,0<k <4,因为m 、n 、k 为正整数.(1)k =1,n -m =42(舍);k =2,n -m =21(舍);k =3,n -m =14;(2)k =3,n -m =14,n =14+m ≤16,m ≤2;(3)m (4-k )+4(15-m )+n (6-k )+6(17-n )=-mk +60-nk +102=-3(m +n )+162=-3(2m +14)+162;(4)因为14+m ≤16,所以m ≤2,m =2时,结果最小为108.17.解:原式=2+1-5+1+9(4分) =8.(6分)18.证明:∵∠1=∠2,∴∠1+∠BAD =∠2+∠BAD ,(1分) 即:∠EAD =∠BAC ,在△EAD 和△BAC 中⎩⎪⎨⎪⎧∠B =∠E AB =AE ∠BAC =∠EAD ,(2分)∴△ABC ≌△AED (ASA),(5分) ∴BC =ED .(6分)19.解:方程两边都乘以(x -1)(x -2)得, 2(x -2)=x -1, 2x -4=x -1, x =3,(4分)将x =3代入,(x -1)(x -2)=2≠0, 所以,原分式方程的解是x =3.(6分) 20.解:∵△ABD 是等边三角形, ∴∠B =60°,(1分) ∵∠BAC =90°,∴∠C =180°-90°-60°=30°, ∴BC =2AB =4,(3分)在Rt △ABC 中,由勾股定理得:AC =BC 2-AB 2=42-22=23, ∴△ABC 的周长是AC +BC +AB =23+4+2=6+2 3.(5分) 答:△ABC 的周长是6+2 3.(6分)21.解:(3x +4x 2-1-2x -1)÷x +2x 2-2x +1=[3x +4(x +1)(x -1)-2(x +1)(x +1)(x -1)]·(x -1)2x +2(2分) =3x +4-2x -2(x +1)(x -1)·(x -1)2x +2=x +2(x +1)(x -1)·(x -1)2x +2 =x -1x +1,(5分) 又∵⎩⎪⎨⎪⎧x +4>0 ①2x +5<1 ②,由①解得:x >-4,由②解得:x <-2, ∴不等式组的解集为-4<x <-2,(7分)其整数解为-3,当x =-3时,原式=-3-1-3+1=2.(10分)22.解:(1)过点B 作BD ⊥x 轴于点D . ∵点B 的坐标为(n ,-2),∴BD =2.在Rt △BDO 中,tan ∠BOC =BDOD ,∴tan ∠BOC =2OD =25,∴OD =5.(1分)又∵点B 在第三象限,∴点B 的坐标为(-5,-2).(2分) 将B (-5,-2)代入y =k x ,得-2=k-5,∴k =10,(3分)∴该反比例函数的解析式为y =10x.(4分)将点A (2,m )代入y =10x ,得m =102=5,∴A (2,5).(5分)将A (2,5)和B (-5,-2)分别代入y =ax +b ,得⎩⎪⎨⎪⎧2a +b =5,-5a +b =-2.解得⎩⎪⎨⎪⎧a =1,b =3.(6分) ∴该一次函数的解析式为y =x +3;(7分)(2)在y =x +3中,令y =0,即x +3=0,∴x =-3, ∴点C 的坐标为(-3,0),∴OC =3.(8分) 又∵在x 轴上有一点E (O 除外),S △BCE =S △BCO , ∴CE =OC =3,(9分)∴OE =6,∴E (-6,0).(10分)23.解:(1)因为该校近四年保送生人数的最大值是8,最小值是3, 所以该校近四年保送生人数的极差是:8-3=5,(2分) 折线统计图如下:第23题解图(5分)(2)用A 1、A 2、A 3表示男同学,B 表示女同学.列表如下:(8分)由图表可知,共有12种情况,选两位同学恰好是1位男同学和1位女同学的有6种情况,所以选两位同学恰好是1位男同学和1位女同学的概率是612=12.(10分)24.(1)解:∵四边形ABCD 是菱形, ∴AB ∥CD ,∴∠1=∠ACD ,(1分) ∵∠1=∠2,∴∠ACD =∠2, ∴MC =MD ,(2分)∵ME ⊥CD ,∴CD =2CE ,(3分) ∵CE =1,∴CD =2,(4分) ∴BC =CD =2;(5分)(2)证明:∵F 为边BC 的中点, ∴BF =CF =12BC ,∴CF =CE ,在菱形ABCD 中,AC 平分∠BCD ,∴∠ACB =∠ACD ,(6分) 在△CEM 和△CFM 中,∵⎩⎪⎨⎪⎧CE =CF ∠ACB =∠ACD CM =CM ,∴△CEM ≌△CFM (SAS), ∴ME =MF ,(7分)第24题解图延长AB 交DF 的延长线于点G , ∵AB ∥CD , ∴∠G =∠2, ∵∠1=∠2, ∴∠1=∠G , ∴AM =MG ,(8分) 在△CDF 和△BGF 中,∵⎩⎪⎨⎪⎧∠G =∠2∠BFG =∠CFD (对顶角相等)BF =CF ,∴△CDF ≌△BGF (AAS), ∴GF =DF ,(9分)由图形可知,GM =GF +MF , ∴AM =DF +ME .(10分)25.解:(1)y 1=12000x (1≤x ≤6,且x 取整数).(1分)y 2=x 2+10000(7≤x ≤12,且x 取整数).(2分) (2)当1≤x ≤6,x 取整数时, W =y 1·z 1+(12000-y 1)·z 2 =12000x ·12x +(12000-12000x )·(34x -112x 2) =-1000x 2+10000x -3000.(3分)∵a =-1000<0,x =-b2a =5,1≤x ≤6,∴当x =5时,W 最大=22000(元).(4分) 当7≤x ≤12,且x 取整数时, W =2×(12000-y 2)+1.5×y 2=2×(12000-x 2-10000)+1.5×(x 2+10000) =-12x 2+19000.(5分)∵a =-12<0,x =-b2a =0,当7≤x ≤12时,W 随x 的增大而减小,∴当x =7时,W 最大=18975.5(元). ∵22000>18975.5,∴去年5月用于污水处理的费用最多,最多费用是22000元.(6分) (3)由题意,得12000(1+a %)×1.5×[1+(a -30)%]×(1-50%)=18000.(8分) 设t =a %,整理,得10t 2+17t -13=0.解得t =-17±80920.∵809≈28.4,∴t 1≈0.57,t 2≈-2.27(舍去). ∴a ≈57.答:a 的整数值为57.(10分)26.解:(1)如解图①,设正方形BEFG 的边长为x , 则BE =FG =BG =x . ∵AB =3,BC =6, ∴AG =AB -BG =3-x , ∵△AGF ∽△ABC , ∴AG AB =GFBC ,即3-x 3=x 6. 解得:x =2,则BE =2;(2分)第26题解图②(2)存在满足条件的t ,理由如下: 如解图②,过D 作DH ⊥BC 于点H . 则BH =AD =2,DH =AB =3. 由题意,得BB ′=HE =t , HB ′=|t -2|,EC =4-t , ∵△MEC ∽△ABC , ∴ME AB =EC BC ,即ME 3=4-t 6, ∴ME =2-12t .在Rt △B ′ME 中,B ′M 2=ME 2+B ′E 2=22+(2-12t )2=14t 2-2t +8.在Rt △DHB ′中,B ′D 2=DH 2+B ′H 2=32+(t -2)2=t 2-4t +13. 过M 作MN ⊥DH 于点N .则MN =HE =t ,NH =ME =2-12t ,∴DN =DH -NH =3-(2-12t )=12t +1.在Rt △DMN 中,DM 2=DN 2+MN 2=54t 2+t +1.(5分)(ⅰ)若∠DB ′M =90°,则DM 2=B ′M 2+B ′D 2, 即54t 2+t +1=(14t 2-2t +8)+(t 2-4t +13). 解得t =207.(6分)(ⅱ)若∠B ′MD =90°,则B ′D 2=B ′M 2+MD 2,即t 2-4t +13=(14t 2-2t +8)+(54t 2+t +1).解得t 1=-3+17,t 2=-3-17. ∵0≤t ≤4,∴t =-3+17.(7分)(ⅲ)若∠B ′DM =90°,则B ′M 2=B ′D 2+MD 2,即14t 2-2t +8=(t 2-4t +13)+(54t 2+t +1).此方程无解.(8分) 综上所述,当t =207或-3+17时,△B ′DM 是直角三角形.(3)当0≤t ≤43时,S =14t 2.(9分)当43≤t ≤2时,S =-18t 2+t -23.(10分) 当2≤t ≤103时,S =-38t 2+2t -53.(11分)当103≤t ≤4时,S =-12t +52.(12分)。
重庆市巴蜀中学2009-2010学年度第二学期半期考试初20XX级(一下)英语试题卷命题人:张清璨考试时间:100分钟满分:150分第( Ⅰ)卷(共120分)听力部分(30分)笔试部分(90分)Ⅴ. 单项选择。
(每小题1分,共20分)26. Where _____________ your parents ____________?A. do; fromB. is; fromC. are; fromD. does; from27. The people in Singapore speak _____________.A. EnglishB. ChineseC. Japanese and EnglishD. A and B28. We are from China and we _______________ Chinese.A. sayB. talkC. speakD. tell29. Go _____________ Bridge Street. You’ll see a big train station.A. straightB. alongC. awayD. on30. Hainan is a good place _____________ in winter.A. have funB. to have funC. having funD. to fun31. Chongqing is a city ____________ beautiful night views(夜景).A. ofB. onC. andD. with32. What ____________ do you want to do?A. othersB. else thingsC. other thingsD. the other33. There are many students in the classroom. _________ are doing homework; _________ aredoing some reading.A. some; otherB. some; others D. some; anotherC. some; the other--- ______________.A. GreatB. HotC. SureD. Welcome35. I can’t _____________ you at this moment. I _____________ my dad clean the garden.A. am helping; am helpingB. help; helpingC. help; am helpingD. helping; help36. Who _____________ your parents talking _____________?A. are; /B. is; /C. are; toD. is; at37. ---Be quiet, kids. Dad ______________ in the bedroom.---OK, mom.A. sleepB. sleepsC. is sleepingD. are sleeping1 34. --- Hello, Mary. How is your summer going?38. Many people don’t like winter because they don’t like ______________.A. cold weathersB. cold weatherC. a cold weatherD. cold day39. Would you like to work us a shop assistant?A. for; forB. for; asC. on; asD. with; at40. ---____________ your sisters ___________?---They work in a bank.A. What does; doB. What do; doC. Where do; worksD. Where does; work41. Her mother is a nurse. Sometimes she works ____________ the day and sometimes______________night.A. in, atB. for, inC. at, inD. on, at42. ---Liu Yun, ____________ this pair of glasses yours?---No. My glasses ___________ on the desk.A. is; isB. are; areC. is; areD. are; is43. Please stop ___________ . It’s time for class.A. to talkB. talkC. talkingD. to talking44. Mrs. Green doesn’t like playing chess, but her daughter___________.A. isB. likeC. doesn’tD. does45. Nobody __________ why Cathy is late for class.A. knowB. knowsC. knowingD. to know Ⅵ..完形填空。
重庆巴蜀中学七年级下册数学期末试卷测试卷(含答案解析)一、解答题1.如图1,已AB∥CD,∠C=∠A.(1)求证:AD∥BC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,①直接写出∠AED与∠FDC的数量关系:.②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=514∠DEB,补全图形后,求∠EPD的度数2.已知点C在射线OA上.(1)如图①,CD//OE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD 与∠BO′E′的关系(用含α的代数式表示)(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.3.如图,已知AM//BN,点P是射线AM上一动点(与点A不重合),BC BD、分别平分ABP∠和PBN∠,分别交射线AM于点,C D.(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数.4.(1)(问题)如图1,若//AB CD ,40AEP ∠=︒,130PFD ∠=︒.求EPF ∠的度数; (2)(问题迁移)如图2,//AB CD ,点P 在AB 的上方,问PEA ∠,PFC ∠,EPF ∠之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知EPF α∠=,PEA ∠的平分线和PFC ∠的平分线交于点G ,用含有α的式子表示G ∠的度数.5.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有BDF GDF ∠=∠,求AENCDG∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.二、解答题6.如图1,点O 在MN 上,90,,AOB AOM m OCQ n ∠=︒∠=︒∠=︒,射线OB 交PQ 于点C ,已知m ,n 满足:220(70)0m n -+-=.(1)试说明MN //PQ 的理由;(2)如图2,OD 平分AON ∠,CF 平分OCQ ∠,直线OD 、CF 交于点E ,则OEF ∠=______︒;(3)若将AOB ∠绕点O 逆时针旋转()090αα<<︒,其余条件都不变,在旋转过程中,OEF ∠的度数是否发生变化?请说明你的结论.7.如图1,E 点在BC 上,∠A =∠D ,AB ∥CD . (1)直接写出∠ACB 和∠BED 的数量关系 ;(2)如图2,BG 平分∠ABE ,与∠CDE 的邻补角∠EDF 的平分线交于H 点.若∠E 比∠H 大60°,求∠E ;(3)保持(2)中所求的∠E 不变,如图3,BM 平分∠ABE 的邻补角∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不变,请求值;若改变,请说理由.8.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明; (3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明.9.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.10.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)①∠ABN 的度数是 ;②∵AM ∥BN ,∴∠ACB =∠ ; (2)求∠CBD 的度数;(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律; (4)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是 .三、解答题11.在△ABC 中,射线AG 平分∠BAC 交BC 于点G ,点D 在BC 边上运动(不与点G 重合),过点D 作DE ∥AC 交AB 于点E .(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由12.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .① 求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.13.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由.14.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC 的面积记为S2.则S1=S2.解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为.(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 .15.如图,△ABC和△ADE有公共顶点A,∠ACB=∠AED=90°,∠BAC=45°,∠DAE=30°.(1)若DE//AB,则∠EAC=;(2)如图1,过AC上一点O作OG⊥AC,分别交A B、A D、AE于点G、H、F.①若AO=2,S△AGH=4,S△AHF=1,求线段OF的长;②如图2,∠AFO的平分线和∠AOF的平分线交于点M,∠FHD的平分线和∠OGB的平分线交于点N,∠N+∠M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由.【参考答案】一、解答题1.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=5∠DEB,求出∠AED=50°,即可得出∠EPD的度数.14【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.2.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.【详解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.证明:如图②,过O点作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.3.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.4.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PF 解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=12α【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PN∥AB,则PN∥CD,可得∠FPN=∠PEA+∠FPE,进而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得∠GEF+∠GFE=1 2∠PEA+12∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【详解】解:(1)如图1,过点P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:过P点作PN∥AB,则PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB与PF交点为O,连接EF,如图3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=12∠PEA+∠OEF,∠GFE=12∠PFC+∠OFE,∴∠GEF+∠GFE=12∠PEA+12∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=12(∠PFC−α)+12∠PFC+180°−∠PFC=180°−12α,∴∠G=180°−(∠GEF+∠GFE)=180°−180°+12α=12α.【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键.5.(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2)12;(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-12∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴190(90)90122CDGAEN CEM PDCCDG CDG CDG CDG︒-︒-∠∠∠︒-∠====∠∠∠∠,(3)设BD交MN于J.∵BC 平分∠PBD ,AM 平分∠CAD ,∠PBC =25°,∴∠PBD =2∠PBC =50°,∠CAM =∠MAD ,∵PQ ∥MN ,∴∠BJA =∠PBD =50°,∴∠ADB =∠AJB -∠JAD =50°-∠JAD =50°-∠CAM ,由(1)可得,∠ACB =∠PBC +∠CAM ,∴∠ACB +∠ADB =∠PBC +∠CAM +50°-∠CAM =25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.二、解答题6.(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m 及n ,从而可求得∠MOC=∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由220(70)0m n -+-=可求得m 及n ,从而可求得∠MOC =∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也易得∠COE 的度数,由三角形外角的性质即可求得∠OEF 的度数;(3)不变,分三种情况讨论即可.【详解】(1)∵200m -≥,2(70)0n -≥,且220(70)0m n -+-= ∴200m -=,2(70)0n -=∴m =20,n =70∴∠MOC =90゜-∠AOM =70゜∴∠MOC =∠OCQ =70゜∴MN ∥PQ(2)∵∠AON =180゜-∠AOM =160゜又∵OD 平分AON ∠,CF 平分OCQ ∠ ∴1802DON AON ∠=∠=︒,1352OCF OCQ ∠=∠=︒∵80MOE DON ∠=∠=︒∴10COE MOE MOC ∠=∠-∠=︒∴∠OEF =∠OCF +∠COE =35゜+10゜=45゜故答案为:45.(3)不变,理由如下:如图,当0゜<α<20゜时,∵CF 平分∠OCQ∴∠OCF=∠QCF设∠OCF=∠QCF=x则∠OCQ=2x∵MN∥PQ∴∠MOC=∠OCQ=2x∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON∴∠DON=45゜+x∵∠MOE=∠DON=45゜+x∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜当20゜<α<90゜时,如图∵CF平分∠OCQ∴∠OCF=∠QCF设∠OCF=∠QCF=x则∠OCQ=2x∵MN∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜综上所述,∠EOF的度数不变.【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.7.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据ABCD 可得∠DFB=∠D ,则∠DFB=∠A ,可得ACDF ,根据平行线的性质得∠A解析:(1)∠ACB +∠BED =180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据AB //CD 可得∠DFB =∠D ,则∠DFB =∠A ,可得AC //DF ,根据平行线的性质得∠ACB +∠CEF =180°,由对顶角相等可得结论;(2)如图2,作EM //CD ,HN //CD ,根据AB //CD ,可得AB //EM //HN //CD ,根据平行线的性质得角之间的关系,再根据∠DEB 比∠DHB 大60°,列出等式即可求∠DEB 的度数; (3)如图3,过点E 作ES //CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求∠PBM 的度数.【详解】解:(1)如图1,延长DE 交AB 于点F ,//AB CD ,DFB D ∴∠=∠,A D ∠=∠,A DFB ∴∠=∠,//AC DF ∴,180ACB CEF ∴∠+∠=︒,180ACB BED ∴∠+∠=︒,故答案为:180ACB BED ∠+∠=︒;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠,∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒,解得100α∠=︒.DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠, 12CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠ 1()2EBK CDE =∠-∠ 1802=⨯︒ 40=︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.8.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠, 11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.9.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=, ∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.10.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒ ②CBN ;(2)58︒;(3)不变,:2:1APB ADB ∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明∠CBD =12∠ABN ,即可求出结果;(3)不变,∠APB :∠ADB =2:1,证∠APB =∠PBN ,∠PBN =2∠DBN ,即可推出结论; (4)可先证明∠ABC =∠DBN ,由(1)∠ABN =116°,可推出∠CBD =58°,所以∠ABC+∠DBN =58°,则可求出∠ABC 的度数.【详解】解:(1)①∵AM//BN ,∠A =64°,∴∠ABN =180°﹣∠A =116°,故答案为:116°;②∵AM//BN ,∴∠ACB =∠CBN ,故答案为:CBN ;(2)∵AM//BN ,∴∠ABN+∠A =180°,∴∠ABN =180°﹣64°=116°,∴∠ABP+∠PBN =116°,∵BC 平分∠ABP ,BD 平分∠PBN ,∴∠ABP =2∠CBP ,∠PBN =2∠DBP ,∴2∠CBP+2∠DBP =116°,∴∠CBD =∠CBP+∠DBP =58°;(3)不变,∠APB :∠ADB =2:1,∵AM//BN ,∴∠APB =∠PBN ,∠ADB =∠DBN ,∵BD 平分∠PBN ,∴∠PBN =2∠DBN ,∴∠APB :∠ADB =2:1;(4)∵AM//BN ,∴∠ACB =∠CBN ,当∠ACB =∠ABD 时,则有∠CBN =∠ABD ,∴∠ABC+∠CBD =∠CBD+∠DBN∴∠ABC =∠DBN ,由(1)∠ABN =116°,∴∠CBD =58°,∴∠ABC+∠DBN =58°,∴∠ABC =29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.三、解答题11.(1)①115°;110°;②;理由见解析;(2);理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论; (2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论.【详解】(1)①若∠BAC=100°,∠C=30°,则∠B=180°-100°-30°=50°,∵DE ∥AC ,∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,则∠BAC+∠C=180°-40°=140°,∵AG 平分∠BAC ,DF 平分∠EDB , ∴12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒ 4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠; 理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠, ∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠ 1902B =︒+∠;(2)如图2所示:1902AFD B ∠=︒-∠;理由如下: 由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠, ∵∠AHF=∠B+∠BDH ,∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH =︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠ ()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠ 1902B =︒-∠. 【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.12.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去);当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.13.(1)∠AQB 的大小不发生变化,∠AQB =135°;(2)∠P 和∠C 的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO 与∠BAO 的和,由角平分线和角的和差可求出∠BA 解析:(1)∠AQB 的大小不发生变化,∠AQB =135°;(2)∠P 和∠C 的大小不变,∠P=45°,∠C=45°.【分析】第(1)题因垂直可求出∠ABO 与∠BAO 的和,由角平分线和角的和差可求出∠BAQ 与∠ABQ 的和,最后在△ABQ 中,根据三角形的内角各定理可求∠AQB 的大小.第(2)题求∠P 的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解.【详解】解:(1)∠AQB 的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ=∠QBO=1∠ABO,∠PBA=∠PBF=∠ABF,2∴∠PBQ=∠ABQ+∠PBA=90°,又∵∠PBC=∠PBQ+∠CBQ=180°,∴∠QBC=180°﹣90°=90°.又∵∠QBC+∠C+∠BQC=180°,∴∠C=180°﹣90°﹣45°=45°【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.14.解决问题:6;拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.15.(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定解析:(1)45°;(2)①1;②是定值,∠M+∠N=142.5°【分析】(1)利用平行线的性质求解即可.(2)①利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论.②利用角平分线的定义求出∠M,∠N(用∠FAO表示),可得结论.【详解】解:(1)如图,∵AB∥ED∴∠E=∠EAB=90°(两直线平行,内错角相等),∵∠BAC=45°,∴∠CAE=90°-45°=45°.故答案为:45°.(2)①如图1中,∵OG⊥AC,∴∠AOG=90°,∵∠OAG=45°,∴∠OAG=∠OGA=45°,∴AO=OG=2,∵S△AHG=12•GH•AO=4,S△AHF=12•FH•AO=1,∴GH=4,FH=1,∴OF=GH-HF-OG=4-1-2=1.②结论:∠N+∠M=142.5°,度数不变.理由:如图2中,∵MF,MO分别平分∠AFO,∠AOF,∴∠M=180°-12(∠AFO+∠AOF)=180°-12(180°-∠FAO)=90°+12∠FAO,∵NH,NG分别平分∠DHG,∠BGH,∴∠N=180°-12(∠DHG+∠BGH)=180°-12(∠HAG+∠AGH+∠HAG+∠AHG)=180°-12(180°+∠HAG)=90°-12∠HAG=90°-12(30°+∠FAO+45°)=52.5°-12∠FAO,∴∠M+∠N=142.5°.【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用∠FAO表示出∠M,∠N.。
2012年重庆市中考数学试卷一.选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A .B .C .D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内).1.(2012重庆)在﹣3,﹣1,0,2这四个数中,最小的数是( )A .﹣3B .﹣1C .0D .2考点:有理数大小比较。
解答:解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A .2.(2012重庆)下列图形中,是轴对称图形的是( )A .B .C .D .考点:轴对称图形。
解答:解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选B .3.(2012重庆)计算()2ab 的结果是( ) A .2ab B .b a 2 C .22b a D .2ab考点:幂的乘方与积的乘方。
解答:解:原式=a 2b 2.故选C .4.(2012重庆)已知:如图,OA ,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 在⊙O 上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20°考点:圆周角定理。
解答:解:∵OA ⊥OB ,∴∠AOB=90°,∴∠ACB=45°.故选A .5.(2012重庆)下列调查中,适宜采用全面调查(普查)方式的是( )A .调查市场上老酸奶的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了危禁物品D .调查我市市民对伦敦奥运会吉祥物的知晓率 考点:全面调查与抽样调查。
解答:解:A 、数量较大,普查的意义或价值不大时,应选择抽样调查;B 、数量较大,具有破坏性的调查,应选择抽样调查;C 、事关重大的调查往往选用普查;D 、数量较大,普查的意义或价值不大时,应选择抽样调查.故选C .6.(2012重庆)已知:如图,BD 平分∠ABC ,点E 在BC 上,EF ∥AB .若∠CEF=100°,则∠ABD 的度数为( )A .60°B .50°C .40°D .30°考点:平行线的性质;角平分线的定义。
重庆巴蜀中学七年级下册数学期末试卷测试卷(含答案解析)一、解答题1.已知,AB ∥DE ,点C 在AB 上方,连接BC 、CD . (1)如图1,求证:∠BCD +∠CDE =∠ABC ;(2)如图2,过点C 作CF ⊥BC 交ED 的延长线于点F ,探究∠ABC 和∠F 之间的数量关系;(3)如图3,在(2)的条件下,∠CFD 的平分线交CD 于点G ,连接GB 并延长至点H ,若BH 平分∠ABC ,求∠BGD ﹣∠CGF 的值.2.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.3.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答. 问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.4.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;5.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数; (3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.二、解答题6.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论.7.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a 从空气中射入水中,再从水中射入空气中,形成光线b ,根据光学知识有12,34∠=∠∠=∠,请判断光线a 与光线b 是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC 的夹角为40︒,问如何放置平面镜MN ,可使反射光线b 正好垂直照射到井底?(即求MN 与水平线的夹角) (3)如图3,直线EF 上有两点A 、C ,分别引两条射线AB 、CD .105BAF ∠=︒,65DCF ∠=︒,射线AB 、CD 分别绕A 点,C 点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t ,在射线CD 转动一周的时间内,是否存在某时刻,使得CD 与AB 平行?若存在,求出所有满足条件的时间t .8.如图1,//AB CD ,E 是AB 、CD 之间的一点.(1)判定BAE ∠,CDE ∠与AED ∠之间的数量关系,并证明你的结论;(2)如图2,若BAE ∠、CDE ∠的两条平分线交于点F .直接写出AFD ∠与AED ∠之间的数量关系;(3)将图2中的射线DC 沿DE 翻折交AF 于点G 得图3,若AGD ∠的余角等于2E ∠的补角,求BAE ∠的大小.9.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明; (3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明.10.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况,如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视,若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足()2450a b a b -++-=.假定这一带长江两岸河堤是平行的,即//PQ MN ,且60BAN ∠=︒(1)求a 、b 的值;(2)若灯B 射线先转动45秒,灯A 射线才开始转动,当灯B 射线第一次到达BQ 时运动停止,问A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,则在转动过程中,BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.三、解答题11.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.12.如图所示,已知射线//,//,100CB OA AB OC C OAB ︒∠=∠=.点E 、F 在射线CB 上,且满足FOB AOB ∠=∠,OE 平分COF ∠ (1)求EOB ∠的度数;(2)若平行移动AB ,那么:OBC OFC ∠∠的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;(3)在平行移动AB 的过程中,是否存在某种情况,使OEC OBA ∠=∠?若存在,求出其度数.若不存在,请说明理由.13.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.14.【问题探究】如图1,DF ∥CE ,∠PCE=∠α,∠PDF=∠β,猜想∠DPC 与α、β之间有何数量关系?并说明理由; 【问题迁移】如图2,DF ∥CE ,点P 在三角板AB 边上滑动,∠PCE=∠α,∠PDF=∠β. (1)当点P 在E 、F 两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P 在E 、F 两点外侧运动时(点P 与点A 、B 、E 、F 四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2)15.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)【参考答案】一、解答题1.(1)证明见解析;(2);(3). 【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒. 【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE , CFDE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠, BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE , CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒, F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠, ABC F BCF ∴∠-∠=∠, CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE , GM DE ∴,MGN DFG ∴∠=∠,BH 平分ABC ∠,FN 平分CFD ∠, 11,22ABH AB D C CF DFG ∴∠=∠∠∠=,由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒,又BGD MGH MGDCGF DGN MGN MGD∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.2.(1)100;(2)75°;(3)n=3. 【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3. 【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641nn ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n nn n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN , ∵MN //GHl ∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180° ∴∠NAO +∠AOB +∠OBH =360° ∵∠NAO =116°,∠OBH =144° ∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒, ∴58NAC ∠=︒,又∵MN //GH , ∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒ ∵BD 平分OBG ∠, ∴18DBF ∠=︒, 又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒; ∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒; (3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641nMAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601nBKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意. 【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.3.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析 【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC=解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析 【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°; (2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒,128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下:如图3,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由:如图5,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.4.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.5.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG =∠GCF =25°,再根据PQ ∥CE ,即可得出∠CPQ =∠ECP =65°;(3)设∠EGC =4x ,∠EFC =3x ,则∠GCF =4x -3x =x ,分两种情况讨论:①当点G 、F 在点E 的右侧时,②当点G 、F 在点E 的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB =100°,AB ∥CD ,∴∠ECQ =80°,∵∠PCF =∠PCQ ,CG 平分∠ECF ,∴∠PCG =∠PCF +∠FCG =12∠QCF +12∠FCE =12∠ECQ =40°;(2)∵AB ∥CD∴∠QCG =∠EGC ,∠QCG +∠ECG =∠ECQ =80°,∴∠EGC +∠ECG =80°,又∵∠EGC -∠ECG =30°,∴∠EGC =55°,∠ECG =25°,∴∠ECG =∠GCF =25°,∠PCF =∠PCQ =12(80°-50°)=15°,∵PQ ∥CE ,∴∠CPQ =∠ECP =65°;(3)设∠EGC =4x ,∠EFC =3x ,则∠GCF=∠FCD =4x -3x =x ,①当点G 、F 在点E 的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.二、解答题6.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.7.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF 的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.8.(1),见解析;(2);(3)60°【分析】(1)作EF//AB ,如图1,则EF//CD ,利用平行线的性质得∠1=∠BAE ,∠2=∠CDE ,从而得到∠BAE +∠CDE =∠AED ;(2)如图2,解析:(1)BAE CDE AED ∠+∠=∠,见解析;(2)12AFD AED ∠=∠;(3)60° 【分析】(1)作EF //AB ,如图1,则EF //CD ,利用平行线的性质得∠1=∠BAE ,∠2=∠CDE ,从而得到∠BAE +∠CDE =∠AED ;(2)如图2,由(1)的结论得∠AFD =∠BAF +∠CDF ,根据角平分线的定义得到∠BAF =12∠BAE ,∠CDF =12∠CDE ,则∠AFD =12(∠BAE +∠CDE ),加上(1)的结论得到∠AFD =12∠AED ;(3)由(1)的结论得∠AGD =∠BAF +∠CDG ,利用折叠性质得∠CDG =4∠CDF ,再利用等量代换得到∠AGD =2∠AED -32∠BAE ,加上90°-∠AGD =180°-2∠AED ,从而可计算出∠BAE 的度数.【详解】解:(1)BAE CDE AED ∠+∠=∠理由如下:作//EF AB ,如图1,//AB CD ,//EF CD ∴.1BAE ∴∠=∠,2CDE ∠=∠,BAE CDE AED ∴∠+∠=∠;(2)如图2,由(1)的结论得AFD BAF CDF ∠=∠+∠,BAE ∠、CDE ∠的两条平分线交于点F ,12BAF BAE ∴∠=∠,12CDF CDE ∠=∠, 1()2AFD BAE CDE ∴∠=∠+∠,BAE CDE AED ∠+∠=∠,12AFD AED ∴∠=∠; (3)由(1)的结论得AGD BAF CDG ∠=∠+∠,而射线DC 沿DE 翻折交AF 于点G ,4CDG CDF ∴∠=∠,11422()22AGD BAF CDF BAE CDE BAE AED BAE ∴∠=∠+∠=∠+∠=∠+∠-∠= 322AED BAE ∠-∠, 901802AGD AED ︒-∠=︒-∠,390218022AED BAE AED ∴︒-∠+∠=︒-∠, 60BAE ∴∠=︒.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.9.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠, 11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.10.(1),;(2)15秒或63秒;(3)不发生变化,【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数表示,即可判断.【详解】解析:(1)4a =,1b =;(2)15秒或63秒;(3)不发生变化,34BAC BCD ∠=∠【分析】(1)利用非负数的性质解决问题即可.(2)分三种情形,利用平行线的性质构建方程即可解决问题.(3)由参数t 表示BAC ∠,BCD ∠即可判断.【详解】解:(1)∵()2450a b a b -++-=, ∴4050a b a b -=⎧⎨+-=⎩, 4a ∴=,1b =;(2)设A 灯转动t 秒,两灯的光束互相平行,①当045t <<时,4(45)1t t =+⨯,解得15t =;②当4590t <<时,()418018045t t -=-+,解得63t =;③当90135t <<时,436045t t -=+,解得135t =,(不合题意)综上所述,当t =15秒或63秒时,两灯的光束互相平行;(3)设A 灯转动时间为t 秒,1804CAN t ∠=︒-,60(1804)4120BAC t t ∴∠=︒-︒-=-︒,又//PQ MN ,18041803BCA CBD CAN t t t ∴∠=∠+∠=+︒-=︒-,而90ACD ∠=︒,9090(1803)390BCD BCA t t ∴∠=︒-∠=︒-︒-=-︒,:4:3BAC BCD ∴∠∠=,即34BAC BCD ∠=∠.【点睛】本题考查平行线的性质和判定,非负数的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.三、解答题11.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸]∠M+∠CFE=90°,证明见解析.【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明;[变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°.【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD ,∵AE 是角平分线,∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B ,∴∠CEF=∠CFE ;[变式思考]相等,理由如下:证明:∵AF 为∠BAG 的角平分线,∴∠GAF=∠DAF ,∵∠CAE=∠GAF ,∴∠CAE=∠DAF ,∵CD 为AB 边上的高,∠ACB=90°,∴∠ADC=90°,∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°,∴∠CEF=∠CFE ;[探究延伸]∠M+∠CFE=90°,证明:∵C 、A 、G 三点共线 AE 、AN 为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM ,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B ,∠CFE=∠EAC+∠ACD ,∠ACD=∠B ,∴∠CEF=∠CFE ,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.12.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=∠COA ,从而得出答案;(2解析:(1)40°;(2):OBC OFC ∠∠的值不变,比值为12;(3)∠OEC=∠OBA=60°.【分析】(1)根据OB 平分∠AOF ,OE 平分∠COF ,即可得出∠EOB=∠EOF+∠FOB=12∠COA ,从而得出答案;(2)根据平行线的性质,即可得出∠OBC=∠BOA ,∠OFC=∠FOA ,再根据∠FOA=∠FOB+∠AOB=2∠AOB ,即可得出∠OBC :∠OFC 的值为1:2.(3)设∠AOB=x ,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x ,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC ,然后利用三角形的内角和等于180°列式表示出∠OBA ,然后列出方程求解即可.【详解】(1)∵CB ∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB ,OE 平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF)=12∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不发生变化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.设∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【点睛】本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.13.(1)①45°;②∠F=a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=∠CAE,∠ACF=∠ACB,依据∠CAE是△ABC解析:(1)①45°;②∠F=12a;(2)∠F+∠H的值不变,是定值180°.【分析】(1)①②依据AD平分∠CAE,CF平分∠ACB,可得∠CAD=12∠CAE,∠ACF=12∠ACB,依据∠CAE是△ABC的外角,可得∠B=∠CAE-∠ACB,再根据∠CAD是△ACF的外角,即可得到∠F=∠CAD-∠ACF=12∠CAE-12∠ACB=12(∠CAE-∠ACB)=12∠B;(2)由(1)可得,∠F=12∠ABC,根据角平分线的定义以及三角形内角和定理,即可得到∠H=90°+12∠ABG,进而得到∠F+∠H=90°+12∠CBG=180°.解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=45°,故答案为45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=12∠CAE,∠ACF=12∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=12∠CAE﹣12∠ACB=12(∠CAE﹣∠ACB)=12∠B=12a;(2)由(1)可得,∠F=12∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=12∠AGB,∠GAH=12∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣12(∠AGB+∠GAB)=180°﹣12(180°﹣∠ABG)=90°+12∠ABG,∴∠F+∠H=12∠ABC+90°+12∠ABG=90°+12∠CBG=180°,∴∠F+∠H的值不变,是定值180°.【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键.14.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2)(2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β15.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.。
2010-2011学年重庆市巴蜀中学七年级(下)期末数学试卷一、选择题(12×4=48分)1.(4分)下列图案中,是轴对称图形的是()A.B.C.D.2.(4分)以下每组数分别是三根木棒的长度,用它们不能摆成三角形的是()A.4cm,5cm,6cm B.3cm,3cm,3cm C.3cm,4cm,5cm D.1cm,2cm,3cm3.(4分)下列事件是必然事件的是()A.某运动员投篮时连续3次全中B.太阳从西方升起C.打开电视正在播放动画片《喜羊羊与灰太狼》D.若a≤0,则|a|=﹣a4.(4分)下列说法正确的是()A.近似数28.00与近似数28.0的精确度一样B.近似数0.32与近似数0.302的有效数字一样C.近似数2.4×102与240的精确度一样D.近似数220与近似数0.202都有三个有效数字5.(4分)下列各组条件中,不能判定△ABC≌△A′B′C′的是()A.A C=A′C′,BC=B′C′,∠C=∠C′B.∠A=∠A′,BC=B′C′,AC=A′C′C.A C=A′C′,AB=A′B′,∠A=∠A′D.A C=A′C′,∠A=∠A′,∠C=∠C′6.(4分)适合下列条件的△ABC中,直角三角形的个数为()①∠A:∠B:∠C=1:2:3 ②∠A=2∠B=3∠C ③a:b:c=1:1:2 ④a:b:c=5:12:13.A.1B.2C.3D.47.(4分)如图,在底面周长为6,高为4的圆柱体上有A、B两点,则A、B最短矩离为()A.B.52 C.10 D.58.(4分)若不等式(a﹣1)x>1的解集是,则()A.a>0 B.a<0 C.a<1 D.a>19.(4分)某产品生产流水线每小时生产100件产品,生产前没产品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y与时间t关系图为()A.B.C.D.10.(4分)下列命题中:①若a>b,c≠0,则ac>bc ;②若,则a<0,b>0;③若ac2>bc2,则a>b;④若a<b<0,则;⑤若,则a>b.正确的有()个.A.1个B.2个C.3个D.4个11.(4分)已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10,BC=8,CA=6,则点O到三边AB、AC和BC的距离分别等于()A.2、2、2 B.3、3、3 C.4、4、4 D.2、3、512.(4分)如图,正方形ABCD边长为12,E为CD上一点,沿AE将△ADE折叠得△A EF,延长EF交BC于G,连接AG、CF,BG=6,下列说法正确的有()①△ABG≌△AFG;②DE=4;③AG∥CF;④.A.1个B.2个C.3个D.4个二、填空题(3×10=30分)13.(3分)(2007•滨州)0.000328用科学记数法表示(保留二个有效数字)为_________ .14.(3分)在不透明的口袋中有大小形状完全一样的红球,白球和黑球,数量分别为2,3,4个,摇匀后从口袋中任取一个球是白球的概率_________ .15.(3分)小芳在镜子里看到镜子对面电子钟的指数是2:35,现在的实际时间是_________ .16.(3分)关于x的方程2k+x=5的解是非正数,则k的取值范围_________ .17.(3分)A、B两地相距30千米,小明以6千米/时的速度从A地步行到B地,若设他到B地的距离为S千米,步行时间为t小时,则S与t之间的关系式为_________ .18.(3分)如图,∠A=50°,∠ACD=38°,∠ABE=32°,则∠BFC=_________ .19.(3分)某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折出售,但又要保证利润不低于20%,则商店最多打_________ 折.20.(3分)如图,△ABC中,AB=AC,DE是AB的中垂线,若△BCE的周长为25,且BC=10,则AB= _________ .21.(3分)如图,OA,BA分别表示甲、乙两名学生运动的图象,图中S与t分别表示运动路程和时间,则快者比慢者的速度每秒快_________ 米.22.(3分)如图,△ABC与△CDE都是等边三角形,AB=13,CD=5,∠ADE=30°,则BE= _________ .三、解答题23.(12分)解不等式(组)(1)1﹣2(x﹣2)<3(2).24.(6分)在网格中作△ABC关于直线l的轴对称图形.25.(8分)如图,已知∠A=∠D,∠1=∠2,BE=CF,B、E、F、C在一条直线上,求证:△ABF≌△DCE.26.(8分)一架云梯长25米,如图斜靠在一面墙上,梯子的底端离墙7米,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了_________ 米.27.(8分)甲、乙两人从A地出发到100千米外的B地旅游,甲骑摩托车,乙骑自行车,甲、乙两人离开A地的路程与时间的关系如图所示,据图象回答问题.①乙比甲早出发_________ 小时;②甲平均速度是_________ 千米/小时;③乙平均速度是_________ 千米/小时;④甲出发后_________ 小时恰好与乙相遇.28.(10分)(教材变式题)幼儿园有玩具若干件,分给小朋友,若每人分3件,那么还余59件;若每人分5件,那么最后一个人还少几件.求这个幼儿园有多少个玩具?有多少个小朋友?29.(10分)如图,梯形ABCD,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,CE与BD交于F,连接AF,G 为BC中点,连接DG交CF于M.证明:(1)CM=AB;(2)CF=AB+AF.30.(10分)(2003•吉林)如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒dcm.图②是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.(1)参照图②,求a、b及图②中的c值;(2)求d的值;(3)设点P离开点A的路程为y1(cm),点Q到点A还需走的路程为y2(cm),请分别写出动点P、Q改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P、Q相遇时x的值.(4)当点Q出发_________ 秒时,点P、点Q在运动路线上相距的路程为25cm.七年级(下)期末数学试卷参考答案与试题解析一、选择题(12×4=48分)1.(4分)下列图案中,是轴对称图形的是()A.B.C.D.考点:轴对称图形.专题:常规题型.分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此作答.解答:解:根据轴对称图形的定义:A、B和D不是轴对称图形,C是轴对称图形.故选C.点评:本题考查了轴对称图形的概念.轴对称的关键是寻找对称轴,图象沿某一直线折叠后可以重合.2.(4分)以下每组数分别是三根木棒的长度,用它们不能摆成三角形的是()A.4cm,5cm,6cm B.3cm,3cm,3cm C.3cm,4cm,5cm D.1cm,2cm,3cm考点:三角形三边关系.专题:计算题.分析:根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.解答:解:A、4+5>6,故以这三根木棒可以构成三角形,不符合题意;B、3+3>3,故以这三根木棒能构成三角形,不符合题意;C、3+4>5,故以这三根木棒能构成三角形,不符合题意;D、1+2=3,故以这三根木棒不能构成三角形,符合题意.故选D.点评:本题主要考查了三角形的三边关系,正确理解定理是解题关键.3.(4分)下列事件是必然事件的是()A.某运动员投篮时连续3次全中B.太阳从西方升起C.打开电视正在播放动画片《喜羊羊与灰太狼》D.若a≤0,则|a|=﹣a考点:随机事件.分析:根据必然事件的定义逐项进行分析即可做出判断,必然事件是一定会发生的事件.解答:解:A、此运动员投篮时不一定每次都连续3次全中,不是必然事件,故本选项错误;B、很明显,本项不是必然事件,故本选项错误;C、本项的事件,很明显不一定必然发生,故本选项错误;D、很明显,当a为非负数时,其绝对值一定为﹣a,故本选项正确.故选D.点评:本题主要考查必然事件的定义,关键在于根据必然事件的定义认真的逐项进行分析.4.(4分)下列说法正确的是()A.近似数28.00与近似数28.0的精确度一样B.近似数0.32与近似数0.302的有效数字一样C.近似数2.4×102与240的精确度一样D.近似数220与近似数0.202都有三个有效数字考点:近似数和有效数字.专题:推理填空题.分析:A、利用近似数的定义即可判定;B、利用近似数和有效数字的定义即可判定;C、利用有效数字和科学记数法的定义即可判定;D、利用有效数字和近似数的定义即可判定.解答:解:A、近似数28.00精确到0.01,近似数28.0的精确到0.1,故选项错误;B、近似数0.32的有效数字有3、2,近似数0.302的有效数字有3、0、2,故选项错误;C、近似数2.4×102精确到十位,240的精确度精确到个位,故选项错误;D、近似数220与近似数0.202都有三个有效数字,故选项正确.故选D.点评:此题这样考查了有效数字和近似数的定义,近似数精确到哪一位,应当看末位数字实际在哪一位,有效数字是从第一个不为0的数字开始.5.(4分)下列各组条件中,不能判定△ABC≌△A′B′C′的是()A.A C=A′C′,BC=B′C′,∠C=∠C′B.∠A=∠A′,BC=B′C′,AC=A′C′C.A C=A′C′,AB=A′B′,∠A=∠A′D.A C=A′C′,∠A=∠A′,∠C=∠C′考点:全等三角形的判定.专题:证明题.分析:根据全等三角形的判定方法,对各选项分别判断即可得解.解答:解:A、AC=A'C',BC=B'C',∠C=∠C',根据SAS可判定△ABC和△A'B'C'全等;B、∠A=∠A',BC=B'C',AC=A'C',根据SSA不能判定△ABC和△A'B'C'一定全等;C、AC=A'C',BA=A'B',∠A=∠A',根据SAS可判定△ABC和△A'B'C'全等;D、∠A=∠A',∠C=∠C',AC=A'C',根据AAS可判定△ABC和△A'B'C'全等.故选B.点评:本题考查了全等三角形的判定,注意:要证明两个三角形全等,至少要有一条边.没有SSA定理.6.(4分)适合下列条件的△ABC中,直角三角形的个数为()①∠A:∠B:∠C=1:2:3 ②∠A=2∠B=3∠C ③a:b:c=1:1:2 ④a:b:c=5:12:13.A.1B.2C.3D.4考点:勾股定理的逆定理.专题:方程思想.分析:先根据三角形的内角和是180°对①②中△ABC的形状作出判断,再根据勾股定理的逆定理对③④中△ABC的形状进行判断即可.解答:解:①∵△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x,∵∠A+∠B+∠C=180°,∴x+2x+3x=180°,解得x=30°,∴∠C=3x=2×30°=90°,∴△ABC是直角三角形,故本小题正确;②∵△ABC中,∠A=2∠B=3∠C,∴设∠A=x,则∠B=,∠C=,∵∠A+∠B+∠C=180°,∴x++=180°,解得x≈98°,∴△ABC是钝角三角形,故本小题错误;③∵△ABC中,a:b:c=1:1:2,∴设a=x,则b=x,c=2x,∵x2+x2=2x2≠(2x)2,即a2+b2≠c2,∴△ABC不是直角三角形,故本小题错误;④∵△ABC中,a:b:c=5:12:13,∴设a=5x,则b=12x,c=13x,∵(5x)2+(12x)2=169x2=(13x)2,即a2+b2=c2,∴△ABC是直角三角形,故本小题正确.故选B.点评:本题考查的是三角形内角和定理及勾股定理的逆定理,解答此题的关键是利用方程的思想把△ABC中的边角关系转化为求x的值,再根据直角三角形的性质进行判断.7.(4分)如图,在底面周长为6,高为4的圆柱体上有A、B两点,则A、B最短矩离为()A.B.52 C.10 D.5考点:平面展开-最短路径问题.分析:要求圆柱体上两点之间的最短路径,最直接的作法,就是将圆柱体展开,然后利用两点之间线段最短解答.解答:解:如图将圆柱体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.A、B最短矩离===5.故选D.点评:考查了平面展开﹣最短路径问题,将圆柱体侧面展开为长方形,根据两点之间,线段最短,由勾股定理即可求解.8.(4分)若不等式(a﹣1)x>1的解集是,则()A.a>0 B.a<0 C.a<1 D.a>1考点:解一元一次不等式.分析:不等式(a﹣1)x>1的解集是,即不等式两边同时除以a﹣1,不等号的方向改变,则a﹣1<0,即可求得a的范围.解答:解:根据题意得:a﹣1<0解得:a<1故选C.点评:本题考查了一元一次不等式的解法,关键是理解a﹣1<0.9.(4分)某产品生产流水线每小时生产100件产品,生产前没产品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y与时间t关系图为()A.B.C.D.考点:函数的图象.专题:图表型.分析:因为生产某种产品每小时可生产100件,生产前没有积压,生产3小时后安排工人装箱,每小时可装150件,所以生产前没有积压,图象匀速上升到一定程度开始下匀速降为0,由此即可求出答案.解答:解:根据题意可知:生产前没有积压代表图象从0开始,生产3小时后安排工人装箱每小时可装150件代表图象匀速上升到一定程度开始下匀速降为0.故选C.点评:本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10.(4分)下列命题中:①若a>b,c≠0,则ac>bc ;②若,则a<0,b>0;③若ac2>bc2,则a>b;④若a<b<0,则;⑤若,则a>b.正确的有()个.A.1个B.2个C.3个D.4个考点:不等式的性质.专题:计算题.分析:根据不等式的基本性质(①不等式两边加(或减)同一个数(或式子),不等号的方向不变;②不等式两边乘(或除以)同一个正数,不等号的方向不变;③不等式两边乘(或除以)同一个负数,不等号的方向改变)对各项进行一一判断.解答:解:①当c<0时,ac<bc;故本选项错误;②若,则a、b异号,所以a<0,b>0;或a>0,b<0;故本选项错误;③∵ac2>bc2,∴c2>0,∴a>b;故本选项正确;④若a<b<0,则不等式的两边同时除以b ,不等号的方向发生改变,即;故本选项正确;⑤∵,∴c2>0,∴原不等式的两边同时乘以c2,不等式仍然成立,即a>b;故本选项正确.综上所述,正确的说法共有3个.故选C.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.(4分)已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10,BC=8,CA=6,则点O到三边AB、AC和BC的距离分别等于()A.2、2、2 B.3、3、3 C.4、4、4 D.2、3、5考点:角平分线的性质.专题:计算题.分析:由角平分线的性质易得OE=OF=OD,AE=AF,CE=CD,BD=BF,设OE=OF=OD=x,则CE=CD=x,BD=BF=8﹣x,AF=AE=6﹣x,所以6﹣x+8﹣x=10,解答即可.解答:解:连接OB,∵点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,∴OE=OF=OD,又∵OB是公共边,∴Rt△BOF≌Rt△BOD(HL),∴BD=BF,同理,AE=AF,CE=CD,∵∠C=90°,OD⊥BC,OE⊥AC,OF⊥AB,OD=OE,∴OECD是正方形,设OE=OF=OD=x,则CE=CD=x,BD=BF=8﹣x,AF=AE=6﹣x,∴BF+FA=AB=10,即6﹣x+8﹣x=10,解得x=2.则OE=OF=OD=2.故选A.点评:此题综合考查角平分线的性质、全等三角形的判定和性质和正方形的判定等知识点,设未知数,并用未知数表示各边是关键.12.(4分)如图,正方形ABCD边长为12,E为CD上一点,沿AE将△AD E折叠得△AEF,延长EF交BC于G,连接AG、CF,BG=6,下列说法正确的有()①△ABG≌△AFG;②DE=4;③AG∥CF;④.A.1个B.2个C.3个D.4个考点:翻折变换(折叠问题);正方形的性质.分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE﹣S△FEC,求得面积比较即可.解答:解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG(HL);②正确.因为:EF=DE,设DE=FE=x,则CG=6,EC=12﹣x.在直角△ECG中,根据勾股定理,得(12﹣x)2+36=(x+6)2,解得x=4.∴DE=4.③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∵∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④正确.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴=,EF=DE=4,GF=6,∴EG=10,∴△EFH∽△EGC,∴相似比为:==,∴S△FGC=S△GCE﹣S△FEC=×6×8﹣×8×(×6)=.综上可得①②③④正确,共4个.故选D.点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题(3×10=30分)13.(3分)(2007•滨州)0.000328用科学记数法表示(保留二个有效数字)为 3.3×10﹣4.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值>10时,n是正数,当原数的绝对值<1时,n是负数.有效数字的计算方法是:从左边第一个不是0的开始,后面所有的数都是有效数字.解答:解:0.000328=3.28×10﹣4≈3.3×10﹣4.点评:此题考查科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.保留2个有效数字,要观察第3个有效数字,四舍五入.14.(3分)在不透明的口袋中有大小形状完全一样的红球,白球和黑球,数量分别为2,3,4个,摇匀后从口袋中任取一个球是白球的概率.考点:概率公式.专题:计算题.分析:根据题意,易得这个不透明的袋子里有9个球,已知其中有3个白球,根据概率的计算公式可得答案.解答:解:这个不透明的袋子里有9个球,其中3个白球,随意地摸出一球,是白球的概率为=;故答案为.点评:本题主要考查概率公式,用到的知识点为:概率=所求情况数与总情况数之比.关键是准确找出总情况数目与符合条件的情况数目.15.(3分)小芳在镜子里看到镜子对面电子钟的指数是2:35,现在的实际时间是9:25 .考点:镜面对称.分析:根据轴对称的性质,求出时针和分针的对称点,即可求出答案.解答:解:根据轴对称的性质2点35时,时针在9到10之间,7关于AB的对称点是5,即现在的实际时间是9:25,故答案为:9:25.点评:本题主要考查对轴对称的性质和镜面对称等知识点的理解和掌握,能理解题意得出正确结论是解此题的关键.16.(3分)关于x的方程2k+x=5的解是非正数,则k的取值范围k≥2.5.考点:解一元一次不等式;解一元一次方程.分析:首先要解这个关于x的方程,求出方程的解,根据解是非正数,可以得到一个关于k的不等式,就可以求出k的范围.解答:解:2k+x=5,移项得:x=5﹣2k,∵x的解是非正数,∴5﹣2k≤0,k≥2.5,故答案为:k≥2.5.点评:此题主要考查了解方程与不等式.解决问题的关键是用含k的代数式表示x.17.(3分)A、B两地相距30千米,小明以6千米/时的速度从A地步行到B地,若设他到B地的距离为S千米,步行时间为t小时,则S与t之间的关系式为S=30﹣6t .考点:函数关系式.分析:根据已知可以得出小明行走的路程为30﹣S,再利用行走时间乘以速度,即可得出S与t之间的关系式.解答:解:∵A、B两地相距30千米,小明以6千米/时的速度从A地步行到B地,他到B地的距离为S千米,步行时间为t小时,∴30﹣S=6t,∴S=30﹣6t,故答案为:S=30﹣6t.点评:此题主要考查了列函数关系式,根据已知得出小明行走的路程这个等量关系是解题关键.18.(3分)如图,∠A=50°,∠ACD=38°,∠ABE=32°,则∠BFC=120°.考点:三角形的外角性质.分析:连接AF并延长交BC于点G,根据三角形内角与外角的关系即可解答.解答:解:连接AF并延长交BC于点G.∵∠BFG是△ABF的外角,∴∠BFG=∠BAF+∠ABE…①,同理,∠CFG=∠CAG+∠ACD…②,①+②得,∠BFC=∠BAC+∠ACD+∠ABE=50°+38°+32°=120°.点评:此题比较简单,考查的是三角形内角与外角的关系,解答此题的关键是作出辅助线,构造出三角形.利用三角形内角与外角的关系求解.19.(3分)某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折出售,但又要保证利润不低于20%,则商店最多打 6 折.考点:一元一次不等式的应用.分析:设最多打x折,根据某商品的进价为1000元,售价为2000元,但又要保证利润不低于20%,可列不等式求解.解答:解:设最多打x折,2000x﹣1000≥1000×20%x≥0.6最低不能打6折.故答案为:6.点评:本题考查一元一次不等式的应用,关键以利润做为不等量关系列不等式.20.(3分)如图,△ABC中,AB=AC,DE是AB的中垂线,若△BCE的周长为25,且BC=10,则AB= 15 .考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE是AB的中垂线,根据线段垂直平分线的性质,即可得AE=BE,又由△BCE的周长为25,且BC=10,即可求得AC的长,又由△ABC中,AB=AC,求得答案.解答:解:∵DE是AB的中垂线,∴BE=AE,∵△BCE的周长为25,即BE+EC+BC=AE+EC+BC=AC+BC=25,又∵BC=10,∴AC=15,∴AB=AC=15.故答案为:15.点评:此题考查了线段垂直平分线的性质.此题难度不大,解题的关键是注意等量代换,注意数形结合思想的应用.21.(3分)如图,OA,BA分别表示甲、乙两名学生运动的图象,图中S与t分别表示运动路程和时间,则快者比慢者的速度每秒快 1 米.考点:函数的图象.专题:图表型.分析:根据图象可知慢者8秒走了(64﹣8)米,快者8秒走了64米,由此求出各自的速度即可求出答案.解答:解:因为慢者8秒走了64﹣8=56米,快者8秒走了64米,所以64÷8﹣56÷8=1m.故答案为1.点评:本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.22.(3分)如图,△ABC与△CDE都是等边三角形,AB=13,CD=5,∠ADE=30°,则BE= 12 .考点:全等三角形的判定与性质;等边三角形的性质.专题:计算题.分析:由等边三角形的性质得到∠BCA=∠ECD=60°,CB=CA,CE=CD,则∠BCE=∠DCA,根据三角形全等的判定得到△BCE≌△ACD,则∠BEC=∠ADC,易得到∠BEC=∠ADC=30°+60°=90°,然后根据勾股数即可得到BE.解答:解:∵△ABC与△CDE都是等边三角形,∴∠BCA=∠ECD=60°,CB=CA,CE=CD,∴∠BCE=∠DCA,∴△BCE≌△ACD,∴∠BEC=∠ADC,而∠ADE=30°,∴∠ADC=30°+60°=90°,∴∠BEC=90°,∵AB=13,CD=5,∴CE=5,在Rt△BCE中,BE===12.故答案为12.点评:本题考查了三角形全等的判定与性质:有两条边对应相等,并且它们的夹角相等的两三角形全等;全等三角形的对应角相等.也考查了等边三角形的性质以及勾股数.三、解答题23.(12分)解不等式(组)(1)1﹣2(x﹣2)<3(2).考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:(1)去括号后移项、合并同类项得到﹣2x<﹣2,不等式的两边都除以﹣2即可求出答案;(2)根据不等式性质求出不等式的解集,根据找不等式组解集的鼓励找出即可.解答:解:(1)去括号得:1﹣2x+4<3,移项、合并同类项得:﹣2x<3﹣1﹣4,﹣2x<﹣2,∴解得:x>1.(2),由①得:x<3,由②得:x>﹣9,∴不等式组的解集是﹣9<x<3.点评:本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能正确解不等式是解此题的关键.24.(6分)在网格中作△ABC关于直线l的轴对称图形.考点:作图-轴对称变换.分析:分别作出A,B,C,关于l的对称点A′,B′,C′,连接各点即可得出答案.解答:解:如图所示:点评:此题主要考查了作轴对称图形,根据已知作出关于直线l的对称点A′,B′,C′是解题关键.25.(8分)如图,已知∠A=∠D,∠1=∠2,BE=CF,B、E、F、C在一条直线上,求证:△ABF≌△DCE.考点:全等三角形的判定.专题:证明题.分析:由BE=CF,即可得BF=CE,又由∠A=∠D,∠1=∠2,根据AAS即可判定△ABF≌△DCE.解答:证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(AAS).点评:此题考查了三角形全等的判定.此题比较简单,注意判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件即可.26.(8分)一架云梯长25米,如图斜靠在一面墙上,梯子的底端离墙7米,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了8 米.考点:勾股定理的应用.专题:计算题.分析:根据梯子长度不会变这个等量关系,我们可以根据BC求AC,根据AD、AC求CD,根据CD计算CE,根据CE,BC计算BE,即可解题.解答:解:由题意知AB=DE=25米,BC=7米,AD=4米,在直角△ABC中,AC为直角边,∴AC==24米,已知AD=4米,则CD=24﹣4=20米,在直角△CDE中,CE为直角边∴CE==15米,BE=15米﹣7米=8米.故答案为:8.点评:本题考查了勾股定理在实际生活中的运用,考查了直角三角形中勾股定理的运用,本题中正确的使用勾股定理求CE的长度是解题的关键.27.(8分)甲、乙两人从A地出发到100千米外的B地旅游,甲骑摩托车,乙骑自行车,甲、乙两人离开A地的路程与时间的关系如图所示,据图象回答问题.①乙比甲早出发 4 小时;②甲平均速度是50 千米/小时;③乙平均速度是12.5 千米/小时;④甲出发后小时恰好与乙相遇.考点:一次函数的应用;函数的图象.分析:①观察图象,即可知乙比甲早出发2小时;②甲共走了2小时,路程为100,根据速度公式即可求解;③乙共走了8小时,路程为100,根据速度公式即可求解;④观察图象,可知乙路程与时间的解析式是正比例函数关系,甲路程与时间的解析式是一次函数关系,然后利用待定系数法求得函数解析式,根据相遇的知识可列方程求解.解答:解:(1)由图象可知乙比甲早出发4小时;(2)100÷2=50千米/小时;(3)100÷8=12.5千米/小时;(4)根据图象可知:乙是正比例函数,设解析式为:y=kx,∵点(8,100)在其图象上,∴100=8k,∴k=12.5,∴乙路程与时间的解析式为:y=12.5x;甲是一次函数关系,设解析式为:y=ax+b,∵点(4,0)与(6,100)在其图象上,∴,解得:,∴快车路程与时间的解析式为:y=50x﹣200.当12.5x=50x﹣200时,甲追上乙,解得:x=.﹣4=(小时).∴甲出发后小时恰好与乙相遇.故答案为:2;50;12.5;.点评:此题考查了一次函数的实际应用问题.此题难度适中,解题的关键是注意观察图象,理解题意,注意待定系数法的应用.28.(10分)(教材变式题)幼儿园有玩具若干件,分给小朋友,若每人分3件,那么还余59件;若每人分5件,那么最后一个人还少几件.求这个幼儿园有多少个玩具?有多少个小朋友?考点:一元一次不等式组的应用.专题:应用题.分析:关系式为:5×学生数>玩具件数;5×(学生数﹣1)<玩具件数.根据此列不等式组即可求解.解答:解:设小朋友有x人,根据题意得:解得29.5<x<32又因为x为正整数,所以x=30或31.当x=30时,3x+59=149;当x=31时,3x+59=152.答:该幼儿园有小朋友30人,玩具149件;或者有小朋友31人,玩具152件.点评:当题中有两个未知数时,应设相对较小的量为未知数.解决本题的关键是读懂题意,找到符合题意的不等关系式组.都和一个具体的值比较时,需注意应考虑一种情况小于具体值,另一种情况大于具体值.29.(10分)如图,梯形ABCD,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,CE与BD交于F,连接AF,G 为BC中点,连接DG交CF于M.证明:(1)CM=AB;(2)CF=AB+AF.考点:梯形;全等三角形的判定与性质.专题:证明题.分析:(1)通过ASA证明△ABD≌△MCD,根据全等三角形的即可得出性质CM=AB;(2)由△ABD≌△MCD,得到AD=DM,∠ADB=∠MDC,根据AD∥BC,得到∠ADB=∠DBC=45°,推出∠ADB=∠MDB,证出△ADF≌△MDF,即可得到答案.解答:证明:(1)∵△BDC为等腰直角三角形,CE与BD交于F,∴BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°∵∠EFB=∠DFC,∴∠EBF=∠DCF,又∵G为BC中点,AD∥BC,∴∠ADB=∠DBG=∠MDC=45°,在△ABD与△MCD中,。
重庆市江北中学校2012-2013学年(下)半期考试 七年级数学试题命题人:谭 明(全卷共五个大题,满分150分,考试时间120分钟)一、选择题 (本大题12个小题,每小题4分,共48分)1.方程413x -=的解是 ( ) A .1x = B .1x =- C .2x = D .2x =-2.下列方程的变形中,正确的是 ( ) A. 由53x -=-,得53x =+ B.由24x =-,得42x =+ C. 由103x -=,得3x = D. 由63y =,得2y = 3.若3x =-是方程2()6x m -=的解,则m 的值为 ( ) A .6 B .-12 C .-6 D .124.若代数式72x -和5x -的值互为相反数,则x 的值为 ( ) A .72 B .2 C . 92D .4 5.已知A 种饮料单价比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是: ( ) A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=6.如图,天平的两个盘内分别盛有51 g 、45 g 盐,问应该从盘A 内拿出多少盐放到盘B 内,才能使两者所盛盐的质量相等? ( ) A. 4g B.3g C. 5g D. 6g7.方程组⎩⎨⎧=--=82352y x x y ,消去y 后得到的方程是 ( )A.01043=--x xB.8543=+-x xC.81043=+-x xD.8)25(23=--x xAB8.方程组⎩⎨⎧=++=.4,2y x y x 的解是 ( )A .⎩⎨⎧==.3,1y xB .⎩⎨⎧==.0,2y xC .⎩⎨⎧==.2,2y x D .⎩⎨⎧==.1,3y x9.不等式组⎩⎨⎧-><-62,31x x 的解集为 ( )A .x >-3B .x <4C .-3<x <4D .-4<x <3 10.若代数式36x +的值是非正数,则x 的取值范围是 ( ) A.2x <- B.2x ≤- C.2x < D.2x ≥11.若3a <,则关于x 的不等式(3)3a x a -<-的解集是 ( ) A. 0x < B. 1x >- C .1x < D. 1x >12.小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时;爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是 ( )A .18千克B .22千克C .28千克D .30千克 二、填空题 (本大题6个小题,每小题4分,共24分) 13.若 2,a b ac >则 2bc . 14.已知32ba xy 与253a b x y --是同类项,则a = ,b =15.满足不等式145->-x x 的最大整数解是 .16.服饰店店主小胡,将一件标价为200元的衣服以6折销售后,获利20%,则这衣服的进价是 元. 17.已知35473=++zy x ,4025=++z y x ,则=++z y x .18.社会和谐发展,百姓生活水平不断提高,购买理财产品成为百姓常见投资渠道。
初中数学试卷金戈铁骑整理制作2010-2011学年重庆市巴蜀中学七年级(下)期末数学试卷一、选择题(12×4=48分)1.(4分)下列图案中,是轴对称图形的是()A.B.C.D.2.(4分)以下每组数分别是三根木棒的长度,用它们不能摆成三角形的是()A.4cm,5cm,6cm B.3cm,3cm,3cm C.3cm,4cm,5cm D.1cm,2cm,3cm3.(4分)下列事件是必然事件的是()A.某运动员投篮时连续3次全中B.太阳从西方升起C.打开电视正在播放动画片《喜羊羊与灰太狼》D.若a≤0,则|a|=﹣a4.(4分)下列说法正确的是()A.近似数28.00与近似数28.0的精确度一样B.近似数0.32与近似数0.302的有效数字一样C.近似数2.4×102与240的精确度一样D.近似数220与近似数0.202都有三个有效数字5.(4分)下列各组条件中,不能判定△ABC≌△A′B′C′的是()A.A C=A′C′,BC=B′C′,∠C=∠C′B.∠A=∠A′,BC=B′C′,AC=A′C′C.A C=A′C′,AB=A′B′,∠A=∠A′D.A C=A′C′,∠A=∠A′,∠C=∠C′6.(4分)适合下列条件的△ABC中,直角三角形的个数为()①∠A:∠B:∠C=1:2:3 ②∠A=2∠B=3∠C ③a:b:c=1:1:2 ④a:b:c=5:12:13.A.1B.2C.3D.47.(4分)如图,在底面周长为6,高为4的圆柱体上有A、B两点,则A、B最短矩离为()A.B.52 C.10 D.58.(4分)若不等式(a ﹣1)x >1的解集是,则( )A . a >0B . a <0C . a <1D . a >1 9.(4分)某产品生产流水线每小时生产100件产品,生产前没产品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y 与时间t 关系图为( ) A .B .C .D .10.(4分)下列命题中:①若a >b ,c ≠0,则ac >bc ;②若,则a <0,b >0;③若ac 2>bc 2,则a >b ;④若a <b <0,则;⑤若,则a >b .正确的有( )个.A . 1个B . 2个C . 3个D . 4个11.(4分)已知:如图,△ABC 中,∠C=90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且AB=10,BC=8,CA=6,则点O 到三边AB 、AC 和BC 的距离分别等于( )A . 2、2、2B . 3、3、3C . 4、4、4D . 2、3、5 12.(4分)如图,正方形ABCD 边长为12,E 为CD 上一点,沿AE 将△ADE 折叠得△AEF ,延长EF 交BC 于G ,连接AG 、CF ,BG=6,下列说法正确的有( ) ①△ABG ≌△AFG ;②DE=4;③AG ∥CF ;④.A . 1个B . 2个C . 3个D . 4个二、填空题(3×10=30分) 13.(3分)(2007•滨州)0.000328用科学记数法表示(保留二个有效数字)为 _________ . 14.(3分)在不透明的口袋中有大小形状完全一样的红球,白球和黑球,数量分别为2,3,4个,摇匀后从口袋中任取一个球是白球的概率 _________ . 15.(3分)小芳在镜子里看到镜子对面电子钟的指数是2:35,现在的实际时间是 _________ .16.(3分)关于x的方程2k+x=5的解是非正数,则k的取值范围_________.17.(3分)A、B两地相距30千米,小明以6千米/时的速度从A地步行到B地,若设他到B地的距离为S千米,步行时间为t小时,则S与t之间的关系式为_________.18.(3分)如图,∠A=50°,∠ACD=38°,∠ABE=32°,则∠BFC=_________.19.(3分)某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折出售,但又要保证利润不低于20%,则商店最多打_________折.20.(3分)如图,△ABC中,AB=AC,DE是AB的中垂线,若△BCE的周长为25,且BC=10,则AB=_________.21.(3分)如图,OA,BA分别表示甲、乙两名学生运动的图象,图中S与t分别表示运动路程和时间,则快者比慢者的速度每秒快_________米.22.(3分)如图,△ABC与△CDE都是等边三角形,AB=13,CD=5,∠ADE=30°,则BE=_________.三、解答题23.(12分)解不等式(组)(1)1﹣2(x﹣2)<3(2).24.(6分)在网格中作△ABC关于直线l的轴对称图形.25.(8分)如图,已知∠A=∠D,∠1=∠2,BE=CF,B、E、F、C在一条直线上,求证:△ABF≌△DCE.26.(8分)一架云梯长25米,如图斜靠在一面墙上,梯子的底端离墙7米,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了_________米.27.(8分)甲、乙两人从A地出发到100千米外的B地旅游,甲骑摩托车,乙骑自行车,甲、乙两人离开A地的路程与时间的关系如图所示,据图象回答问题.①乙比甲早出发_________小时;②甲平均速度是_________千米/小时;③乙平均速度是_________千米/小时;④甲出发后_________小时恰好与乙相遇.28.(10分)(教材变式题)幼儿园有玩具若干件,分给小朋友,若每人分3件,那么还余59件;若每人分5件,那么最后一个人还少几件.求这个幼儿园有多少个玩具?有多少个小朋友?29.(10分)如图,梯形ABCD,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,CE与BD交于F,连接AF,G 为BC中点,连接DG交CF于M.证明:(1)CM=AB;(2)CF=AB+AF.30.(10分)(2003•吉林)如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒dcm.图②是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.(1)参照图②,求a、b及图②中的c值;(2)求d的值;(3)设点P离开点A的路程为y1(cm),点Q到点A还需走的路程为y2(cm),请分别写出动点P、Q改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P、Q相遇时x的值.(4)当点Q出发_________秒时,点P、点Q在运动路线上相距的路程为25cm.七年级(下)期末数学试卷参考答案与试题解析一、选择题(12×4=48分)1.(4分)下列图案中,是轴对称图形的是()A.B.C.D.考点:轴对称图形.专题:常规题型.分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此作答.解答:解:根据轴对称图形的定义:A、B和D不是轴对称图形,C是轴对称图形.故选C.点评:本题考查了轴对称图形的概念.轴对称的关键是寻找对称轴,图象沿某一直线折叠后可以重合.2.(4分)以下每组数分别是三根木棒的长度,用它们不能摆成三角形的是()A.4cm,5cm,6cm B.3cm,3cm,3cm C.3cm,4cm,5cm D.1cm,2cm,3cm考点:三角形三边关系.专题:计算题.分析:根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.解答:解:A、4+5>6,故以这三根木棒可以构成三角形,不符合题意;B、3+3>3,故以这三根木棒能构成三角形,不符合题意;C、3+4>5,故以这三根木棒能构成三角形,不符合题意;D、1+2=3,故以这三根木棒不能构成三角形,符合题意.故选D.点评:本题主要考查了三角形的三边关系,正确理解定理是解题关键.3.(4分)下列事件是必然事件的是()A.某运动员投篮时连续3次全中B.太阳从西方升起C.打开电视正在播放动画片《喜羊羊与灰太狼》D.若a≤0,则|a|=﹣a考点:随机事件.分析:根据必然事件的定义逐项进行分析即可做出判断,必然事件是一定会发生的事件.解答:解:A、此运动员投篮时不一定每次都连续3次全中,不是必然事件,故本选项错误;B、很明显,本项不是必然事件,故本选项错误;C、本项的事件,很明显不一定必然发生,故本选项错误;D、很明显,当a为非负数时,其绝对值一定为﹣a,故本选项正确.故选D.点评:本题主要考查必然事件的定义,关键在于根据必然事件的定义认真的逐项进行分析.4.(4分)下列说法正确的是()A.近似数28.00与近似数28.0的精确度一样B.近似数0.32与近似数0.302的有效数字一样C.近似数2.4×102与240的精确度一样D.近似数220与近似数0.202都有三个有效数字考点:近似数和有效数字.专题:推理填空题.分析:A、利用近似数的定义即可判定;B、利用近似数和有效数字的定义即可判定;C、利用有效数字和科学记数法的定义即可判定;D、利用有效数字和近似数的定义即可判定.解答:解:A、近似数28.00精确到0.01,近似数28.0的精确到0.1,故选项错误;B、近似数0.32的有效数字有3、2,近似数0.302的有效数字有3、0、2,故选项错误;C、近似数2.4×102精确到十位,240的精确度精确到个位,故选项错误;D、近似数220与近似数0.202都有三个有效数字,故选项正确.故选D.点评:此题这样考查了有效数字和近似数的定义,近似数精确到哪一位,应当看末位数字实际在哪一位,有效数字是从第一个不为0的数字开始.5.(4分)下列各组条件中,不能判定△ABC≌△A′B′C′的是()A.A C=A′C′,BC=B′C′,∠C=∠C′B.∠A=∠A′,BC=B′C′,AC=A′C′C.A C=A′C′,AB=A′B′,∠A=∠A′D.A C=A′C′,∠A=∠A′,∠C=∠C′考点:全等三角形的判定.专题:证明题.分析:根据全等三角形的判定方法,对各选项分别判断即可得解.解答:解:A、AC=A'C',BC=B'C',∠C=∠C',根据SAS可判定△ABC和△A'B'C'全等;B、∠A=∠A',BC=B'C',AC=A'C',根据SSA不能判定△ABC和△A'B'C'一定全等;C、AC=A'C',BA=A'B',∠A=∠A',根据SAS可判定△ABC和△A'B'C'全等;D、∠A=∠A',∠C=∠C',AC=A'C',根据AAS可判定△ABC和△A'B'C'全等.故选B.点评:本题考查了全等三角形的判定,注意:要证明两个三角形全等,至少要有一条边.没有SSA定理.6.(4分)适合下列条件的△ABC中,直角三角形的个数为()①∠A:∠B:∠C=1:2:3 ②∠A=2∠B=3∠C ③a:b:c=1:1:2 ④a:b:c=5:12:13.A.1B.2C.3D.4考点:勾股定理的逆定理.专题:方程思想.分析:先根据三角形的内角和是180°对①②中△ABC的形状作出判断,再根据勾股定理的逆定理对③④中△ABC的形状进行判断即可.解答:解:①∵△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x,∵∠A+∠B+∠C=180°,∴x+2x+3x=180°,解得x=30°,∴∠C=3x=2×30°=90°,∴△ABC是直角三角形,故本小题正确;②∵△ABC中,∠A=2∠B=3∠C,∴设∠A=x,则∠B=,∠C=,∵∠A+∠B+∠C=180°,∴x++=180°,解得x≈98°,∴△ABC是钝角三角形,故本小题错误;③∵△ABC中,a:b:c=1:1:2,∴设a=x,则b=x,c=2x,∵x2+x2=2x2≠(2x)2,即a2+b2≠c2,∴△ABC不是直角三角形,故本小题错误;④∵△ABC中,a:b:c=5:12:13,∴设a=5x,则b=12x,c=13x,∵(5x)2+(12x)2=169x2=(13x)2,即a2+b2=c2,∴△ABC是直角三角形,故本小题正确.故选B.点评:本题考查的是三角形内角和定理及勾股定理的逆定理,解答此题的关键是利用方程的思想把△ABC中的边角关系转化为求x的值,再根据直角三角形的性质进行判断.7.(4分)如图,在底面周长为6,高为4的圆柱体上有A、B两点,则A、B最短矩离为()A.B.52 C.10 D.5考点:平面展开-最短路径问题.分析:要求圆柱体上两点之间的最短路径,最直接的作法,就是将圆柱体展开,然后利用两点之间线段最短解答.解答:解:如图将圆柱体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.A、B最短矩离===5.故选D.点评:考查了平面展开﹣最短路径问题,将圆柱体侧面展开为长方形,根据两点之间,线段最短,由勾股定理即可求解.8.(4分)若不等式(a﹣1)x>1的解集是,则()A.a>0 B.a<0 C.a<1 D.a>1考点:解一元一次不等式.分析:不等式(a﹣1)x>1的解集是,即不等式两边同时除以a﹣1,不等号的方向改变,则a﹣1<0,即可求得a的范围.解答:解:根据题意得:a﹣1<0解得:a<1故选C.点评:本题考查了一元一次不等式的解法,关键是理解a﹣1<0.9.(4分)某产品生产流水线每小时生产100件产品,生产前没产品积压,生产3小时后,安排工人装箱,若每小时装150件,则未装箱产品数量y与时间t关系图为()A.B.C.D.考点:函数的图象.专题:图表型.分析:因为生产某种产品每小时可生产100件,生产前没有积压,生产3小时后安排工人装箱,每小时可装150件,所以生产前没有积压,图象匀速上升到一定程度开始下匀速降为0,由此即可求出答案.解答:解:根据题意可知:生产前没有积压代表图象从0开始,生产3小时后安排工人装箱每小时可装150件代表图象匀速上升到一定程度开始下匀速降为0.故选C.点评:本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.10.(4分)下列命题中:①若a>b,c≠0,则ac>bc;②若,则a<0,b>0;③若ac2>bc2,则a>b;④若a<b <0,则;⑤若,则a>b.正确的有()个.A.1个B.2个C.3个D.4个考点:不等式的性质.专题:计算题.分析:根据不等式的基本性质(①不等式两边加(或减)同一个数(或式子),不等号的方向不变;②不等式两边乘(或除以)同一个正数,不等号的方向不变;③不等式两边乘(或除以)同一个负数,不等号的方向改变)对各项进行一一判断.解答:解:①当c<0时,ac<bc;故本选项错误;②若,则a、b异号,所以a<0,b>0;或a>0,b<0;故本选项错误;③∵ac2>bc2,∴c2>0,∴a>b;故本选项正确;④若a<b<0,则不等式的两边同时除以b,不等号的方向发生改变,即;故本选项正确;⑤∵,∴c2>0,∴原不等式的两边同时乘以c2,不等式仍然成立,即a>b;故本选项正确.综上所述,正确的说法共有3个.故选C.点评:主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.(4分)已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10,BC=8,CA=6,则点O到三边AB、AC和BC的距离分别等于()A.2、2、2 B.3、3、3 C.4、4、4 D.2、3、5考点:角平分线的性质.专题:计算题.分析:由角平分线的性质易得OE=OF=OD,AE=AF,CE=CD,BD=BF,设OE=OF=OD=x,则CE=CD=x,BD=BF=8﹣x,AF=AE=6﹣x,所以6﹣x+8﹣x=10,解答即可.解答:解:连接OB,∵点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,∴OE=OF=OD,又∵OB是公共边,∴Rt△BOF≌Rt△BOD(HL),∴BD=BF,同理,AE=AF,CE=CD,∵∠C=90°,OD⊥BC,OE⊥AC,OF⊥AB,OD=OE,∴OECD是正方形,设OE=OF=OD=x,则CE=CD=x,BD=BF=8﹣x,AF=AE=6﹣x,∴BF+FA=AB=10,即6﹣x+8﹣x=10,解得x=2.则OE=OF=OD=2.故选A.点评:此题综合考查角平分线的性质、全等三角形的判定和性质和正方形的判定等知识点,设未知数,并用未知数表示各边是关键.12.(4分)如图,正方形ABCD边长为12,E为CD上一点,沿AE将△ADE折叠得△AEF,延长EF交BC于G,连接AG、CF,BG=6,下列说法正确的有()①△ABG≌△AFG;②DE=4;③AG∥CF;④.A.1个B.2个C.3个D.4个考点:翻折变换(折叠问题);正方形的性质.分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE﹣S△FEC,求得面积比较即可.解答:解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG(HL);②正确.因为:EF=DE,设DE=FE=x,则CG=6,EC=12﹣x.在直角△ECG中,根据勾股定理,得(12﹣x)2+36=(x+6)2,解得x=4.∴DE=4.③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∵∠AGB=∠AGF,∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④正确.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴=,EF=DE=4,GF=6,∴EG=10,∴△EFH∽△EGC,∴相似比为:==,∴S△FGC=S△GCE﹣S△FEC=×6×8﹣×8×(×6)=.综上可得①②③④正确,共4个.故选D.点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题(3×10=30分)13.(3分)(2007•滨州)0.000328用科学记数法表示(保留二个有效数字)为 3.3×10﹣4.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值>10时,n是正数,当原数的绝对值<1时,n是负数.有效数字的计算方法是:从左边第一个不是0的开始,后面所有的数都是有效数字.解答:解:0.000328=3.28×10﹣4≈3.3×10﹣4.点评:此题考查科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.保留2个有效数字,要观察第3个有效数字,四舍五入.14.(3分)在不透明的口袋中有大小形状完全一样的红球,白球和黑球,数量分别为2,3,4个,摇匀后从口袋中任取一个球是白球的概率.考点:概率公式.专题:计算题.分析:根据题意,易得这个不透明的袋子里有9个球,已知其中有3个白球,根据概率的计算公式可得答案.解答:解:这个不透明的袋子里有9个球,其中3个白球,随意地摸出一球,是白球的概率为=;故答案为.点评:本题主要考查概率公式,用到的知识点为:概率=所求情况数与总情况数之比.关键是准确找出总情况数目与符合条件的情况数目.15.(3分)小芳在镜子里看到镜子对面电子钟的指数是2:35,现在的实际时间是9:25.考点:镜面对称.分析:根据轴对称的性质,求出时针和分针的对称点,即可求出答案.解答:解:根据轴对称的性质2点35时,时针在9到10之间,7关于AB的对称点是5,即现在的实际时间是9:25,故答案为:9:25.点评:本题主要考查对轴对称的性质和镜面对称等知识点的理解和掌握,能理解题意得出正确结论是解此题的关键.16.(3分)关于x的方程2k+x=5的解是非正数,则k的取值范围k≥2.5.考点:解一元一次不等式;解一元一次方程.分析:首先要解这个关于x的方程,求出方程的解,根据解是非正数,可以得到一个关于k的不等式,就可以求出k的范围.解答:解:2k+x=5,移项得:x=5﹣2k,∵x的解是非正数,∴5﹣2k≤0,k≥2.5,故答案为:k≥2.5.点评:此题主要考查了解方程与不等式.解决问题的关键是用含k的代数式表示x.17.(3分)A、B两地相距30千米,小明以6千米/时的速度从A地步行到B地,若设他到B地的距离为S千米,步行时间为t小时,则S与t之间的关系式为S=30﹣6t.考点:函数关系式.分析:根据已知可以得出小明行走的路程为30﹣S,再利用行走时间乘以速度,即可得出S与t之间的关系式.解答:解:∵A、B两地相距30千米,小明以6千米/时的速度从A地步行到B地,他到B地的距离为S千米,步行时间为t小时,∴30﹣S=6t,∴S=30﹣6t,故答案为:S=30﹣6t.点评:此题主要考查了列函数关系式,根据已知得出小明行走的路程这个等量关系是解题关键.18.(3分)如图,∠A=50°,∠ACD=38°,∠ABE=32°,则∠BFC=120°.考点:三角形的外角性质.分析:连接AF并延长交BC于点G,根据三角形内角与外角的关系即可解答.解答:解:连接AF并延长交BC于点G.∵∠BFG是△ABF的外角,∴∠BFG=∠BAF+∠ABE…①,同理,∠CFG=∠CAG+∠ACD…②,①+②得,∠BFC=∠BAC+∠ACD+∠ABE=50°+38°+32°=120°.点评:此题比较简单,考查的是三角形内角与外角的关系,解答此题的关键是作出辅助线,构造出三角形.利用三角形内角与外角的关系求解.19.(3分)某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折出售,但又要保证利润不低于20%,则商店最多打6折.考点:一元一次不等式的应用.分析:设最多打x折,根据某商品的进价为1000元,售价为2000元,但又要保证利润不低于20%,可列不等式求解.解答:解:设最多打x折,2000x﹣1000≥1000×20%x≥0.6最低不能打6折.故答案为:6.点评:本题考查一元一次不等式的应用,关键以利润做为不等量关系列不等式.20.(3分)如图,△ABC中,AB=AC,DE是AB的中垂线,若△BCE的周长为25,且BC=10,则AB=15.考点:线段垂直平分线的性质;等腰三角形的性质.分析:由DE是AB的中垂线,根据线段垂直平分线的性质,即可得AE=BE,又由△BCE的周长为25,且BC=10,即可求得AC的长,又由△ABC中,AB=AC,求得答案.解答:解:∵DE是AB的中垂线,∴BE=AE,∵△BCE的周长为25,即BE+EC+BC=AE+EC+BC=AC+BC=25,又∵BC=10,∴AC=15,∴AB=AC=15.故答案为:15.点评:此题考查了线段垂直平分线的性质.此题难度不大,解题的关键是注意等量代换,注意数形结合思想的应用.21.(3分)如图,OA,BA分别表示甲、乙两名学生运动的图象,图中S与t分别表示运动路程和时间,则快者比慢者的速度每秒快1米.考点:函数的图象.专题:图表型.分析:根据图象可知慢者8秒走了(64﹣8)米,快者8秒走了64米,由此求出各自的速度即可求出答案.解答:解:因为慢者8秒走了64﹣8=56米,快者8秒走了64米,所以64÷8﹣56÷8=1m.故答案为1.点评:本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.22.(3分)如图,△ABC与△CDE都是等边三角形,AB=13,CD=5,∠ADE=30°,则BE=12.考点:全等三角形的判定与性质;等边三角形的性质.专题:计算题.分析:由等边三角形的性质得到∠BCA=∠ECD=60°,CB=CA,CE=CD,则∠BCE=∠DCA,根据三角形全等的判定得到△BCE≌△ACD,则∠BEC=∠ADC,易得到∠BEC=∠ADC=30°+60°=90°,然后根据勾股数即可得到BE.解答:解:∵△ABC与△CDE都是等边三角形,∴∠BCA=∠ECD=60°,CB=CA,CE=CD,∴∠BCE=∠DCA,∴△BCE≌△ACD,∴∠BEC=∠ADC,而∠ADE=30°,∴∠ADC=30°+60°=90°,∴∠BEC=90°,∵AB=13,CD=5,∴CE=5,在Rt△BCE中,BE===12.故答案为12.点评:本题考查了三角形全等的判定与性质:有两条边对应相等,并且它们的夹角相等的两三角形全等;全等三角形的对应角相等.也考查了等边三角形的性质以及勾股数.三、解答题23.(12分)解不等式(组)(1)1﹣2(x﹣2)<3(2).考点:解一元一次不等式组;不等式的性质;解一元一次不等式.专题:计算题.分析:(1)去括号后移项、合并同类项得到﹣2x<﹣2,不等式的两边都除以﹣2即可求出答案;(2)根据不等式性质求出不等式的解集,根据找不等式组解集的鼓励找出即可.解答:解:(1)去括号得:1﹣2x+4<3,移项、合并同类项得:﹣2x<3﹣1﹣4,﹣2x<﹣2,∴解得:x>1.(2),由①得:x<3,由②得:x>﹣9,∴不等式组的解集是﹣9<x<3.点评:本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能正确解不等式是解此题的关键.24.(6分)在网格中作△ABC关于直线l的轴对称图形.考点:作图-轴对称变换.分析:分别作出A,B,C,关于l的对称点A′,B′,C′,连接各点即可得出答案.解答:解:如图所示:点评:此题主要考查了作轴对称图形,根据已知作出关于直线l的对称点A′,B′,C′是解题关键.25.(8分)如图,已知∠A=∠D,∠1=∠2,BE=CF,B、E、F、C在一条直线上,求证:△ABF≌△DCE.考点:全等三角形的判定.专题:证明题.分析:由BE=CF,即可得BF=CE,又由∠A=∠D,∠1=∠2,根据AAS即可判定△ABF≌△DCE.解答:证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(AAS).点评:此题考查了三角形全等的判定.此题比较简单,注意判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件即可.26.(8分)一架云梯长25米,如图斜靠在一面墙上,梯子的底端离墙7米,如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了8米.考点:勾股定理的应用.专题:计算题.分析:根据梯子长度不会变这个等量关系,我们可以根据BC求AC,根据AD、AC求CD,根据CD计算CE,根据CE,BC计算BE,即可解题.解答:解:由题意知AB=DE=25米,BC=7米,AD=4米,在直角△ABC中,AC为直角边,∴AC==24米,已知AD=4米,则CD=24﹣4=20米,在直角△CDE中,CE为直角边∴CE==15米,BE=15米﹣7米=8米.故答案为:8.点评:本题考查了勾股定理在实际生活中的运用,考查了直角三角形中勾股定理的运用,本题中正确的使用勾股定理求CE的长度是解题的关键.27.(8分)甲、乙两人从A地出发到100千米外的B地旅游,甲骑摩托车,乙骑自行车,甲、乙两人离开A地的路程与时间的关系如图所示,据图象回答问题.①乙比甲早出发4小时;②甲平均速度是50千米/小时;③乙平均速度是12.5千米/小时;④甲出发后小时恰好与乙相遇.考点:一次函数的应用;函数的图象.分析:①观察图象,即可知乙比甲早出发2小时;②甲共走了2小时,路程为100,根据速度公式即可求解;③乙共走了8小时,路程为100,根据速度公式即可求解;④观察图象,可知乙路程与时间的解析式是正比例函数关系,甲路程与时间的解析式是一次函数关系,然后利用待定系数法求得函数解析式,根据相遇的知识可列方程求解.解答:解:(1)由图象可知乙比甲早出发4小时;(2)100÷2=50千米/小时;(3)100÷8=12.5千米/小时;(4)根据图象可知:乙是正比例函数,设解析式为:y=kx,∵点(8,100)在其图象上,∴100=8k,∴k=12.5,∴乙路程与时间的解析式为:y=12.5x;甲是一次函数关系,设解析式为:y=ax+b,∵点(4,0)与(6,100)在其图象上,∴,解得:,∴快车路程与时间的解析式为:y=50x﹣200.当12.5x=50x﹣200时,甲追上乙,解得:x=.﹣4=(小时).∴甲出发后小时恰好与乙相遇.故答案为:2;50;12.5;.点评:此题考查了一次函数的实际应用问题.此题难度适中,解题的关键是注意观察图象,理解题意,注意待定系数法的应用.28.(10分)(教材变式题)幼儿园有玩具若干件,分给小朋友,若每人分3件,那么还余59件;若每人分5件,那么最后一个人还少几件.求这个幼儿园有多少个玩具?有多少个小朋友?考点:一元一次不等式组的应用.专题:应用题.分析:关系式为:5×学生数>玩具件数;5×(学生数﹣1)<玩具件数.根据此列不等式组即可求解.解答:解:设小朋友有x人,根据题意得:解得29.5<x<32又因为x为正整数,所以x=30或31.当x=30时,3x+59=149;当x=31时,3x+59=152.答:该幼儿园有小朋友30人,玩具149件;或者有小朋友31人,玩具152件.点评:当题中有两个未知数时,应设相对较小的量为未知数.解决本题的关键是读懂题意,找到符合题意的不等关系式组.都和一个具体的值比较时,需注意应考虑一种情况小于具体值,另一种情况大于具体值.29.(10分)如图,梯形ABCD,AD∥BC,CE⊥AB,△BDC为等腰直角三角形,CE与BD交于F,连接AF,G 为BC中点,连接DG交CF于M.证明:(1)CM=AB;(2)CF=AB+AF.考点:梯形;全等三角形的判定与性质.专题:证明题.分析:(1)通过ASA证明△ABD≌△MCD,根据全等三角形的即可得出性质CM=AB;(2)由△ABD≌△MCD,得到AD=DM,∠ADB=∠MDC,根据AD∥BC,得到∠ADB=∠DBC=45°,推出∠ADB=∠MDB,证出△ADF≌△MDF,即可得到答案.解答:证明:(1)∵△BDC为等腰直角三角形,CE与BD交于F,∴BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°∵∠EFB=∠DFC,∴∠EBF=∠DCF,又∵G为BC中点,AD∥BC,∴∠ADB=∠DBG=∠MDC=45°,在△ABD与△MCD中,,∴△ABD≌△MCD,∴CM=AB;(2)∵△ABD≌△MCD,∴AD=MD,又∵G为BC中点,AD∥BC,∴∠ADB=∠DBG=∠MDB=45°,在△AFD与△MFD中,,∴△AFD≌△MFD,∴AF=MF;∴CF=CM+MF=AB+AF,∴CF=AB+AF.点评:本题主要考查对梯形,全等三角形的性质和判定,平行线的性质,直角三角形斜边上的中线等知识点的理解和掌握,综合运用性质进行推理是解此题的关键.30.(10分)(2003•吉林)如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变。
2013—2014学年度第二学期期末考试一、选择题:(本题共12个小题,每小题4分,共48分)1.下列电视台台标中,是轴对称图形的是( )A. B. C. D.2.下列事件为必然事件的是( )A .小王参加本次数学考试,成绩是150分B .某射击运动员射靶一次,正中靶心C .打开电视机,CCTV 第一套节目正在播放新闻D .口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球3.下列计算错误的是( )A.73422aa a =⋅ B.a a a 2234=÷ C.()22242b a b a +=+ D. ()()1112-=+-a a a4.如图,已知直线a∥b,直线c 与a 、b 分别交于A 、B ;且∠1=120°,则∠2=( ) (4题图)A.30°B.60°C.120°D.150°5.如图,在△ABC 中,∠A=90°,AB =4,∠ABC 的平分线交AC 边于P 点,BP =5,则P 点到BC 边的距离为( )A.2B.3C.4D.56.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别, 摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中 10次摸到黑球,则估计盒子中大约有白球( )A .12个B .16个C .20个D .30个7.如图,点E 在正方形ABCD 内,满足∠AEB =90°,AE =6,BE =8,则阴影部分的面积是( )A.48B.60C.76D.80 (7题图)8.2014年第16届中国重庆汽车工业博览会在悦来会展中心举行。
小明开车从家去看展览, 预计1个小时能到达,行驶了半个小时,刚好行驶了一半路程,遇到堵车道路被“堵死”, 堵了几分钟突然发现旁边刚好有一个轻轨站,于是小明将车停在轻轨站的车库,然后坐轻 轨去观看“汽博会”,结果按预计时间到达。
(9题图)
(10题图
)
(3题图)
(5题图)
初一数学试题卷
一、选择题:(每小题4分,共48分)
1.大象是世界上最大的陆栖动物,它的体重可达到好几吨(1吨=1000千克),下面哪个动物的体重相当于它的百万分之一( ) A .蜜蜂
B. 蚂蚁
C. 啄木鸟
D. 公鸡
2.下列运算中,正确的是( )
A .2
3
6
x x x ⋅= B. 333()ab a b = C .2
325a a a += D. 22(1)1a a -=-
3.在建筑工地上,我们常可看见如图所示的用木条EF 固定矩形门框ABCD 的情形,这
种做法的根据是( ) A .两点之间线段最短 B .两点确定一条直线 C .三角形的稳定性
D .矩形的四个角是直角 4.一个正方体的棱长为2
210⨯毫米,则它的体积为( )毫米3.
A .6
610⨯ B. 5
810⨯
C. 5
610⨯
D. 6
810⨯
5.如图所示,已知AB ∥EF ∥,DC EG ∥BD ,则图中与1∠相等
的角(1∠除外)共有( ) A .6个
B. 5个
C. 4个
D. 3个
6.从1,2,3,……,9九个自然数中,任取一个数字,取出的数字正好是偶数的概率是
( )
A .0
B. 1
C.
1
2
D.
49
7.已知四根长度分别为3cm ,6cm ,8cm ,10cm 的木棒,任意选取三根木棒组成一个三角形,那么可以组成三角形的个数为( ) A .1个
B. 2个
C. 3个
D. 4个
8.若b 3,3==y
x
a ,则y x +23
等于( )
A .b a +2
B. b a 2
C.ab 2
D.b a +2
9.如图所示,已知在ABC ∆中,90,6,8,10,C AC BC AB BD ∠=︒===平分ABC ∠交
AC 于点,D DE AB ⊥交AB 于点E ,则ADE ∆的周长为( )
A .6cm
B. 8cm
C. 10cm
D. 以上都不对
10.如图所示,已知,OB OA OD OC ==,且65,20O C ∠=︒∠=︒,
则AEB ∠的度数为( ) A .90°
B. 115°
C. 95°
D. 105°
11.如图所示,一束光线与水平地面成60°角照射地面,现在地面AB
上支放一个平面镜CD ,使这束光线经过平面镜反射后成水平光 线,则平面镜CD 与地面AB 所成角DCB ∠的度数等于( )
(17题图)
人数/人
(13题图)
A .30° B. 45° C. 50° D. 60°
12.在四边形ABCD 中,对角线AB BAD AC ,平分∠>AD ,下列结
论中正确的是( ).
A .AD A
B ->CD CB - B .AD AB -=CD CB -
C .A
D AB -<CD CB -
D .AD AB -与CD CB -的大小关系不确定 二、填空题(每小题3分,共30分)
13.如图所示,已知直线1l ∥2l ,且被直线34,l l 所截,请将图中1,2,3∠∠∠按从小到大的
顺序依次用“<”符号连接: .
14.已知正方形的边长为a ,如果它的边长增加4,那么它的面积增加 .
15. 如图所示,已知点B 、C 、F 、E 共线,12,AF CD ∠=∠=,要使ABF ∆≌DEC ∆,
那么可以补充下列哪一个条件 .
①A D ∠=∠;②BC EF =;③AB DE =;④AB ∥DE ;⑤AF ∥DC . 16. 如图所示,雷达可用于飞机导航,也可用来监测飞机的飞行.假设某时刻雷达向飞机
发射电磁波,电磁波遇到飞机后反射,又被雷达接收,这个过程共用了5
5.2410
-⨯秒.已知电磁波的传播速度为8
3.010⨯米/秒,则该时刻飞机与雷达站的距离是__________米.(用科学计数法表示结果)
17
.如图,该图片是变压器铁芯片的示意图,尺寸如图所示,则变压器铁芯片的周长
是
.(用含有a 、b 的代数式表示) 18. 如图所示,正方形ABCD 和正方形EFGH 是两个
全等的正方形,F 、D 分别是它们的几何中心(即 正方形两条对角线的交点),假设可以随意在图中取 点,那么这个点取在阴影部分的概率是 . 19.某学校为了了解学生的课外阅读情况,
随机调查了50名学生,得到他们在某 一天各自课外阅读所用时间的数据,结 果如图,根据此条形图估计这一天该校
(15题图)
(16题图)
(18题图)
(12题图)
学生平均课外阅读时间为 小时.
20.如图所示,在ABC ∆中,,,,158B C FD BC ED AB AFD ∠=∠⊥⊥∠=︒,
则EDF ∠=
21.如图所示,将长方形纸片ABCD 沿EF
折叠,使D 与B 重合,C 点落在C '处, 若148∠=︒,则EFC ∠= .
22.如图所示,一串有黑有白、其排列有一
定规律的珠子,被盒子遮住了一部分,则 这串珠子被盒子遮住的部分有____颗珠子.
三、解答题(共7题,共72分) 23.计算(共4题,每题6分)
(1)()331312
2--⎪
⎭
⎫ ⎝⎛-+----π; (2)(1)(32)(1)x x x x ---+;
(3)()[]
()xy xy xy xy x 663242÷++-;
(4)22(2)(2)a b a b +-.
24.(6分)已知3,2m n mn +==,求(1)22
m mn n ++;(2)m n n m
+.
25.(8分)当12,2
x y ==时,求代数式22
()()()(3)x y x y x y x xy +-+---的值.
26.(8分)如图,已知,,,12AB CB CD CB ⊥⊥∠=∠.那么EB ∥FC 吗?(请完成下列填空).
结论:EB ∥FC
理由如下:∵,AB CB CD CB ⊥⊥(已知)
∴ABC ∠= =90°(垂直的定义) 即1390,2490∠+∠=︒∠+∠=︒ ∵12∠=∠(已知)
∴34∠=∠( )
∴ ∥ ( ) 27.(8分)2010年4月14日我国青海省玉树县发生了7.1级地震,全国人民积极参加救
助和爱心捐款,下图(1)是某市某中学“献爱心”自愿捐款活动中学生捐款情况制成的条形图,图(2)是该中学校学生人数比例分布图。
该校共有学生1000人。
(1)九年级有多少学生? (2)九年级学生共捐款1540元,请计算出九年
级学生的人均捐款数额并在图(1)的条形统计 图中填出九年级的人均捐款数额是多少元? (3)该校学生平均每人捐款多少元?
28.(8分)如图所示,已知在ABC ∆中,BAC ∠=90°,
,AB AC l =是过A 点的直线,BD l ⊥交直线l 于点,D CE l ⊥交直线l 于点E . (1)求证:ABD ∆≌CAE ∆. (2)若9,4BD CE ==,求DE 的长.
七年级
34% 八年级
38% 九年级 图(2)
七年级 八年级 图(1) (
29.(10分)已知:在ABC ∆中,60,,B AD CE ∠=︒分别是,BAC BCA ∠∠的角平分线,
,AD CE 相交于点F .
(1)若90ACB ∠=︒,如图(1),则:
①求CFD ∠的度数;
②请你判断FE 与FD 之间有怎样的数量关系?并说明理由.
(2)若ACB ∠不是直角,如图(2),那么你在(1)中两个问题的结论是否仍然成立?请说明理由.。