哈工大理论力学07考试题及答案a
- 格式:pdf
- 大小:161.42 KB
- 文档页数:9
第1章 静力学公理和物体的受力分析1-1 画出下列各图中物体A ,ABC 或构件AB ,AC 的受力图。
未画重力的各物体的自重不计,所有接触处均为光滑接触。
2F(a)(a1)(b) (b1)2N F 3N(c) (c1)Ax(d) (d1)B(e) (e1)Bq(f) (f1)(g)1F 2(h)(h1)Ax(i)(i1)(j)(j1)F(k) (k1)BA F FF ′ (l) (l2) (l3)图1-11-2画出下列每个标注字符的物体的受力图。
题图中未画重力的各物体的自重不计,所有接触处均为光滑接触。
22N(a1)2AxFAx(a2)3N(b)(b1)N3′(b2) (b3)1N2AxF(c)(c1)1N2N2Ax(c2)(c3)(d) (d1)CDy(d2)(d3)CxBxByF By′(e) (e1)(e2) (e3)ByBxAx(f) (f1)AxBx F′(f2)(f3)FB(g) (g1)BCx′F(g3)(h)(h1)FFAxC(i) (i1) (i2)F(i3)(i4)AyFFFCy (j) (j1)(j2) 2TFDx3TEyFCyEx′(j3) (j4) (j5)BBDECyF(k)(k1)BBCx (k2) (k3) DEA1F(l) (l1) (l2)A C E(l3) (l4)或CDxFEyFEy(l2)’(l3)’ (l4)’F′(m)(m1)EADFH2FAD′(m2) (m3)BN(n)q3N(n2)G(o)(o1)BADB(o2) (o3) (o4)图1-2第2章 平面汇交力系与平面力偶系2-1 铆接薄板在孔心A ,B 和C 处受3个力作用,如图2-1a 所示。
N 1001=F ,沿铅直方向;N 503=F ,沿水平方向,并通过点A ;N 502=F ,力的作用线也通过点A ,尺寸如图。
求此力系的合力。
(a)(b)图2-1解 (1) 几何法作力多边形abcd ,其封闭边ad 即确定了合力F R 的大小和方向。
《理论力学》第二章作业习题2-1解:根据题意,取滑轮B 为研究对象,其受力情况如上图所示:物体对其有一铅直向下的拉力P , 沿DB 有一与物体重量相等的拉力P,拉杆AB 的作用力A B F 和支杆CB 的作用力C B F。
建立图示坐标系,列平衡方程0X YF F ⎧=⎪⎨=⎪⎩∑∑co s 30sin 300sin 30co s 300o oA B C B o oC B F F P P F P ⎧++=⎨++=⎩解之得54.64()74.64()A B C B F kN F kN =⎧⎨=-⎩答:拉杆AB 和支杆CB 所受的的力分别为54.64kN (拉)和74.64 kN (压)。
习题2-6解:(1) 取构件BC 为研究对象,其受力情况如上图(a)所示:由于其主动力仅有一个力偶M ,那末B 、C 处所受的约束力BF、CF 必定形成一个阻力偶与之平衡。
列平衡方程()0B M F =∑C M F l -=所以C M F l=(2) 取构件ACD 为研究对象,其受力情况如上图(b)所示:C 处有一约束力C F '与BC 构件所受的约束力C F 互为作用力与反作用力关系,在D 处有一约束力D F,方向向上;在A 处有一约束力A F,其方向可根据三力汇交定理确定,根据构件尺寸,A F与水平方向成45度角。
列平衡方程X F =∑sin 450oA C F F '-=所以222A C C M F F F l'===答:支座A的约束力为2M l,其方向如上图(b)所示。
习题2-9解:主矢RF在各坐标轴上的投影:)(6.4375210121321N F F F F x -=---=∑)(6.1615110321321N F F F F y -=+--=∑力系对O 点的主矩:).(42.21439805120021100)(31mm N F F F F MMOO=-+==∑由于主矢在各坐标轴上的投影均为负值而主矩为正值,合力的作用线应在原点O的左侧且方向向左下方,其大小为()())(5.46622N F F F YXR =+=∑∑其与O 点的距离为:)(96.455.46642.21439mm F M d R O=='=答:力系向O点简化的结果得一方向向左下方的主矢ji F R6.1616.437--='和一沿顺时针方向的力偶,力偶矩为21439.42Nmm; 力系的合力的大小为466.5N ,处于原点O 的左侧且与O 点的距离为45.96mm (如图)。
.----------------------------------------理论力学(第七版)课后题答案 哈工大.高等教育出版社 -------------------------------- 第1章 静力学公理和物体的受力分析1-1 画出下列各图中物体 A ,ABC 或构件 AB ,AC 的受力图。
未画重力的各物体的自重不计,所有接触处均为光滑接触。
F N1A PF N 2(a) (a1)F TA PF N(b)(b1)AF N1P BF N 3F N 2(c) (c1)F TBF AyP 1P 2AF Ax(d) (d1)F AF BFAB(e)(e1)qFF Ay F BF AxA B(f) (f1)FBC F CAF A(g) (g1)F Ay FCCA F Ax BP1 P2(h) (h1)BFCF CF AxDAF Ay(i) (i1)(j) (j1)BF B FCPF AyF AxA(k) (k1)F CAF AB 2 F AC CA2 F ABBF ACF BAA P (l) (l1)(l2)(l3)图 1-11-2 画出下列每个标注字符的物体的受力图。
题图中未画重力的各物体的自重不计,所 有接触处均为光滑接触。
F N 2C2 F P 2(a1) F N1N(a)BF N1BC F N 2F NP 2P1P1F AyF Ay F AxF AxAA(a2) (a3)F N1AP1F N3B P 2F N 2(b) (b1)2 F NF N3F N1ABP 2P1F N F N 2(b2)(b3)F AyF AxA C D F N2BP 2P 1F N1(c)(c1)F AyF TAF AxD2 F F N2TBP 1F N1P 2(c2)(c3)F AyF BqBAF AxCDF C(d)(d1)F DyF AyF BqqD2 FDxBAF AxCF Dx D 2 FDyF C(d2) (d3)F Ay2 FBxqBF AyF AxqAB 2F ByF AxF CxC F CyP F BxAB PF Cx (e1)CF ByF Cy(e)(e2)(e3)F 1CF 2F AyF ByABF AxF Bx(f)(f1)F Cx2 FCxCCF 1F CyF 2 F 2F AyCyF ByAF BxF Ax B(f2)(f3)F BF AyCBAF AxP(g)(g1)2 F CyF T2 FCxCF AyF BF TDCF AxBAF Cx P (g2)(g3)DF 1F CyF B2 F 2F BBCF CxBF Ay AF Ax(h)(h1)(h2)A F AxF AyF CyF CxC2 A F EF CyF F OyCDF OxF Cx 2EOB(i)(i1)(i2)A A2 F Ax2 FE2 F AyFEC D F ByF ByF OyF BxF OxF BxOBB (i3)(i4)F AyDE F CxF TA F AxF ByC CHF By F Cy BPF BxF BxB(j)(j1)(j2)F Ay F Dy 22 F Ey2 F CF Cx 2 E F AxT 2 D F T 22FExF ExA D F Dx 2E F DxF T3F T12FCyF DyF Ey(j3)(j4)(j5)EFF BCED2 BF Cx⎝2 2 F DEF Cy(k)(k1)F BF FC BF Cx⎝EC F Cy90︒ ⎝FDED DF AyF AyAAF AxF Ax(k2) (k3)F B2 FBF 1F DBBDCAF AF C(l)(l1)(l2)F 22 DF DF 1F 2DBAC EE F EF AF C F E(l3)(l4)或2 2 F DyF2F 1F F Dy F 2F 1B 2 DF DxF DxBBD D F ExA C E C E F ExF CF EyF AF CF Ey(l2)’(l3)’(l4)’2 F ADAF CyF CxCF 1B(m)(m1)F ADDF ADHEF 2A DF EF HF AD 2(m2)(m3)F N AAF kF N BF OyF OxBO(n) (n1)F N1B Dq2 F BF N 2F N3(n2)FB D FF C F EF AF G GCEA(o)(o1)FBB DFDF BF E F FF C F D2 FEA F AF B 2CD(o2)(o3) (o4) 图 1-2第2章 平面汇交力系与平面力偶系2-1 铆接薄板在孔心 A ,B 和 C 处受 3个力作用,如图 2-1a 所示。
一、是非题1、力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
(√)2、在理论力学中只研究力的外效应。
(√)3、两端用光滑铰链连接的构件是二力构件。
(×)4、作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
(√)5、作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
(×)6、三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
(×)7、平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
(√)8、约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
(×)9、在有摩擦的情况下,全约束力与法向约束力之间的(应是最大)夹角称为摩擦角。
(×)10、用解析法求平面汇交力系的平衡问题时,所建立的坐标系x,y轴一定要相互垂直。
(×)11、一空间任意力系,若各力的作用线均平行于某一固定平面,则其独立的平衡方程最多只有3个。
(×)12、静摩擦因数等于摩擦角的正切值。
(√)13、一个质点只要运动,就一定受有力的作用,而且运动的方向就是它受力方向。
(×)14、已知质点的质量和作用于质点的力,质点的运动规律就完全确定。
(×)15、质点系中各质点都处于静止时,质点系的动量为零。
于是可知如果质点系的动量为零,则质点系中各质点必都静止。
(×)16、作用在一个物体上有三个力,当这三个力的作用线汇交于一点时,则此力系必然平衡。
(×)17、力对于一点的矩不因力沿其作用线移动而改变。
(√)18、在自然坐标系中,如果速度υ = 常数,则加速度α = 0应是切线方向加速度为零。
(×)19、设一质点的质量为m,其速度 与x轴的夹角为α,则其动量在x轴上的投影为mvx =mvcos a。
(√)20、用力的平行四边形法则,将一已知力分解为F1和F2两个分力,要得到唯一解答,必须具备:已知F1和F2两力的大小;或已知F1和F2两力的方向;或已知F1或F2中任一个力的大小和方向。
.----------------------------------------理论力学(第七版)课后题答案 哈工大.高等教育出版社 -------------------------------- 第1章 静力学公理和物体的受力分析1-1 画出下列各图中物体 A ,ABC 或构件 AB ,AC 的受力图。
未画重力的各物体的自重不计,所有接触处均为光滑接触。
F N1A PF N 2(a) (a1)F TA PF N(b)(b1)AF N1P BF N 3F N 2(c) (c1)F TBF AyP 1P 2AF Ax(d) (d1)F AF BFAB(e)(e1)qFF Ay F BF AxA B(f) (f1)FBC F CAF A(g) (g1)F Ay FCCA F Ax BP1 P2(h) (h1)BFCF CF AxDAF Ay(i) (i1)(j) (j1)BF B FCPF AyF AxA(k) (k1)F CAF AB 2 F AC CA2 F ABBF ACF BAA P (l) (l1)(l2)(l3)图 1-11-2 画出下列每个标注字符的物体的受力图。
题图中未画重力的各物体的自重不计,所 有接触处均为光滑接触。
F N 2C2 F P 2(a1) F N1N(a)BF N1BC F N 2F NP 2P1P1F AyF Ay F AxF AxAA(a2) (a3)F N1AP1F N3B P 2F N 2(b) (b1)2 F NF N3F N1ABP 2P1F N F N 2(b2)(b3)F AyF AxA C D F N2BP 2P 1F N1(c)(c1)F AyF TAF AxD2 F F N2TBP 1F N1P 2(c2)(c3)F AyF BqBAF AxCDF C(d)(d1)F DyF AyF BqqD2 FDxBAF AxCF Dx D 2 FDyF C(d2) (d3)F Ay2 FBxqBF AyF AxqAB 2F ByF AxF CxC F CyP F BxAB PF Cx (e1)CF ByF Cy(e)(e2)(e3)F 1CF 2F AyF ByABF AxF Bx(f)(f1)F Cx2 FCxCCF 1F CyF 2 F 2F AyCyF ByAF BxF Ax B(f2)(f3)F BF AyCBAF AxP(g)(g1)2 F CyF T2 FCxCF AyF BF TDCF AxBAF Cx P (g2)(g3)DF 1F CyF B2 F 2F BBCF CxBF Ay AF Ax(h)(h1)(h2)A F AxF AyF CyF CxC2 A F EF CyF F OyCDF OxF Cx 2EOB(i)(i1)(i2)A A2 F Ax2 FE2 F AyFEC D F ByF ByF OyF BxF OxF BxOBB (i3)(i4)F AyDE F CxF TA F AxF ByC CHF By F Cy BPF BxF BxB(j)(j1)(j2)F Ay F Dy 22 F Ey2 F CF Cx 2 E F AxT 2 D F T 22FExF ExA D F Dx 2E F DxF T3F T12FCyF DyF Ey(j3)(j4)(j5)EFF BCED2 BF Cx⎝2 2 F DEF Cy(k)(k1)F BF FC BF Cx⎝EC F Cy90︒ ⎝FDED DF AyF AyAAF AxF Ax(k2) (k3)F B2 FBF 1F DBBDCAF AF C(l)(l1)(l2)F 22 DF DF 1F 2DBAC EE F EF AF C F E(l3)(l4)或2 2 F DyF2F 1F F Dy F 2F 1B 2 DF DxF DxBBD D F ExA C E C E F ExF CF EyF AF CF Ey(l2)’(l3)’(l4)’2 F ADAF CyF CxCF 1B(m)(m1)F ADDF ADHEF 2A DF EF HF AD 2(m2)(m3)F N AAF kF N BF OyF OxBO(n) (n1)F N1B Dq2 F BF N 2F N3(n2)FB D FF C F EF AF G GCEA(o)(o1)FBB DFDF BF E F FF C F D2 FEA F AF B 2CD(o2)(o3) (o4) 图 1-2第2章 平面汇交力系与平面力偶系2-1 铆接薄板在孔心 A ,B 和 C 处受 3个力作用,如图 2-1a 所示。
哈工大理论力学(I)第7版部分习题答案1-2两个老师都有布置的题目2-3 2-6 2-14 2- 20 2-30 6-2 6-4 7-9 7-10 7-17 7-21 8-5 8-8 8-16 8-24 10-4 10-6 11-5 11-15 10-3以下题为老师布置必做题目1-1(i,j), 1-2(e,k)2-3, 2-6, 2-14,2-20, 2-30 6-2, 6-47-9, 7-10, 7-17, 7-21, 7-268-5, 8-8(瞬心后留), 8-16, 8-24 10-3, 10-4 10-611-5, 11-1512-10, 12-15, 综4,15,16,18 13-11,13-15,13-166-2 图6-2示为把工件送入干燥炉内的机构,叉杆OA=1.5 m在铅垂面内转动,杆AB=0.8 m,A端为铰链,B端有放置工件的框架。
在机构运动时,工件的速度恒为0.05 m/s,杆AB始终铅垂。
设运动开始时,角0=?。
求运动过程中角?与时间的关系,以及点B的轨迹方程。
10-3 如图所示水平面上放1 均质三棱柱A,在其斜面上又放1 均质三棱柱B。
两三棱柱的横截面均为直角三角形。
三棱柱A 的质量为mA三棱柱B 质量mB的 3 倍,其尺寸如图所示。
设各处摩擦不计,初始时系统静止。
求当三棱柱B 沿三棱柱A 滑下接触到水平面时,三棱柱A 移动的距离。
11-4解取A、B 两三棱柱组成1 质点系为研究对象,把坐标轴Ox 固连于水平面上,O 在棱柱A 左下角的初始位置。
由于在水平方向无外力作用,且开始时系统处于静止,故系统质心位置在水平方向守恒。
设A、B 两棱柱质心初始位置(如图b 所示)在x 方向坐标分别为当棱柱B 接触水平面时,如图c所示。
两棱柱质心坐标分别为系统初始时质心坐标棱柱B 接触水平面时系统质心坐标因并注意到得10-4 如图所示,均质杆AB,长l,直立在光滑的水平面上。
求它从铅直位无初速地倒下时,端点A相对图b所示坐标系的轨迹。
.. .. .. ..----------------------------------------理论力学(第七版)课后题答案 哈工大.高等教育出版社 -------------------------------- 第1章 静力学公理和物体的受力分析1-1 画出下列各图中物体 A ,ABC 或构件 AB ,AC 的受力图。
未画重力的各物体的自重不计,所有接触处均为光滑接触。
F N1A PF N 2(a) (a1)F TA PF N(b)(b1)AF N1P BF N 3F N 2(c) (c1)F TBF AyP 1P 2AF Ax(d) (d1)F AF BFAB(e) (e1)qFF Ay F BF AxA B(f) (f1)FBC F CAF A(g) (g1)F Ay FCCA F Ax BP1 P2 (h) (h1)BFCF CF AxDAF Ay(i) (i1)(j) (j1)BF B FCPF AyF AxA(k) (k1)F CAF AB ′ F AC CA′ F ABBF ACF BAA P(l) (l1)(l2)(l3)图 1-11-2 画出下列每个标注字符的物体的受力图。
题图中未画重力的各物体的自重不计,所 有接触处均为光滑接触。
F N 2C′ F P 2(a1) F N1N(a)BF N1BC F N 2F NP 2P1P1F AyF Ay F AxF AxAA(a2) (a3)F N1AP1F N3B P 2F N 2(b) (b1)′ F NF N3F N1ABP 2P1F N F N 2(b2)(b3)F AyF AxA C D F N2BP 2P 1F N1(c)(c1)F AyF T AF AxD′ F F N2TBP 1F N1P 2(c2)(c3)F AyF BqBAF AxCDF C(d)(d1)F DyF AyF BqqD′ FDxBAF AxCF Dx D′ F DyF C(d2)(d3) F Ay′ FBxq BF Ay F Axq AB ′ F ByF AxF Cx CF CyP F BxAB PF Cx (e1)CF ByF Cy(e)(e2)(e3)F 1CF 2F AyF ByABF AxF Bx(f)(f1)F Cx′FCxCCF 1F CyF ′ F 2F AyCyF ByAF BxF Ax B(f2)(f3)F BF AyCBAF AxP(g)(g1)′ F CyF T′FCxCF AyF BF TDCF AxBAF Cx P(g2)(g3)DF 1F CyF B′ F 2F BBCF CxBF Ay AF Ax(h) (h1) (h2)A F AxF AyF CyF CxC′ AF EF CyF F OyCDF OxF Cx ′EO B(i)(i1)(i2)AA′ F Ax′FE′ F AyF EC D F ByF ByF OyF BxF OxF BxOBB(i3)(i4)F AyDE F CxF TA F AxF ByC CHF By F CyBPF BxF BxB(j)(j1)(j2)F Ay F Dy ′′F Ey′ F CF Cx ′ E F AxT 2 D F T 2′ FExF ExA D F Dx ′E F DxF T3F T1′ FCyF DyF Ey(j3)(j4)(j5)EFF BCED′ BF Cxθ′ ′F DEF Cy(k)(k1)F BF FC BF CxθEC F Cy90°−θFDED DF AyF AyAAF AxF Ax(k2) (k3)F B′FBF 1F DBBDCAF AF C(l)(l1)(l2)F 2′ DF DF 1F 2DBAC EE F EF AF C F E(l3)(l4)或′ ′ F Dy F2F 1F F Dy F 2F 1B ′ DF DxF DxBB D D F Ex AC E C E F ExF CF EyF AF CF Ey(l2)’(l3)’(l4)’′ F ADAF CyF CxCF 1B(m) (m1)F ADDF ADHE F 2ADF EF HF AD ′(m2)(m3)F N AAF kF N BF OyF OxBO(n) (n1)F N1B Dq′ F BF N 2F N3(n2)FB D FF C F E F AF G GCEA(o)(o1)FBB DFDF BF EF FF C F D′FEA F AF B ′CD(o2)(o3) (o4) 图 1-2第2章 平面汇交力系与平面力偶系2-1 铆接薄板在孔心 A ,B 和 C 处受 3个力作用,如图 2-1a 所示。
哈工大2007年春季学期材料力学期末考试试题(A卷)(注意: 本次期末考试成绩卷面分值为100分, 得分将按50%计入最终成绩。
)1. 单项选择题: (共8小题,每小题3分,总分24分)1-1. 以下关于虚功和虚位移的论述中正确的是().A. 力F在其虚位移d上所作的功为/2Fd B. 虚位移必须满足位移约束条件C. 虚位移引起的系统能量变化比真实位移引起的小 D.虚功只能由外力引起1-2. 以下( ) 不是疲劳的特征.A. 破坏时名义应力值等于材料的静强度值B. 构件需要经过一定的应力循环才破坏C. 破坏断面明显划分为光亮区域与颗粒状的粗糙区域D. 破坏是脆性断裂1-3. 关于面积相同的圆形和正方形截面(如图1-3所示),对各自主轴x的抗弯能力,以下描述正确的是().A. ()()b a>. B. ()()a b>.C. ()()a b=. D. 两者相差超过50%图1-3 图1-41-4. 图1-4所示结构的静不定次数是()A. 1 次B. 2 次C. 3次D.4次1-5. 如图1-5所示,梁在其中点处受一集中载荷F。
假设梁的横截面宽度保持不变,若按等强度观点设计梁的横截面高度,那么梁的大致形状是()图1-51-6. 直径为d的圆形截面和边长为a的正方形截面对其各自形心轴的惯性半径分别是(). A. /4d和/aB. /d和/aC. /4d和/2aD. /d和/a1-7. 以下关于第三和第四强度理论的论述中正确的是()A. 满足第三强度理论必然满足第四强度理论B. 满足第四强度理论必然满足第三强度理论C. 有时(A)成立,有时(B)成立D. 两强度理论并无必然联系1-8. 关于梁的弯曲,以下不正确的是( )A. 各类挠曲线方程都是分段成立的B. 在各段上分布外载、剪力和弯矩函数依次越来越光滑C. 应用22=时可以用剪力匹配条件来确定未知参数/()d v dx M xD. 挠度函数()dv x dx总是连续的v x及()/2. 图2所示梁AC刚度为EI。