3 数学-扬州中学2016届高三上学期10月月考试题 数学(理)
- 格式:doc
- 大小:386.50 KB
- 文档页数:10
一、单选题1. sin1050︒=高三江苏省扬州中学2023-2024学年高三上学期10月月考数学试题( )A.12B. 12-C.D. 2. 已知集合{}210xA x =->,{}2230B x x x =+-<,则A B = ( ) A. ()0,3 B. ()0,1C. ()3,-+∞D. ()1,-+∞3.已知()f x =,则()f x '=( )A.B.C.D.4. 已知函数()()sin R f x ax x a =-∈,则“1a =”是“()f x 在区间π,2⎛⎫+∞ ⎪⎝⎭上单调递增”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5. 阻尼器是一种以提供阻力达到减震效果的专业工程装置.我国第一高楼上海中心大厦的阻尼器减震装置,被称为“定楼神器”,如图1.由物理学知识可知,某阻尼器的运动过程可近似为单摆运动,其离开平衡位置的位移()m y 和时间()s t 的函数关系为()()sin 0,πy t ωϕωϕ=+><,如图2,若该阻尼器在摆动过程中连续三次到达同一位置的时间分别为1t ,2t ,()31230t t t t <<<,且122t t +=,235t t +=,则在一个周期内阻尼器离开平衡位置的位移大于0.5m 的总时间为( )A.1s 3B.2s 3C. 1sD.4s 36. 已知α为锐角,若π4cos 65α⎛⎫+= ⎪⎝⎭,则7πsin 212α⎛⎫+ ⎪⎝⎭的值为( )A.B.C.D.7. 已知函数()cos f x x =,函数()g x 的图象可以由函数()f x 的图象先向右平移6π个单位长度,再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>倍得到,若函数()g x 在3(,22ππ上没有零点,则ω的取值范围是( )A. 4(0,]9B. 48[,]99C. 48(,99D. 8(0,]98. 已知函数()f x 及其导函数()f x '的定义域均为R ,且满足()2(6)f x f x =--,()2(4)f x f x ''=--,(3)1f '=-,若()(3)5g x f x =-+,则()181k g k ='=∑( )A. 18-B. 20-C. 88D. 90二、多选题9. 下列求解结果正确的是( )A.3= B. ()22lg 2lg 5lg 20lg 2lg 50lg 256+++= C. 不等式(10x -≥的解集为[)1,+∞ D. 若sin 1cos 12αα=--,则1cos 1sin 2αα+= 10. 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列说法中正确的是( ) A. 若sin sin A B >,则A B >B. 若tan tan tan 0A B C ++>,则ABC 锐角三角形C. 若10a =,8b =,60A =︒,则符合条件的ABC 有两个D. 对任意ABC ,都有cos cos 0A B +>11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;是B. 0a b +=是函数()f x 为奇函数充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存在极值点.12. 在ABC 中,角A ,B ,C 对边分别是a ,b ,c ,已知sin sin sin A B C =,则下列说法正确的是( )A. 2222tan 2b c a A a+-= B. 212ABC S a = C.sin sin sin sin B CC B +有最大值 D. 245a bc ≤三、填空题13. 若函数()2lg 1)f x x mx -+=(的值域为R ,则实数m 的取值范围是________________.14. 定义在R 上的奇函数()f x ,当0x ≥时,()22x x f x a -=-⋅,当0x <时,()f x =________. 15. 已知lg lg lg 5a b c a b c =,lg lg lg b c a a b c =,则abc 的值为___________.16. 在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,3b =,sin sin A a B +=,则ABC 周长的取值范围为______.四、解答题17. 已知0x >,0y >,且21x y +=. (1)求xy 的最大值; (2)求21x y+的最小值. 18. 已知函数()e 1e xxa f x -=+奇函数. (1)求a 的值;(2)若存在实数t ,使得()()22220f t t f t k -+->成立,求k 的取值范围. 19.在①2sin sin 2sin cos A B C B -=,②()()()sin sin sin a c A C B a b +-=-,③()1sin sin sin 2ABC S c a A b B c C =+-△这三个条件中任选一个,补充到下面的问题中并作答. 问题:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且____. (1)求角C ;的的为(2)若2c =,求2a b -取值范围. 20. 已知函数()()sin cos 2sin 22f x x x b x =++-,(R a ∈,R b ∈)(1)若1a =,0b =,证明:函数()()12g x f x =+在区间π0,4⎡⎤⎢⎥⎣⎦上有且仅有1个零点; (2)若对于任意的R x ∈,()0f x ≤恒成立,求a b +的最大值和最小值.21. 铰链又称合页,是用来连接两个固体并允许两者之间做相对转动的机械装置.铰链由可移动的组件构成,或者由可折叠的材料构成,合页主要安装与门窗上,而铰链更多安装与橱柜上,如图所示,,OA OC 就是一个合页的抽象图,AOC ∠可以在[]0,π上变化,其中28OC OA cm ==,正常把合页安装在家具门上时,AOC ∠的变化范围是π,π2⎡⎤⎢⎥⎣⎦,根据合页的安装和使用经验可知,要使得安装的家具门开关并不受影响,在以AC 为边长的正三角形ABC 区域内不能有障碍物.(1)若π2AOC ∠=使,求OB 的长; (2)当AOC ∠为多少时,OBC △面积取得最大值?最大值是多少? 22. 已知函数sin ()2cos xf x ax x=-+.(1)当1a =时,讨论()f x 的单调性;(2)若0x ∀>都有()0f x >,求a 的取值范围.的高三数学10月考试一、单选题1. sin1050︒=( )A.12B. 12-C.D. 【答案】B 【解析】【分析】利用诱导公式化简,即可计算得结果. 【详解】()1sin1050sin 336030sin 302︒︒︒︒=⨯-=-=-.故选:B【点睛】本题考查诱导公式的化简求值,属于基础题.2. 已知集合{}210xA x =->,{}2230B x x x =+-<,则A B = ( ) A. ()0,3 B. ()0,1C. ()3,-+∞D. ()1,-+∞【答案】B 【解析】【分析】先将集合A 和集合B 化简,再利用集合的交集运算可得答案. 【详解】210x -> ,即0212x >=, 由指数函数的单调性可得,0x >,{}0A x x ∴=>,由2230x x +-<,解得31x -<<,{}31B x x ∴=-<<, {}()010,1A B x x ∴⋂=<<=.故选:B.3. 已知()f x =,则()f x '=( )A.B.C.D.【答案】D 【解析】【分析】根据已知条件,结合导数的求导法则,即可求解.【详解】()()124f x x ==+,则()()12142f x x -'=+=. 故选:D4. 已知函数()()sin R f x ax x a =-∈,则“1a =”是“()f x 在区间π,2⎛⎫+∞ ⎪⎝⎭上单调递增”的( ) A. 充要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】B 【解析】【分析】利用导数求出参数的取值范围,再根据充分条件、必要条件的定义判断即可.【详解】当1a =时,()sin x x x f -=,()1cos 0f x x '=-≥,∴()f x 在R 上单调递增,故充分性成立, 当()f x 在π,2⎛⎫+∞⎪⎝⎭单调递增,∴()cos 0x a x f '=-≥,即cos a x ≥,∴1a ≥,故必要性不成立, 所以“1a =”是“()f x 在区间π,2⎛⎫+∞ ⎪⎝⎭上单调递增”的充分不必要条件. 故选:B5. 阻尼器是一种以提供阻力达到减震效果的专业工程装置.我国第一高楼上海中心大厦的阻尼器减震装置,被称为“定楼神器”,如图1.由物理学知识可知,某阻尼器的运动过程可近似为单摆运动,其离开平衡位置的位移()m y 和时间()s t 的函数关系为()()sin 0,πy t ωϕωϕ=+><,如图2,若该阻尼器在摆动过程中连续三次到达同一位置的时间分别为1t ,2t ,()31230t t t t <<<,且122t t +=,235t t +=,则在一个周期内阻尼器离开平衡位置的位移大于0.5m 的总时间为( )A.1s 3B.2s 3C. 1sD.4s 3【答案】C 【解析】【分析】先根据周期求出2π3ω=,再解不等式2πsin 0.53t ϕ⎛⎫+>⎪⎝⎭,得到t 的范围即得解. 【详解】因为122t t +=,235t t +=,31t t T -=,所以3T =,又2πT ω=,所以2π3ω=, 则2πsin 3y t ϕ⎛⎫=+ ⎪⎝⎭,由0.5y >可得2πsin 0.53t ϕ⎛⎫+> ⎪⎝⎭, 所以π2π5π2π2π636k t k ϕ+<+<+,Z k ∈, 所以13533342π42πk t k ϕϕ+-<<-+,Z k ∈,故531333142π42πk k ϕϕ⎛⎫⎛⎫+--+-= ⎪ ⎪⎝⎭⎝⎭,所以在一个周期内阻尼器离开平衡位置的位移大于0.5m 的总时间为1s. 故选:C.6. 已知α为锐角,若π4cos 65α⎛⎫+= ⎪⎝⎭,则7πsin 212α⎛⎫+ ⎪⎝⎭的值为( )A.B.C.D.【答案】D 【解析】【分析】根据α为锐角,π4cos 65α⎛⎫+= ⎪⎝⎭,得到πsin 6α⎛⎫+ ⎪⎝⎭,再利用二倍角公式得到πsin 23α⎛⎫+ ⎪⎝⎭,πcos 23α⎛⎫+ ⎪⎝⎭,然后再由7πππsin 2sin 21234αα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦求解. 【详解】αQ 为锐角,ππ2ππ4,cos 66365αα⎛⎫<+<+= ⎪⎝⎭, π3sin 65α⎛⎫∴+= ⎪⎝⎭,πππ24sin 22sin cos 36625ααα⎛⎫⎛⎫⎛⎫∴+=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且2ππ7cos 22cos 13625αα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝⎭⎝⎭.故7πππsin 2sin 21234αα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ππππsin 2cos cos 2sin 3434αα⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,2472525=+=, 故选:D .7. 已知函数()cos f x x =,函数()g x 的图象可以由函数()f x 的图象先向右平移6π个单位长度,再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>倍得到,若函数()g x 在3(,22ππ上没有零点,则ω的取值范围是( )A. 4(0,]9B. 48[,]99C. 48(,99D. 8(0,]9【答案】A 【解析】【分析】由函数()cos f x x =,根据三角函数的图象变换得到()cos 6g x x πω⎛⎫=-⎪⎝⎭,令()cos 06g x x πω⎛⎫=-= ⎪⎝⎭,结合函数零点存在的条件建立不等式求解即可.【详解】函数()cos f x x =,向右平移6π个单位长度,得cos 6y x π⎛⎫=- ⎪⎝⎭,再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>倍得到()cos 6g x x πω⎛⎫=- ⎪⎝⎭,令()cos 06g x x πω⎛⎫=-= ⎪⎝⎭, 得62x k ππωπ-=+,所以123x k ππω⎛⎫=+ ⎪⎝⎭, 若函数()g x 在3(,)22ππ上没有零点,则需3222T πππ>-=,所以22ππω>,所以01ω<<, 若函数()g x 在3(,)22ππ上有零点,则123232k ππππω⎛⎫<+< ⎪⎝⎭, 当k =0时,得123232ω<<,解得4493ω<<,当k =1时,得153232ω<<,解得101093ω<<, 综上:函数()g x 在3(,22ππ上有零点时,4493ω<<或101093ω<<, 所以函数()g x 在3(,22ππ上没有零点,409ω<≤. 所以ω的取值范围是4(0,]9.故选:A【点睛】本题主要考查三角函数的图象变换及函数零点问题,还考查了转化求解问题的能力,属于难题. 8. 已知函数()f x 及其导函数()f x '的定义域均为R ,且满足()2(6)f x f x =--,()2(4)f x f x ''=--,(3)1f '=-,若()(3)5g x f x =-+,则()181k g k ='=∑( )A. 18-B. 20-C. 88D. 90【答案】B 【解析】【分析】根据复合函数导数运算求得正确答案.【详解】由()2(6)f x f x =--得()()()266f x f x f x ''''=--=-⎡⎤⎣⎦,()()6f x f x ''=-①,则()f x '关于直线3x =对称.另外()2(4),()(4)2f x f x f x f x ''''=--+-=②,则()f x '关于点()2,1对称. 所以()()()()()4244226f x f x f x f x ''''+=--+=--=-+()()()()()()22462628f x f x f x f x ⎡⎤''''=---+=--=---=+⎣⎦,所以()()4f x f x ''=+,所以()f x '是周期为4的周期函数.()(3)5g x f x =-+,()(3)g x f x ''=--,则(0)(3)1g f ''=-=,由②,令2x =,得()()222,21f f ''==. 所以()()121g f ''=-=-,由②,令1x =,得(1)(3)2,(1)2(3)3f f f f ''''+==-=; 所以(2)(1)3g f ''=-=-,由①,令4x =,得()()421f f ''==;令5x =,得()()513f f ''==. 由②,令0x =,得(0)(4)2,(0)1f f f '''+==;令=1x -,得(1)(5)2,(1)2(5)1f f f f ''''-+=-=-=-, 则(3)(0)1g f ''=-=-,()()411g f '=--=;()()()5221g f f '''=--=-=-,()()()6313g f f '''=--=-=-,以此类推, ()g x '是周期为4的周期函数.所以()()()181131141320k g k ='=---+⨯+--=-∑.故选:B【点睛】函数的对称性有多种呈现方式,如()()f a x f a x +=-,则()f x 关于直线x a =对称;如()()2f a x f x +=-,则()f x 关于直线x a =对称;如()()f a x f a x +=--,则()f x 关于点(),0a 对称;如()()2f a x f a x b +=--+,则()f x 关于点(),a b 对称.二、多选题9. 下列求解结果正确的是( )A.3= B. ()22lg 2lg 5lg 20lg 2lg 50lg 256+++=C. 不等式(10x -≥的解集为[)1,+∞D. 若sin 1cos 12αα=--,则1cos 1sin 2αα+= 【答案】AD 【解析】【分析】对于A 选项:把根式化为分数指数幂,利用幂的运算法则求值可判断A 选项;对于B 选项:利用对数的运算法则化简求值可判断B 选项;对于C 选项:根据根式的定义域和值域,求不等式的解集可判断C 选项;对于D 选项:分子和分母同时乘sin α,再利用同角三角函数关系化简可判断D 选项.【详解】对于A 111111126363223243243232-⎛⎫=⨯⨯=⨯⨯⨯ ⎪⎝⎭()5151121106636622=33222332332--⨯=⨯=⨯⨯⨯⨯⨯=,所以A 选项正确;对于B 选项:()()()()2222lg 2lg 5lg 20lg 2lg 50lg 252lg 2lg 5lg 210lg 2lg 510lg 5+++=+⨯+⨯+ ()()()22lg 2lg 5lg 21lg 2lg 512lg 5=+++++ ()22lg 22lg 2lg 5lg 23lg 5=+++()()2lg 2lg 2lg 5lg 2lg 52lg 5=++++ ()2lg 2lg 513=++=,所以B 选项错误;对于C 选项:因为0y =≥且2x ≥-,当2x =-时取等号,则(10x -≥,即210x x >-⎧⎨-≥⎩或2x =-,解得:1x ≥或2x =-,所以不等式(10x -≥的解集为{}[)21,-+∞ ,所以C 选项错误; 对于D 选项:若sin 1cos 12αα=--,则cos 1α≠且sin 0α≠,即()()()()()221cos 1cos sin 1cos 1cos 1sin cos 1sin cos 1sin cos 1sin 2αααααααααααα-+-+===-=----,所以1cos 1sin 2αα+=,所以D 选项正确.故选:AD.10. 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列说法中正确的是( ) A. 若sin sin A B >,则A B >B. 若tan tan tan 0A B C ++>,则ABC 是锐角三角形C. 若10a =,8b =,60A =︒,则符合条件的ABC 有两个D. 对任意ABC ,都有cos cos 0A B +> 【答案】ABD 【解析】【分析】由正弦定理边角转化可判断A ;根据两角和的正切公式结合三角形内角和定理可判断B ;由正弦定理及三角形性质可判断C ;由三角形内角性质及余弦函数单调性可判断D. 【详解】对于A 选项,由sin sin A B >,根据正弦定理得22a br r>,(r 为ABC 外接圆半径),即a b >,则A B >, 故A 正确;对于B ,()()tan tan tan tan πtan 1tan tan A BC A B A B A B+=-+=-+=-⎡⎤⎣⎦-,所以()tan tan tan tan tan 1A B C A B +=-,所以()tan tan tan 1tan tan tan tan 0tan tan tan A B C A B C A C B C +-=++=>, 所以tan ,tan ,tan A B C 三个数有0个或2个为负数,又因,,A B C 最多一个钝角, 所以tan 0,tan 0,tan 0A B C >>>,即,,A B C 都是锐角, 所以ABC 一定为锐角三角形,故B 正确;对于C ,由正弦定理得sin sin a b A B=,则sin sin 1b A B a ===<, 又b a <,则60B A <= ,知满足条件的三角形只有一个,故C 错误;对于D ,因为πA B +<,所以0ππA B <<-<,又函数cos y x =在()0,π上单调递减, 所以()cos cos πcos A B B >-=-,所以cos cos 0A B +>,故D 正确; 故选:ABD11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;B. 0a b +=是函数()f x 为奇函数的充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存在极值点. 【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x --=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x --,故()()0e e x xa b b a --+-=,即()()2e =xa b a b --,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误; 对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b -+-+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b -+-+++,因为e 0x >,e 0x ->,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确; 对于C ,()=e exxa f xb --',因为0ab <,若0,0a b ><,则()e e 0=xxa xb f -->'恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e 0=x xa xb f --<'恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==ex xxxa ba b f x ---', 令()=0f x '得1=ln 2bx a,又0ab >,若0,0a b >>, 当1,ln 2b x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<,函数()f x 为单调递减. 当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值. 若0,0a b <<, 当1ln2b x a ⎛⎫∈-∞ ⎪⎝⎭,,()0f x ¢>,函数()f x 为单调递增. 当1ln ,2b x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值.所以函数存在极值点,故D 正确. 故答案为:BCD.12. 在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin sin sin A B C =,则下列说法正确的是( )A. 2222tan 2b c a A a+-= B. 212ABC S a = C.sin sin sin sin B CC B +有最大值 D. 245a bc ≤【答案】BCD 【解析】【分析】由条件及正弦定理得,2sin a bc A=,再由正、余弦定理,三角形的面积公式,三角函数的最值等知识逐一判断选项即可.【详解】由sin sin sin A B C =及正弦定理sin sin sin a b c A B C ==得:2sin a bc A=, 对于A 选项:22222222cos 2cos cos sin tan 222sin a A b c a bc A A A Aa a a A+-===≠,故A 错误; 对于B 选项:22111sin sin 22sin 2ABCa S bc A A a A ==⨯⨯= ,故B 正确; 对于C 选项:222sin sin 2cos sin sin B Cbc b c a bc AC B c b bc bc+++=+==sin 2cos sin 2cos )bc A bc A A A A bcϕ+==+=+,其中sin ϕϕ==∴sin sin sin sin B CC B+,故C 正确; 对于D 选项:因为2sin a bc A =,222b c bc +≥,当且仅当b c =时取等号.所以222sin cos 1022b c a AA bc +-=≥->,两边平方得:22sin cos 1sin 4AA A ≥+-,又22cos 1sin A A =-,化简得:sin (5sin 4)0A A -≤,且(0,π)A ∈,sin (0,1]A ∈, 解得4sin 0,5A ⎛⎤∈ ⎥⎝⎦,所以24sin 5sin bc A a bc bc A ==≤,即245a bc ≤成立,故D 正确.故选:BCD .三、填空题13. 若函数()2lg 1)f x x mx -+=(的值域为R ,则实数m 的取值范围是________________.【答案】(][),22,-∞-+∞U 【解析】【分析】根据对数函数值域列不等式,从而求得m 的取值范围. 【详解】依题意,函数()2lg 1)f x x mx -+=(的值域为R ,所以240m ∆=-≥,解得(][),22,m ∈-∞-⋃+∞. 故答案为:(][),22,-∞-+∞U14. 定义在R 上的奇函数()f x ,当0x ≥时,()22x x f x a -=-⋅,当0x <时,()f x =________. 【答案】22x x -- 【解析】【分析】先根据奇函数性质求a ,然后设0x <,利用奇函数定义和已知条件求解可得. 【详解】因为函数()f x 为奇函数,所以00(0)220f a =-⋅=,解得1a =.的设0x <,则0x ->,所以()22x x f x --=-, 又()f x 为奇函数,所以()()22x x f x f x -=--=-, 即当0x <时,()22x x f x -=-. 故答案为:22x x --15. 已知lg lg lg 5a b c a b c =,lg lg lg b c a a b c =,则abc 的值为___________.【答案】10或110【解析】【分析】对已知等式左右同时取对数,结合对数运算法则化简可得()2lg 1abc =,由此可求得结果. 【详解】由lg lg lg 5a b c a b c =得:()()()222lg lg lg lg lg lg lg lg lg lg 5a b c a b c a b c ++=++=,由lg lg lg b c a a b c =lg lg lg 1lg lg lg lg lg lg lg lg lg lg 22bc a ab c a b b c a c ++=++==,2lg lg 2lg lg 2lg lg lg 2a b b c a c ∴++=,()()()()2222lg lg lg 2lg lg 2lg lg 2lg lg lg lg lg a b c a b b c a c a b c ∴+++++=++()2lg lg 5lg 21abc ==+=,lg 1abc ∴=或lg 1abc =-,10abc ∴=或110abc =. 故答案为:10或110. 16. 在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,3b =,sin sin A a B +=,则ABC 周长的取值范围为______.【答案】+【解析】【分析】由正弦定理及已知可得sin A =,结合锐角三角形得π3A =、ππ62B <<,再由正弦边角关系、三角恒等变换得912tan 2a b c B ++=,即可求范围.【详解】由sin sin a bA B=,则sin sin a B b A =,故sin sin 4sin A b A A +==所以sin A =,又ABC 为锐角三角形,则π3A =,且π022ππ032B C B ⎧<<⎪⎪⎨⎪<=-<⎪⎩,则ππ62B <<,而sin sin sin a b c A B C ==,则sin sin b A a B ==,2π3sin()sin 3sin sin B b C c B B -==32=+,所以22cos 91cos 99122sin 222sin cos tan 222B B a b c B B BB +++===+, 又ππ1224B <<,且ππtan tanπππ34tan tan()2ππ12341tan tan 34-=-==+所以tan (22B ∈-,则912tan 2a b c B ++=+∈+.故答案为:+.【点睛】关键点睛:本题的关键是利用正弦定理以及三角恒等变换得912tan 2a b c B ++=,再求出角B 的范围,利用正切函数的值域即可得到答案.四、解答题17. 已知0x >,0y >,且21x y +=. (1)求xy 的最大值; (2)求21x y+的最小值. 【答案】(1)18(2)8 【解析】【分析】(1)由基本不等式得到2x y +≥,从而求出18xy ≤; (2)利用基本不等式“1”的妙用求出最小值.小问1详解】【因为0x >,0y >,由基本不等式得2x y +≥,即1≥18xy ≤, 当且仅当11,24x y ==时,等号成立,故xy 的最大值为18; 【小问2详解】因为0x >,0y >,21x y +=,故()212142448y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y x x y =,即11,24x y ==时,等号成立,故21x y +的最小值为8. 18. 已知函数()e 1exxa f x -=+为奇函数. (1)求a 的值;(2)若存在实数t ,使得()()22220f t t f t k -+->成立,求k 的取值范围.【答案】(1)1 (2)1,3⎛⎫-+∞ ⎪⎝⎭【解析】【分析】(1)根据奇函数的性质)00f =求解即可.(2)首先利用根据题意得到()()2222f t t f t k ->-+,利用单调性定义得到()f x 是R 上的减函数,再利用单调性求解即可. 【小问1详解】因()f x 定义域为R ,又因为()f x 为奇函数,所以()00f =,即102a -=,得1a = 当1a =时,()1e 1e xx f x -=+, 所以()()1e e 11e e 1x x xx f x f x -----===-++,所以1a = 【小问2详解】()()22220f t t f t k -+->可化为()()2222f t t f t k ->--,因为()f x 是奇函数,所以()()()2222f t t f t k->-+*为又由(1)知()1e 211e 1ex x xf x -==-+++, 设12,x x ∈R ,且12x x <,则()()()()()211212122e e 221e 1e 1e 1e x x x x x x f x f x --=-=++++, 因为12x x <,所以21e e 0x x ->,11e 0x +>,21e 0x +>,所以()()120f x f x ->,即()()12f x f x >故()f x 是R 上的减函数, 所以(*)可化为2222t t t k -<-+.因为存在实数t ,使得2320t t k --<成立, 所以4120k ∆=+>,解得13k >-.所以k 的取值范围为1,3⎛⎫-+∞ ⎪⎝⎭19.在①2sin sin 2sin cos A B C B -=,②()()()sin sin sin a c A C B a b +-=-,③()1sin sin sin 2ABC S c a A b B c C =+-△这三个条件中任选一个,补充到下面的问题中并作答. 问题:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且____. (1)求角C ;(2)若2c =,求2a b -的取值范围. 【答案】(1)π3(2)()2,4- 【解析】【分析】(1)选①利用三角形内角和定理与两角和的正弦公式求出π3C =,选②利用正弦定理和余弦定理求出π3C =,选③利用面积公式和余弦定理求出π3C =.(2)利用正弦定理得,a A b B ==,再利用两角差的正弦公式以及角的范围计算求得结果.【小问1详解】若选①:2sin sin 2sin cos A B C B -=, 则()2sin sin 2sin cos B C B C B +-=,∴2sin cos 2cos sin sin 2sin cos B C B C B C B +-= ∴2sin cos sin 0B C B -=∵()0,πB ∈,sin 0B ≠, ∴1cos 2C =,∵()0,πC ∈,∴π3C =.若选②:()()()sin sin sin a c A C B a b +-=-, 由正弦定理得()()()a c a c b a b +-=-, ∴222a b c ab +-=,∴2221cos 22a b c C ab +-==,∵()0,πC ∈,∴π3C =. 若选③:()1sin sin sin 2ABC S c a A b B c C =+-△, 则()sin sin sin 12s n 12i C A B b c a b C a c =+-,由正弦定理得()2221122abc c a b c =+-,∴∴222a b c ab +-=,∴2221cos 22a b c C ab +-==,∵()0,πC ∈,∴π3C =. 【小问2详解】由正弦定理得sin sin sin a b c A B C ===,,a A b B ==,则π23A B A A a b ⎛⎫=-=-+ ⎪⎝⎭, π2cos 4sin 6A A A ⎛⎫=-=- ⎪⎝⎭,∵2π0,3A ⎛⎫∈ ⎪⎝⎭,πππ,662A ⎛⎫-∈- ⎪⎝⎭,π16sin ,12A ⎛⎫⎛⎫∈ ⎪- ⎝⎭⎝-⎪⎭, ∴()22,4a b -∈-.20. 已知函数()()sin cos 2sin 22f x x x b x =++-,(R a ∈,R b ∈)(1)若1a =,0b =,证明:函数()()12g x f x =+在区间π0,4⎡⎤⎢⎥⎣⎦上有且仅有1个零点; (2)若对于任意的R x ∈,()0f x ≤恒成立,求a b +的最大值和最小值.【答案】(1)证明见解析(2)最小值为2-,最大值为1【解析】【分析】(1)代入,a b 的值,化简()f x ,即可求得()g x ,根据()g x 单调性即可求解;(2)令sin cos t x x =+,问题转化为t ⎡∈⎣时,()()22120t b t ϕ=+--≤,要求a b +的最值,则需要a 和b 的系数相等进行求解.【小问1详解】证明:当1a =,0b =时, ())sin cos 2f x x x =+-2x x ⎫=-⎪⎪⎭π2sin 24x ⎛⎫=+- ⎪⎝⎭, 则()()132sin 22π4g x f x x ⎛⎫=+=+- ⎪⎝⎭, ()3002g =< ,0π142g ⎛⎫=> ⎪⎝⎭,且()g x 是一个不间断的函数, ()g x ∴在π0,4x ⎡⎤∈⎢⎥⎣⎦上存在零点, π0,4x ⎡⎤∈⎢⎥⎣⎦,∴πππ,442x ⎡⎤+∈⎢⎥⎣⎦,∴()g x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增, ()g x ∴在π0,4⎡⎤⎢⎥⎣⎦上有且仅有1个零点. 【小问2详解】由(1)知,令πsin cos 4t x x x ⎛⎫=+=+ ⎪⎝⎭,则t ⎡∈⎣, ∴()22sin22sin cos sin cos 11x x x x x t =⋅=+-=-,∵对于任意的x ∈R ,()0f x ≤()22120b t +--≤恒成立.令()()2212 t b tϕ=+--,则t⎡∈⎣时,()0tϕ≤恒成立()22120t b+--≤,()221t=-,解得t=或.当t=时,解得1a b+≤,取1a=,0b=成立,则()220tϕ=-≤=恒成立,∴()max1a b+=,当t=时,解得2a b+≥-,取43a=-,23b=-成立,则()()224412033t t tϕ⎛=---=-≤⎝恒成立.∴()min2a b+=-,综上,a b+的最小值为2-,a b+的最大值为1.【点睛】方法点睛:不等式恒成立问题,从以下几个角度分析:(1)赋值法和换元法的应用;(2)三角函数图像和性质的应用;(3)转化化归思想的应用.21. 铰链又称合页,是用来连接两个固体并允许两者之间做相对转动的机械装置.铰链由可移动的组件构成,或者由可折叠的材料构成,合页主要安装与门窗上,而铰链更多安装与橱柜上,如图所示,,OA OC 就是一个合页的抽象图,AOC∠可以在[]0,π上变化,其中28OC OA cm==,正常把合页安装在家具门上时,AOC∠的变化范围是π,π2⎡⎤⎢⎥⎣⎦,根据合页的安装和使用经验可知,要使得安装的家具门开关并不受影响,在以AC为边长的正三角形ABC区域内不能有障碍物.(1)若π2AOC∠=使,求OB的长;(2)当AOC∠为多少时,OBC△面积取得最大值?最大值是多少?.【答案】(1)BO =(2)5π6AOC ∠=,(16+cm 3 【解析】【分析】(1)根据题意利用三角比可得AC AB ==,在OAB 中,由余弦定理知2222cos BO AO AB AO AB OAB =+-⋅⋅∠即可得解;(2)设AOC α∠=,ACO β∠=,BC AC x ==,利用正余弦定理换算可得28064cos x α=-,248cos 16x xβ+=,代入整理可得=BOC S 16πsin 3a ⎛⎫- ⎪⎝⎭,利用α的范围即可得解. 【小问1详解】如图所示,因为28cm OC OA ==,π2AOC ∠=,易知sin ∠==OAC ,cos OAC ∠=,AC AB ==,在OAB 中,由余弦定理易知2222cos BO AO AB AO AB OAB =+-⋅⋅∠, 且π3OAB OAC ∠=∠+,πππcos cos cos cos sin sin 333⎛⎫∠=∠+=∠-∠ ⎪⎝⎭OAB OAC OAC OAC12==, 在OAB 中,由余弦定理可得:所以((222424165BO =+-⨯⨯=+,解得BO =;【小问2详解】设AOC α∠=,ACO β∠=,BC AC x ==,在AOC 中,由余弦定理易知,2222cos AC AO OC AO OC α=+-⋅⋅,即22248248cos x α=+-⨯⨯⨯,28064cos x α=-①,222cos 2AC OC AO ACO AC OC+-∠=⋅,即248cos 16x x β+=②, 由正弦定理易知4sin sin x αβ=③, 将①②③代入下列式子中:21sin 2sin cos 8sin 23πBOC BC CO x S βββα⎛⎫⋅⋅⋅+=+=++ ⎪⎝⎭=△)8sin 8064cos a α=+-8sin 16si πn 3a a α⎛⎫=+-=- ⎪⎝⎭, 则当5π6ADC ∠=时,BDC S △取最大值,最大值为(216cm +. 【点睛】思路点睛:第二问中由余弦定理得28064cos x α=-,248cos 16x x β+=,由正弦定理得4sin sin x αβ=,三式代入面积公式BOC S ,考查了学生思维能力及运算能力. 22. 已知函数sin ()2cos x f x ax x=-+. (1)当1a =时,讨论()f x 的单调性;(2)若0x ∀>都有()0f x >,求a 的取值范围.【答案】(1)函数()f x 是R 上的增函数;(2)13a ≥. 【解析】【分析】(1)把1a =代入,求出函数()f x 的导数,再判断导数值正负作答.(2)求出函数()f x 的导数,再分析导函数值的情况,分类探讨即可作答.【小问1详解】当1a =时,函数sin ()2cos x f x x x=-+的定义域为R , 的2222cos (2cos )sin 32cos cos ()10(2cos )(2cos )x x x x x f x x x ++++'=-=>++, 所以函数()f x 是R 上的增函数.【小问2详解】 函数sin ()2cos x f x ax x=-+,0x >, 求导得22212cos 32111()3()(2cos )(2cos )2cos 2cos 33x f x a a a x x x x +'=-=-+=-+-++++, 当13a ≥时,()0f x '≥,即函数()f x 在(0,)+∞上单调递增,0x ∀>,()(0)0f x f >=,因此13a ≥; 当103a <<时,令()sin 3,0h x x ax x =->,求导得()cos 3h x x a '=-, 函数()cos 3h x x a '=-在π(0,)2上单调递减,π(0)130,()302h a h a ''=->=-<, 则存在0π(0,)2x ∈,使得0()0h x '=,当00x x <<时,()0h x '>,()h x 在0(0,)x 上单调递增, 当0(0,)x x ∈时,()(0)0h x h >=,即sin 3x ax >,因此当0(0,)x x ∈时,sin sin 2cos 3x x ax x >>+,即sin ()02cos x f x ax x =-<+,不符合题意; 当0a ≤时,ππ1(0222f a =-<,不符合题意, 综上得13a ≥, 所以a 的取值范围是13a ≥. 【点睛】思路点睛:涉及函数不等式恒成立问题,可以借助分段讨论函数的导函数,结合函数零点探讨函数值正负,以确定单调性推理作答.。
2015-2016学年江苏省扬州中学高一(上)10月月考数学试卷一、填空题:本大题共14小题,每小题5分,共70分.1.已知集合A={1,4},B={0,1,a},A∪B={0,1,4},则a=.2.已知集合M+{x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=.3.函数f(x)=的定义域为.4.已知f(x)=2x2+bx+1是定义域在R上的偶函数,则b=.5.函数的值域为.6.已知函数f(x+1)=2x2﹣4x,则函数f(2)=.7.函数y=|x﹣a|的图象关于直线x=3对称.则a=.8.函数f(x)=的单调增区间为.9.函数f(x)=的最大值为.10.不等式(|x|﹣1)(x﹣2)>0的解集是.11.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是.12.设函数f(x)满足f(﹣x)=﹣f(x)(x∈R),且在(0,+∞)上为增函数,且f(1)=0,则不等式的解集为.13.若定义在R上的函数对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)﹣1成立,且当x>0时,f(x)>1,若f(4)=5,则不等式f(3m﹣2)<3的解集为.14.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.已知集合A={|a+1|,3,5},B={2a+1,a2+2a,a2+2a﹣1},当A∩B={2,3}时,求A∪B.16.已知A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集为实数集R.(1)求A∪B,(∁R A)∩B;(2)如果A∩C≠∅,求a的取值范围.17.已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x(Ⅰ)求函数f(x)在R上的解析式;(Ⅱ)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.18.已知二次函数f(x)=x2﹣mx+m﹣1(m∈R).(1)若函数在区间[3,+∞)上是单调增函数,求m的取值范围;(2)函数在区间[﹣1,1]上的最小值记为g(m),求g(m)的解析式.19.设a为实数,函数f(x)=x|x﹣a|.(1)讨论f(x)的奇偶性;(2)当0≤x≤1时,求f(x)的最大值.20.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.2015-2016学年江苏省扬州中学高一(上)10月月考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.1.已知集合A={1,4},B={0,1,a},A∪B={0,1,4},则a=4.【考点】并集及其运算.【专题】集合.【分析】由已知中集合A={1,4},B={0,1,a},A∪B={0,1,4},可得:a∈A,再由集合元素的互异性,可得答案.【解答】解:∵集合A={1,4},B={0,1,a},A∪B={0,1,4},∴a∈A,即a=1,或a=4,由集合元素的互异性可得:a=1不满足条件,故a=4,故答案为:4【点评】本题考查的知识点是集合的交集,并集,补集及其运算,难度不大,属于基础题.2.已知集合M+{x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1}.【考点】交集及其运算.【专题】集合.【分析】根据M与N,找出两集合的交集即可.【解答】解:∵M={x|﹣1<x<3},N={x|﹣2<x<1},∴M∩N={x|﹣1<x<1},故答案为:{x|﹣1<x<1}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.函数f(x)=的定义域为(﹣∞,).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】要使函数有意义只要满足8﹣12x>0即可.【解答】解:要使函数有意义,须满足8﹣12x>0,解得x<,故函数f(x)的定义域为(﹣∞,),故答案为:(﹣∞,).【点评】本题考查函数的定义域及其求法,属基础题.4.已知f(x)=2x2+bx+1是定义域在R上的偶函数,则b=0.【考点】函数奇偶性的判断.【专题】计算题;函数的性质及应用.【分析】利用函数奇偶性的定义,f(x)是偶函数,可得f(﹣x)=f(x),代入解析式得到结果.【解答】解:由已知函数f(x)是偶函数,所以有f(﹣x)=f(x),即:(﹣x)2+b(﹣x)+1=x2+bx+1,即:2bx=0,因为x∈R时,此等式恒成立,所以,b=0故答案为:0.【点评】本题考查函数奇偶性,以及代数恒等式成立的问题.本题在得到2bx=0时,是对于x∈R等式都成立.基本知识的考查.5.函数的值域为.【考点】函数的值域.【专题】计算题.【分析】令t=,则t≥0,则y=t﹣t2,结合二次函数的性质即可求解【解答】解:令t=,则t≥0y=t﹣t2=∴函数的值域为(﹣]故答案为:(﹣]【点评】本题主要考查了换元法求解函数的值域,其中二次函数性质的应用是求解的关键6.已知函数f(x+1)=2x2﹣4x,则函数f(2)=﹣2.【考点】函数的值.【专题】函数的性质及应用.【分析】解法一:x+1=2,可得x=1,代入f(x+1)=2x2﹣4x,可得答案;解法二:利用配凑法,求出函数f(x)的解析式,代入x=2,可得答案;解法三:利用换元法,求出函数f(x)的解析式,代入x=2,可得答案;【解答】解法一:∵函数f(x)满足:f(x+1)=2x2﹣4x,令x+1=2,则x=1,f(2)=2×1﹣4×1=﹣2.解法二:∵函数f(x)满足:f(x+1)=2x2﹣4x=2x2+4x+2﹣8(x+1)+6=2(x+1)2﹣8(x+1)+6,∴f(x)=2x2﹣8x+6,f(2)=2×22﹣4×2+6=﹣2.解法三:∵函数f(x)满足:f(x+1)=x2﹣2x仅t=x+1,则x=t﹣1则f(t)=2(t﹣1)2﹣4(t﹣1)=2t2﹣8t+6∴f(x)=2x2﹣8x+6,f(2)=2×22﹣4×2+6=﹣2.故答案为:﹣2【点评】本题考查的知识点是函数的值,函数的解析式,熟练掌握求函数解析式的各种方法是解答的关键.7.函数y=|x﹣a|的图象关于直线x=3对称.则a=3.【考点】函数的图象与图象变化.【专题】计算题.【分析】由含绝对值符号函数对称性我们易得函数y=|x﹣a|的图象关于直线x=a对称,又由函数y=|x﹣a|的图象关于直线x=3对称,我们易得a的值.【解答】解:∵y=|x﹣a|的图象关于直线x=a对称,又∵y=|x﹣a|的图象关于直线x=3对称,故a=3;故答案:3.【点评】本题考查的知识点是含绝对值符号函数的对称性,熟练掌握是绝对值符号函数的对称性是解答本题的关键.8.函数f(x)=的单调增区间为[0,2].【考点】复合函数的单调性;函数单调性的判断与证明.【专题】函数的性质及应用.【分析】根据复合函数的单调性之间的关系求函数的单调区间.【解答】解:设t=g(x)=﹣x2+4x,则y=在定义域上单调递增,由t=g(x)=﹣x2+4x≥0,解得x2﹣4x≤0,即0≤x≤4,又函数由t=g(x)=﹣x2+4x的对称轴为x=2,抛物线开口向下,∴函数t=g(x)=﹣x2+4x的单调增区间为[0,2],单调减区间为[2,4].∴函数f(x)=的单调增区间为[0,2].故答案为:[0,2].【点评】本题主要考查复合函数的单调性的判断和应用,注意要先求函数的定义域.9.函数f(x)=的最大值为.【考点】函数的最值及其几何意义.【专题】计算题.【分析】把解析式的分母进行配方,得出分母的范围,从而得到整个式子的范围,最大值得出.【解答】解:f(x)===,∵≥∴0<≤,∴f(x)的最大值为,故答案为.【点评】此题为求复合函数的最值,利用配方法,反比例函数或取倒数,用函数图象一目了然.10.不等式(|x|﹣1)(x﹣2)>0的解集是(﹣1,1)∪(2,+∞).【考点】其他不等式的解法.【专题】计算题.【分析】不等式(|x|﹣1)(x﹣2)>0可转化为或,根据“大于看两边,小于看中间”的原则,去掉绝对值符号,将问题转化为一个整式不等式组后,即可求了答案.【解答】解:∵(|x|﹣1)(x﹣2)>0∴或即或解得﹣1<x<1,或x>2∴不等式(|x|﹣1)(x﹣2)>0的解集是(﹣1,1)∪(2,+∞)故答案为:(﹣1,1)∪(2,+∞)【点评】本题考查的知识点是绝对值不等式的解法,其中根据“大于看两边,小于看中间”的原则,去掉绝对值符号,将原不等式转化为一个整式不等式,是解答本题的关键.11.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是{a|a>}.【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】把函数f(x)解析式进行常数分离,变成一个常数和另一个函数g(x)的和的形式,由函数g(x)在(﹣2,+∞)为增函数得出1﹣2a<0,从而得到实数a的取值范围.【解答】解:∵函数f(x)==a+,结合复合函数的增减性,再根据f(x)在(﹣2,+∞)为增函数,可得g(x)=在(﹣2,+∞)为增函数,∴1﹣2a<0,解得a>,故答案为:{a|a>}.【点评】本题考查利用函数的单调性求参数的范围,属于基础题.12.设函数f(x)满足f(﹣x)=﹣f(x)(x∈R),且在(0,+∞)上为增函数,且f(1)=0,则不等式的解集为[﹣1,0)∪(0,1].【考点】抽象函数及其应用;函数单调性的性质.【专题】计算题;函数的性质及应用.【分析】由f(﹣x)=﹣f(x),化简不等式得.再分x>0和x<0时两种情况加以讨论,利用函数的单调性和f(1)=0,分别解关于x的不等式得到x的取值范围.最后综合可得原不等式的解集.【解答】解:∵函数f(x)满足f(﹣x)=﹣f(x)(x∈R),∴f(x)﹣f(﹣x)=f(x)+f(x)=2f(x),因此,不等式等价于,化简得或,①当x>0时,由于在(0,+∞)上f(x)为增函数且f(1)=0,∴由不等式f(x)≤0=f(1),得0<x≤1;②当x<0时,﹣x>0,不等式f(x)≥0化成﹣f(x)≤0,即f(﹣x)≤0=f(1),解之得﹣x≤1,即﹣1≤x<0.综上所述,原不等式的解集为[﹣1,0)∪(0,1].故答案为:[﹣1,0)∪(0,1]【点评】本题给出函数的单调性和奇偶性,求解关于x的不等式.着重考查了函数的简单性质及其应用、不等式的解法等知识,属于中档题.13.若定义在R上的函数对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)﹣1成立,且当x>0时,f(x)>1,若f(4)=5,则不等式f(3m﹣2)<3的解集为(﹣∞,).【考点】抽象函数及其应用;函数单调性的性质.【专题】计算题;不等式的解法及应用.【分析】根据题意证出f(0)=1,进而证出F(x)=f(x)﹣1为奇函数.利用函数单调性的定义,结合题中的条件证出F(x)=f(x)﹣1是R上的增函数,因此y=f(x)也是R上的增函数.由f(4)=5代入题中等式算出f(2)=3,将原不等式转化为f(3m﹣2)<f(2),利用单调性即可求出原不等式的解集.【解答】解:由题意,可得令x1=x2=0,则f(0+0)=f(0)+f(0)﹣1,可得f(0)=1,令x1=﹣x,x2=x,则f[(﹣x)+x]=f(﹣x)+f(x)﹣1=1,∴化简得:[f(x)﹣1]+[f(﹣x)﹣1]=0,∴记F(x)=f(x)﹣1,可得F(﹣x)=﹣F(x),即F(x)为奇函数.任取x1,x2∈R,且x1>x2,则x1﹣x2>0,F(x1)﹣F(x2)=F(x1)+F(﹣x2)=[f(x1)﹣1]+[f(﹣x2)﹣1]=[f(x1)+f(﹣x2)﹣2]=[f(x1﹣x2)﹣1]=F(x1﹣x2)∵当x>0时f(x)>1,可得x>0时,F(x)=f(x)﹣1>0,∴由x1﹣x2>0,得F(x1﹣x2)>0,即F(x1)>F(x2).∴F(x)=f(x)﹣1是R上的增函数,因此函数y=f(x)也是R上的增函数.∵f(x1+x2)=f(x1)+f(x2)﹣1,且f(4)=5,∴f(4)=f(2)+f(2)﹣1=5,可得f(2)=3.因此,不等式f(3m﹣2)<3化为f(3m﹣2)<f(2),可得3m﹣2<2,解之得m,即原不等式的解集为(﹣∞,).【点评】本题给出抽象函数满足的条件,求解关于m的不等式.着重考查了函数的简单性质及其应用、不等式的解法等知识,属于中档题.14.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是(﹣∞,2).【考点】特称命题.【专题】函数的性质及应用.【分析】若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则f(x)不是单调函数,结合二次函数和一次函数的图象和性质,分类讨论不同情况下函数的单调性,综合讨论结果可得答案.【解答】解:由题意得,即在定义域内,f(x)不是单调的.分情况讨论:(1)若x≤1时,f(x)=﹣x2+ax不是单调的,即对称轴在x=满足<1,解得:a<2(2)x≤1时,f(x)是单调的,此时a≥2,f(x)为单调递增.最大值为f(1)=a﹣1故当x>1时,f(x)=ax﹣1为单调递增,最小值为f(1)=a﹣1,因此f(x)在R上单调增,不符条件.综合得:a<2故实数a的取值范围是(﹣∞,2)故答案为:(﹣∞,2)【点评】本题考查的知识点是函数的性质及应用,其中根据已知分析出函数f(x)不是单调函数,是解答的关键.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.已知集合A={|a+1|,3,5},B={2a+1,a2+2a,a2+2a﹣1},当A∩B={2,3}时,求A∪B.【考点】并集及其运算;交集及其运算.【专题】计算题;集合.【分析】由题意推出|a+1|=2,求出a的值,验证A∩B={2,3},求出A,B,然后求出A∪B.【解答】解:由A∩B={2,3}可得,2∈A,∴|a+1|=2,a=1或a=﹣3…当a=1时,此时B中有相同元素,不符合题意,应舍去当a=﹣3时,此时B={﹣5,3,2},A={2,3,5},A∩B={3,2}符合题意,所以a=﹣3,A∪B={﹣5,2,3,5}.…【点评】本题是中档题,考查集合的基本运算,集合中参数的取值问题的处理方法,考查计算能力.16.已知A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集为实数集R.(1)求A∪B,(∁R A)∩B;(2)如果A∩C≠∅,求a的取值范围.【考点】交、并、补集的混合运算;集合的包含关系判断及应用;并集及其运算.【专题】计算题;数形结合.【分析】(1)要求A∪B,就是求属于A或属于B的元素即可;要求(C R A)∩B,首先要求集合A的补集,然后再求与集合B的交集,因为A={x|3≤x<7},所以C R A={x|x<3或x≥7},找出C R A与集合B的公共解集即可;(2)由条件A∩C≠φ,在数轴上表示出集合C的解集,因为A∩C≠φ,所以a>3即可.【解答】解:(1)∵A={x|3≤x<7},B={x|2<x<10},∴A∪B={x|2<x<10};∵A={x|3≤x<7},∴C R A={x|x<3或x≥7}∴(C R A)∩B={x|x<3或x≥7}∩{x|2≤x<10}={x|2<x<3或7≤x<10}(2)如图,∴当a>3时,A∩C≠φ【点评】此题考查集合交、并、补的基本概念及混合运算的能力,数形结合的数学思想.17.已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x(Ⅰ)求函数f(x)在R上的解析式;(Ⅱ)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】(Ⅰ)根据函数奇偶性的对称性,即可求函数f(x)在R上的解析式;(Ⅱ)根据函数奇偶性和单调性的关系,利用数形结合即可求出a的取值范围.【解答】解:(Ⅰ)设x<0,则﹣x>0,f(﹣x)=﹣(﹣x)2+2(﹣x)=﹣x2﹣2x.又f(x)为奇函数,所以f(﹣x)=﹣f(x)且f(0)=0.于是x<0时f(x)=x2+2x.所以f(x)=.(Ⅱ)作出函数f(x)=的图象如图:则由图象可知函数的单调递增区间为[﹣1,1]要使f(x)在[﹣1,a﹣2]上单调递增,(画出图象得2分)结合f(x)的图象知,所以1<a≤3,故实数a的取值范围是(1,3].【点评】本题主要考查函数奇偶性和单调性的应用,利用二次函数图象和性质是解决本题的关键.18.已知二次函数f(x)=x2﹣mx+m﹣1(m∈R).(1)若函数在区间[3,+∞)上是单调增函数,求m的取值范围;(2)函数在区间[﹣1,1]上的最小值记为g(m),求g(m)的解析式.【考点】二次函数的性质;函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】(1)结合二次函数的图象和性质,分析对称轴和区间[3,+∞)的关系,可得m的取值范围;(2)用对称轴和区间[﹣1,1]的关系进行分类讨论,求出函数的最小值g(m).【解答】解:(1)f(x)=x2﹣mx+m﹣1=(x﹣)2﹣+m﹣1,对称轴为x=.若函数在区间[3,+∞)上是单调增函数,则≤3,解得:m≤6;(2)①若<﹣1,即m<﹣2,此时函数f(x)在区间[﹣1,1]上单调递增,所以最小值g(m)=f(﹣1)=2m.②若﹣1≤≤1,即﹣2≤m≤2,此时当x=时,函数f(x)最小,最小值g(m)=f()=﹣+m﹣1.③若>1,即m>2,此时函数f(x)在区间[﹣1,1]上单调递减,所以最小值g(m)=f(1)=0.综上g(m)=.【点评】本题主要考查了二次函数的图象和性质,综合性较强,要求熟练掌握二次函数性质和应用.19.设a为实数,函数f(x)=x|x﹣a|.(1)讨论f(x)的奇偶性;(2)当0≤x≤1时,求f(x)的最大值.【考点】函数的最值及其几何意义.【专题】函数的性质及应用.【分析】(1)讨论a=0时与a≠0时的奇偶性,然后定义定义进行证明即可;(2)讨论当a≤0和a>0时,求出函数f(x)=x|x﹣a|的表达式,即可求出在区间[0,1]上的最大值.【解答】解:(1)由题意可知函数f(x)的定义域为R.当a=0时f(x)=x|x﹣a|=x|x|,为奇函数.当a≠0时,f(x)=x|x﹣a|,f(1)=|1﹣a|,f(﹣1)=﹣|1+a|,f(﹣x)≠f(x)且f(﹣x)≠﹣f(x),∴此时函数f(x)为非奇非偶函数.(2)若a≤0,则函数f(x)=x|x﹣a|在0≤x≤1上为增函数,∴函数f(x)的最大值为f(1)=|1﹣a|=1﹣a,若a>0,由题意可得f(x)=,由于a>0且0≤x≤1,结合函数f(x)的图象可知,由,当,即a≥2时,f(x)在[0,1]上单调递增,∴f(x)的最大值为f(1)=a﹣1;当,即时,f(x)在[0,]上递增,在[,a]上递减,∴f(x)的最大值为f()=;当,即时,f(x)在[0,]上递增,在[,a]上递减,在[a,1]上递增,∴f(x)的最大值为f(1)=1﹣a.【点评】本题主要考查函数奇偶性的判断,以及分段函数的最值的求法,考查学生的运算能力.20.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.【考点】函数的最值及其几何意义;函数单调性的性质.【专题】计算题;综合题.【分析】(1)当a=﹣1时,函数表达式为f(x)=1+x﹣x2,可得f(x)在(﹣∞,0)上是单调增函数,它的值域为(﹣∞,1),从而|f(x)|的取值范围是[0,+∞),因此不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.(2)函数f(x)在x∈[1,4]上是以3为上界的有界函数,即﹣3≤f(x)≤3在[1,4]上恒成立,代入函数表达式并化简整理,得﹣﹣≤a≤﹣在[1,4]上恒成立,接下来利用换元法结合二次函数在闭区间上最值的求法,得到(﹣﹣)max=﹣,(﹣)min=﹣,所以,实数a的取值范围是[﹣,﹣].【解答】解:(1)当a=﹣1时,函数f(x)=1+x﹣x2=﹣(x﹣)2+∴f(x)在(﹣∞,0)上是单调增函数,f(x)<f(0)=1∴f(x)在(﹣∞,0)上的值域为(﹣∞,1)因此|f(x)|的取值范围是[0,+∞)∴不存在常数M>0,使|f(x)|≤M成立,故f(x)不是(﹣∞,0)上的有界函数.(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,则|f(x)|≤3在[1,4]上恒成立,即﹣3≤f(x)≤3∴﹣3≤ax2+x+1≤3∴≤a ≤,即﹣﹣≤a ≤﹣在[1,4]上恒成立,∴(﹣﹣)max ≤a ≤(﹣)min ,令t=,则t ∈[,1]设g (t )=﹣4t 2﹣t=﹣4(t+)2+,则当t=时,g (t )的最大值为﹣再设h (t )=2t 2﹣t=2(t ﹣)2﹣,则当t=时,h (t )的最小值为﹣∴(﹣﹣)max =﹣,(﹣)min =﹣所以,实数a 的取值范围是[﹣,﹣].【点评】本题以一个特定的二次函数在闭区间上有界的问题为例,考查了函数单调性的性质和二次函数在闭区间上值域等知识点,属于中档题.请同学们注意解题过程中变量分离和换元法求值域的思想,并学会运用.。
江苏省扬州中学2022-2023学年度10月月考试题 高三数学 2022.10试卷满分:150分, 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码. 2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效. 3.考试结束后,请将机读卡和答题卡交监考人员.一、单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.) 1. 已知集合{}A=-2,0 {}2B=20x x x -= ,则以下结论正确的是( ) A. A B =B. {}0A B =C. A B A =D. A B ⊆2.下列命题中,真命题是( ) A .“1,1a b >>”是“1ab >”的必要条件 B .R x ∀∈,e 0x > C .2R,2x x x ∀∈>D .0a b +=的充要条件是1ab=- 3.如图是杭州2022年第19届亚运会会徽,名为“潮涌”,形象象征着新时代中国特色社会主义大潮的涌动和发展.如图是会徽的几何图形.设弧AD 长度是1l ,弧BC 长度是2l ,几何图形ABCD 面积为1S ,扇形BOC 面积为2S ,若122l l =,则12S S =( )A .1B .2C .3D .4 4.在△ABC中,若tan tan tan A B A B +,则tan 2C =( )A.-B.C.-D.5.函数()()sin f x A x ωϕ=+(0A >,0>ω,2πϕ<)的部分图象如图所示,将()f x 的图象上所有点的横坐标扩大到原来的4倍(纵坐标不变),再把所得的图象沿x 轴向左平移3π个单位长度,得到函数()g x 的图象,则函数()g x 的一个单调递增区间为( )A .3,82ππ⎡⎤⎢⎥⎣⎦B .7,33ππ⎡⎤⎢⎥⎣⎦C .3,48ππ⎡⎤⎢⎥⎣⎦D .5,33ππ⎡⎤-⎢⎥⎣⎦6.设24ln 4a e -=,ln 22b =,1c e =,则( ) A .a c b << B .a b c << C .b a c << D .b c a <<7.在ABC ∆中,内角A ,B ,C 的对边分别是a ,b ,c ,24b a +=,()()sin sin sin sin a c A C b B a B +-+=,点D 在边AB 上,且2AD DB =,则线段CD 长度的最小值为( )A B C .3 D .2 8.已知直线0l y kx k =>:()既是函数()21f x x =+的图象的切线,同时也是函数()()ln 1pxg x x p R x =+∈+的图象的切线,则函数()g x 零点个数为( ) A .1 B .0 C .0或1 D .1或2二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.)9.已知函数12()||+||cos f x x x x =-,则下列说法正确的是( ) A .()f x 是偶函数 B .()f x 在(0,+∞)上单调递减 C .()f x 是周期函数 D .()f x ≥-1恒成立10.在ABC ∆中,角,,A B C 的对边分别是,,a b c ,下列说法正确的是( ) A .若30,5,2A b a ===,则ABC 有2解; B .若A B >,则cos cos A B <;C .若cos cos cos 0A B C >,则ABC ∆为锐角三角形;D .若cos cos a b c B c A -=⋅-⋅,则ABC 为等腰三角形或直角三角形.11.如图,已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||AE AC DF ⊥, 则下述结论正确的是( )A .E 到直线BCB .点F 的轨迹是一个圆C .EF 1D .直线DF 与平面1A BD 12.已知函数()()ln ,e x xf xg x x x-==,若存在()120,,x x ∞∈+∈R ,使得()()12f x g x k ==成立,则( )A .当0k >时,121x x +>B .当0k >时,21e 2exx +<C .当0k <时,121x x +<D .当0k <时,21e kx x ⋅的最小值是1-e三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13.已知角α的终边上一点)1A-,则cos()πα+=____.14.若函数()221x x af x +=+为奇函数, (),0 ,0ax alnx xg x e x >⎧=⎨≤⎩,则不等式()1g x >的解集为____.15.已知正数,a b 满足34318a b a b+++=,则3a b +的最大值是___________.16.ABC ∆是边长为E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ∆折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为_______________.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17.已知条件:p ______,条件:q 函数kx x x f 2)(2-=在区间)2,(a 上不单调,若p 是q 的必要条件,求实数a 的最小值.在“①函数k x x y ++=692的定义域为R ,②],2,2[-∈∃x 使得032≤-k x 成立,③方程03sin 72=-k x 在区间),0[+∞内有解”这三个条件中任选一个,补充在上面的问题中,并进行解答.注意:若选择多个条件分别解答,按第一个解答给分.18.如图,设ABC ∆的内角C B A ,,,所对的边分别为c b a ,,,若3π=C ,且b a bc C B A +-=-sin sin sin ,点D 是ABC ∆外一点,2,1==DA DC .(1)求角B 的大小;(2)求四边形ABCD 面积的最大值.19. 已知函数2()(,R)f x x ax a b a b =+-+∈.(1)若2,ln ()b y f x ==在[1,3]x ∈上有意义且不单调,求a 的取值范围; (2)若集合(){}()(){}0,10A x f x B x f f x =≤=+≤,且A B =≠∅,求a 的取值范围.20. 如图,在直角POA ∆中,42,==⊥AO PO AO PO ,将POA ∆绕边PO 旋转到POB ∆的位置,使090=∠AOB ,得到圆锥的一部分,点C 为AB 上的点,且13AC AB =.(1)求点O 到平面PAB 的距离;(2)设直线PC 与平面PAB 所成的角为ϕ,求ϕsin 的值.21.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F 2,上顶点为H ,O 为坐标原点,∠OHF 2=30°,(1,32)在椭圆E 上. (1)求椭圆E 的方程;(2)设经过点F 2且斜率不为0的直线l 与椭圆E 相交于A ,B 两点,点P (-2,0),Q (2,0).若M ,N 分别为直线AP ,BQ 与y 轴的交点,记△MPQ ,△NPQ 的面积分别S △MPQ ,S △NPQ ,求S △MPQ S △NPQ的值22.设.sin )(x e x f x=(1)求)(x f 在],[ππ-上的极值; (2)若对],0[,21π∈∀x x ,21x x =/,都有0)()(222121>+--a x x x f x f 成立,求实数a 的取值范围.参考答案1.B2.B3.C4.A5.D6.C7.A8.A9.AD 10.BCD 11.CD 12.ACD13. 14.()1-0(0,)e ∞,15.9+ 16.2 16解析:要想体积最大,高得最大,底面积也得最大,当平面AEF ⊥平面EFCB 时,体积才最大;设2EF a =;设O 为EF 的中点,如图: 等边ABC ∆中,点E ,F 分别为AB ,AC 上一点,且//EF BC ,AE AF ∴=,O 为EF 的中点,AO EF ∴⊥,平面AEF ⊥平面EFCB ,平面AEF ⋂平面EFCB EF =,AO ∴⊥平面EFCB ,2EF a =,AO ∴=.∴四棱锥A -的体积311(2(3)()332V a a a a a a =⨯⨯+⨯=+=-,2330V a ∴'=-=,1a ∴= (负值舍),01a <<,V 1a >>,V 单调递减, 1a ∴=,四棱锥A EFCB -的体积最大,最大值为:312-=.17.【分析】首先根据题意得到q 为真时, .若选①,p 为真时, ,再结合必要条件求解即可.若选②,p 为真时, ,再结合必要条件求解即可.若选③,p 为真时,,再结合必要条件求解即可.【详解】条件q :函数 在区间 上不单调, 则函数 的对称轴在给定区间 内,则 . 故q 为真时, .....................3分 若选①,函数 的定义域为 ,则 ,解得: , ....................6分 故p 为真时, .若p 是q 的必要条件,即 .则 ,故a 的最小值是1. ....................10分 选②时, ,使得 成立, 即 能成立.即 ,所以 ,所以 , 故p 为真时, .若p 是q 的必要条件,即 ,则 . 故a 的最小值为0.选③时,方程 在区间 内有解, 故有 ,所以 . 故p 为真时,.若p 是q 的必要条件, 则.则 . 故a 的最小值为0.18.【答案】(1)3π (22 【解析】【分析】(1)由正弦定理化角为边后应用余弦定理求得A 角后可得B 角大小;(2)设(0π)ADC θθ∠=<<,由面积公式得ACD △面积,由余弦定理求得AC ,然后可得正三角形ABC 的面积,从而得出四边形ABCD 的面积,再逆用两角差的正弦公式化简函数后利用正弦函数性质得最大值. 【小问1详解】 由sin sin sin --=+A B c b C a b,再由正弦定理得,a b c bc a b --=+,得222a b c bc -=-,即222b c a bc +-=故()2221cos 0,22b c a A A bc π+-==∈,,所以π3A =,又π3C =,故π3B =.【小问2详解】设(0π)ADC θθ∠=<<,则1sin sin 2ACD S AD DC θθ=⋅=△, 在ADC 中,2222cos 54cos AC AD DC AD DC θθ=+-⋅=-,由(1)知ACD △为正三角形,故2ABC S AC θ==△,故πsin 2sin 3ABCD S θθθ⎛⎫==- ⎪⎝⎭19.【答案】(1)(22)---; (2)[2,2]-. 【解析】【分析】(1)根据题意得到二次函数()f x 的对称轴在()1,3之间,且()f x 在[]1,3上恒为正,结合二次函数的性质即得;(2)设(),m n m n ≤为方程()0f x =的两个根,计算(){}|11B x m f x n =-≤≤-,得到2min4(1)()24a a f x a ---=≥--,进而即得.【小问1详解】当2b =时,2()2f x x ax a =+-+,由题知:二次函数()f x 的对称轴在(1,3)之间,且()f x 在[1,3]上恒正,∴21322024a a a f a ⎧<-<⎪⎪⎨⎛⎫⎪-=--+> ⎪⎪⎝⎭⎩,解得22a --<<-,即(22)a ∈---; 【小问2详解】因为A ≠∅,不妨设,()m n m n ≤为方程()0f x =的两个根,∴(){}(){}(){}10111B x f f x x m f x n x m f x n ⎡⎤=+≤=≤+≤=-≤≤-⎣⎦, 由A B =≠∅,得10n -=,即1n =,且min ()1f x m ≥-, 由()(1)0f n f ==,得1b =-, ∴2()1f x x ax a =+--, ∵{}()0A x f x =≤≠∅,∴224(1)(2)0a a a ∆=---=+≥, ∴R a ∈,又,()m n m n ≤为方程()0f x =的两个根, ∴1m a =--, ∴2min4(1)()24a a f x a ---=≥--,解得22a -≤≤,∴[2,2]a ∈-.20.【答案】(1)43 (2)15【小问1详解】证明:由题意知:,,PO OA PO OB OA OB O ⊥⊥=,OA ⊂平面AOB ,OB ⊂平面AOB ,PO ∴⊥平面AOB ,又24PO OA ==,所以PA PB AB ===所以162PABS=⨯=,设点O 到平面PAB 的距离为d ,由O PAB P OAB V V --= 得1116422332d ⨯⨯=⨯⨯⨯⨯,解得43d =;向量坐标法同样给分;’ 【小问2详解】以O 为原点,,,OA OB OP 的方向分别为,,x y z 轴的正方向,建立如图所示的空间直角坐标系,则()()()2,0,0,0,2,0,0,0,4A B P, 由题意知π6AOC ∠=,则)C ,所以()()()2,2,0,2,0,4,3,1,4AB AP PC =-=-=-.设平面PAB 的法向量为(),,n a b c =,则220240n AB a b n AP a c ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取1c =,则2a b ==,可得平面PAB 的一个法向量为()2,2,1n =r,所以2sin cos ,6n PC n PC n PCϕ⋅====.21.【答案】(1)22143x y += (2)13【分析】(1)由230OHF ∠=︒,得b =,再将点31,2⎛⎫⎪⎝⎭代入椭圆方程中,结合222a b c =+可求出,a b ,从而可求出椭圆方程,(2)设直线:1l x my =+,()11,A x y ,()22,B x y ,将直线方程代入椭圆方程消去x ,整理后利用根与系数的关系,可得()121232my y y y =+,表示出直线AP 的斜率1112y k x =+,直线BQ 的斜率2222y k x =-,而121212MPQ NPQPQ OM S OM k S ON k PQ ON ⋅===⋅△△,代入化简即可 【小问1详解】由230OHF ∠=︒,得b =(c 为半焦距),∵点31,2⎛⎫⎪⎝⎭在椭圆E 上,则221914a b+=.又222a b c =+,解得2a =,b =1c =.∴椭圆E 的方程为22143x y +=.【小问2详解】由(1)知()21,0F .设直线:1l x my =+,()11,A x y ,()22,B x y .由221143x my x y =+⎧⎪⎨+=⎪⎩消去x ,得()2234690m y my ++-=.显然()214410m ∆=+>. 则122634m y y m -+=+,122934y y m -=+. ∴()121232my y y y =+.由()2,0P -,()2,0Q ,得直线AP 的斜率1112y k x =+,直线BQ 的斜率2222y k x =-.又1OM k OP =,2ONk OQ=,2OP OQ ==,∴12OM k ON k =.∴121212MPQ NPQ PQ OM S OM k S ON k PQ ON ⋅===⋅△△. ∵()()()()121211212121212221233y x y my k my y y k x y my y my y y ---===+++()()1211212212313122233933222y y y y y y y y y y +-+===+++. ∴13MPQ NPQS S =△△. 22(1)解:由0)cos (sin )('≤+=x x e x f x,],[ππ-∈x …………………………(1分) 得)(x f 的单调减区间是⎥⎦⎤⎢⎣⎡--4,ππ,⎥⎦⎤⎢⎣⎡ππ,43 ……………………………(3分) 同理,)(x f 的单调增区间是⎥⎦⎤⎢⎣⎡-43,4ππ ……………………………(4分) 故)(x f 的极小值为442222)4(πππ--=-=-e e f ,极大值为.22)43(43ππe f =……(5分)【注:若只用0)('=x f 得出结果至多给3分】 (2)解:由对称性,不妨设π≤<≤210x x , 则0)()(222121>+--a x x x f x f 即为.)()(211222ax x f ax x f +>+ 设2)()(ax x f x g +=,则)(x g 在],0[π上单调递增,故02)cos (sin )('≥++=ax x x e x g x,在],0[π上恒成立.………………(6分) 【方法一】(含参讨论)设02)cos (sin )(')(≥++==ax x x e x g x h x,则01)0(>=h ,02)(≥+-=πππa e h ,解得ππ2e a ≥. …………………………(7分))cos (2)('a x e x h x +=,0)1(2)0('>+=a h ,).(2)('ππe a h -=①当πe a ≥时,)sin (cos 2)]'('[x x e x h x-=,故当⎥⎦⎤⎢⎣⎡∈4,0πx 时,)(',0)sin (cos 2)]'('[x h x x e x h x≥-=递增; 当⎥⎦⎤⎢⎣⎡∈ππ,4x 时,0)sin (cos 2)]'('[≤-=x x e x h x ,)('x h 递减; 此时,0)(2)(')}('),0('min{)('≥-==≥πππe a h h h x h ,)(')(x g x h =在],0[π上单调递增,故01)0(')(')(>=≥=g x g x h ,符合条件. ……………………………(9分)②当πππe a e <≤2时,同①当⎥⎦⎤⎢⎣⎡∈4,0πx 时,)('x h 递增;当⎥⎦⎤⎢⎣⎡∈ππ,4x 时,)('x h 递减;0)1(2)0(')4('>+=>a h h π,0)(2)('<-=ππe a h , ∴由连续函数零点存在性定理及单调性知,),4(0ππ∈∃x ,.0)('0=x h于是,当),0[0x x ∈时,0)('>x h ,)(')(x g x h =单调递增; 当],(0πx x ∈时,0)('<x h ,)(')(x g x h =单调递减.01)0(>=h ,,02)(≥+-=πππa e h ………………………………(10分) )0(min{)()('h x h x g ≥=∴0)}(≥πh ,符合条件. …………………………(11分)综上,实数a 的取值范围是.,2⎪⎪⎭⎫⎢⎣⎡∞+ππe ……………………………(12分)【方法二】(必要性探路法)设02)cos (sin )(')(≥++==ax x x e x g x h x,则01)0(>=h ,02)(,≥+-=πππa e h ,解得.2ππe a ≥ ………………………(7分) 由于ππ2e a ≥时,x e x x e ax x x e x g xx ππ++≥++=)cos (sin 2)cos (sin )('故只需证:.0)cos (sin ≥++x e x x e xππ…………………………(8分) 设x e x x e x xπϕπ++=)cos (sin )(,],0[π∈x ,则πϕπe x e x x +=cos 2)(',],0[π∈x ,02)0('>+=πϕπe ,.02)('<+-=ππϕππe e 设πϕπe x e x x m x+==cos 2)(')(,],0[π∈x ,则)sin (cos 2)('x x e x m x-=,].,0[π∈x …………………………(9分) 当⎪⎭⎫⎝⎛∈4,0πx 时,)(,0)('x m x m >单调递增; 当⎪⎭⎫⎝⎛∈ππ,4x 时,)(,0)('x m x m <单调递减; 02)0(')0(>+==πϕπe m ,2)4(')4(4>+==ππϕπππe e m ,02)(')(<+-==πππϕππe m),4(0ππ∈∃∴x ,.0)(')(00==x x m ϕ ……………………………(10分)由)(x m 单调性知,当),0(0x x ∈时,)(,0)(x x m ϕ>单调递增;当),(0πx x ∈时,)(,0)(x x m ϕ<单调递减. 0)(,01)0(=>=πϕϕ ,.0)()()(min ==≥∴πϕϕϕx x],0[,0)cos (sin πππ∈∀≥++x x e x x e x,得证. ………………………(11分)综上所述,实数a 的取值范围是.,2⎪⎪⎭⎫⎢⎣⎡∞+ππe ……………………………(12分) 【方法三】(参变分离)由对称性,不妨设,021π≤<≤x x则0)()(222121>+--a x x x f x f 即为.)()(211222ax x f ax x f +>+ 设2)()(ax x f x g +=,则)(x g 在],0[π上单调递增, 故02)cos (sin )('≥++=ax x x e x g x在],0[π上恒成立.01)0('>=g ,02)cos (sin )('≥++=∴ax x x e x g x 在],0[π上恒成立,得x x x e a x )cos (sin 2+≤-,]π,0(∈∀x . ………………………(7分)设xx x e x h x )cos (sin )(+=,]π,0(∈x ,则2)cos sin cos 2()('xx x x x e x h x --=,.,0(]π∈x ………………………(8分) 设1tan 2)(--=x x x ϕ,⎥⎦⎤ ⎝⎛⎪⎭⎫ ⎝⎛∈πππ,22,0 x ,则x x 2cos 12)('-=ϕ,.,22,0⎥⎦⎤ ⎝⎛⎪⎭⎫ ⎝⎛∈πππ x 由0)('>x ϕ,⎥⎦⎤⎝⎛⎪⎭⎫ ⎝⎛∈πππ,22,0 x ,得,)(x ϕ在⎥⎦⎤ ⎝⎛⎪⎭⎫ ⎝⎛πππ,43,4,0上单调递增; 由0)('<x ϕ,⎥⎦⎤⎝⎛⎪⎭⎫ ⎝⎛∈πππ,22,0 x ,得,)(x ϕ在⎪⎭⎫ ⎝⎛2,4ππ,⎥⎦⎤ ⎝⎛43,2ππ上单调递减. 故⎪⎭⎫ ⎝⎛∈2,0πx 时022)4()(<-=≤ππϕϕx ;⎥⎦⎤ ⎝⎛∈ππ,2x 时023)43()(>=≥ππϕϕx .…………(9分)从而,0cos sin cos 2cos )(<--=x x x x x x ϕ,⎥⎦⎤⎝⎛⎪⎭⎫ ⎝⎛∈πππ,22,0 x ,…………(10分)又2π=x 时,01cos sin cos 2<-=--x x x x ,故0)c o s s i n c o s 2()('2<--=xx x x x e x h x ,],0(π∈x ,xx x e x h x )cos (sin )(+=,],0(π∈x 单调递减, πππe h x h -==)()(min ,].,0(π∈x于是,.22ππππe a e a ≥⇔-≤- …………………………(11分)综上,实数a 的取值范围是.,2⎪⎪⎭⎫⎢⎣⎡∞+ππe …………………………(1。
2016年江苏省扬州中学高二上学期苏教版数学10月月考试卷一、填空题(共14小题;共70分)1. 直线x=−1的倾斜角为______.2. 焦点在x轴上的椭圆x2m +y24=1的焦距是2,则m的值是______.3. 若直线l1:y=k x−4与直线l2关于点2,1对称,则直线l2恒过定点______.4. 从点P1,−2引圆x2+y2+2x−2y−2=0的切线,则切线长是______.5. 若P是以F1,F2为焦点的椭圆x225+y29=1上一点,则三角形PF1F2的周长等于______.6. 圆C1:x−12+y−22=1,圆C2:x−22+y−52=9,则这两圆公切线的条数为______.7. 经过点1,3且在两坐标轴上的截距互为相反数的直线方程是______.8. 圆x−32+y+12=1关于直线x+y−3=0对称的圆的标准方程是______.9. 已知D是由不等式组x−2y≥0,x+3y≥0所确定的平面区域,则圆x2+y2=4在区域D内的弧长为______.10. 圆C:x2+y2−2x−4y−31=0,则圆上到直线3x+4y+4=0距离为3的点共有______ 个.11. 在平面直角坐标系xOy中,若直线ax+y−2=0与圆心为C的圆x−12+y−a2=16相交于A,B两点,且△ABC为直角三角形,则实数a的值是______.12. 已知椭圆x2a2+y2b2=1a>b>0,点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线AB2与直线B1F的交点恰在椭圆的右准线上,则椭圆的离心率为______.13. 已知圆C:x2+y2=1,点P x0,y0在直线x−y−2=0上,O为坐标原点,若圆C上存在一点Q,使∠OPQ=30∘,则x0的取值范围是______.14. 若对于给定的正实数k,函数f x=kx的图象上总存在点C,使得以C为圆心、1为半径的圆上有两个不同的点到原点O的距离为2,则k的取值范围是______.二、解答题(共6小题;共78分)15. 已知直线l1:m+2x+m+3y−5=0和l2:6x+2m−1y=5.问m为何值时,有:(1)l1∥l2?(2)l1⊥l2?16. 已知椭圆8x281+y236=1上一点M x0,y0,且x0<0,y0=2.(1)求x0的值;(2)求过点M且与椭圆x 29+y24=1共焦点的椭圆的方程.17. 在平面直角坐标系xOy中,已知点A−3,4,B9,0,C,D分别为线段OA,OB上的动点,且满足 AC = BD .(1)若 AC =4,求直线CD的方程;(2)证明:△OCD的外接圆恒过定点.18. 在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于A点北偏东45∘且与点A相距402海里的位置B,经过40分钟又测得该船已行驶到点A北偏东45∘+θ(其中sinθ=2626,0∘<θ<90∘)且与点A相距1013海里的位置C.(1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.19. 在平面直角坐标系xOy中.已知圆C经过A0,2,O0,0,D t,0t>0三点,M是线段AD上的动点,l1,l2是过点B1,0且互相垂直的两条直线,其中l1交y轴于点E,l2交圆C于P,Q两点.(1)若t=PQ =6,求直线l2的方程;(2)若t是使 AM ≤2 BM 恒成立的最小正整数,求△EPQ的面积的最小值.20. 已知函数f x=ax+x+1,a∈R.(1)当a=1时,求f x的最小值;(2)若函数f x图象上的点都在不等式组x+1≥0,x−y−1≤0表示的平面区域内,求实数a的取值范围;(3)若函数 x=x4+ f x−x+1x2+1+bx2+1在0,+∞上有零点,求a2+b2的最小值.答案第一部分1. π22. 53. 0,24. 35. 186. 27. y=3x或y=x+28. x−42+y2=19. π210. 311. −112. 1213. 0,214. 0,92第二部分15. (1)由m+22m−1=6m+18,得m=4或m=−52;当m=4时,l1:6x+7y−5=0,l2:6x+7y=5,即l1与l2重合;当m=−52时,l1:−12x+12y−5=0,l2:6x−6y−5=0,即l1∥l2.所以当m=−52时,l1∥l2.(2)由6m+2+m+32m−1=0得m=−1或m=−92;所以当m=−1或m=−92时,l1⊥l2.16. (1)把M的纵坐标代入8x281+y236=1,得8x281+436=1,即x2=9.所以x=±3.故M的横坐标x0=−3.(2)对于椭圆x29+y24=1,焦点在x轴上且c2=9−4=5,故设所求椭圆的方程为x 2a +y2a−5=1a2>5,把M点坐标代入得9a +4a−5=1,解得a2=15(a2=3舍去).故所求椭圆的方程为x 215+y210=1.17. (1)若 AC =4,则 BD =4,因为B9,0,所以D5,0,因为A−3,4,所以 OA =3+42=5,则 OC =1,直线OA的方程为y=−43x,设C3a,−4a,−1<a<0,则 OC =2+16a2=25a2=5 a =−5a=1,解得a=−15,则C −35,45,则CD的方程为y−0 4−0=x−5−3−5,整理得x+7y−5=0,即直线CD的方程为x+7y−5=0;(2)设C3a,−4a,−1<a<0,则 AC =3a+322=2=5 a+1=5a+1,则 BD = AC =5a+1,则D4−5a,0,设△OCD的外接圆的一般方程为x2+y2+ Dx+Ey+F=0,因为O0,0,C3a,−4a,−1<a<0,D4−5a,0,所以圆的方程满足F=0,9a2+16a2+3aD−4aE+F=0, 4−5a2+4−5a D+F=0,即25a2+3aD−4aE=0,4−5a4−5a+D=0,则25a+3D−4E=0, D=5a−4.解得E=10a−3,F=0,D=5a−4,则圆的一般方程为x2+y2+5a−4x+10a−3y=0,即x2+y2−4x−3y+5a x+2y=0,由x+2y=0,x2+y2−4x−3y=0,解得x=0,y=0或x=2,y=−1,即:△OCD的外接圆恒过定点0,0和2,−1.18. (1)AB=40,AC=1013,∠BAC=θ,sinθ=2626.由于0∘<θ<90∘,所以cosθ=1−26262=52626.由余弦定理得BC= AB2+AC2−2AB⋅AC⋅cosθ=10 5.所以船的行驶速度为1052=155(海里/小时).(2)AE与BC的延长线相交于点Q.在△ABC中,由余弦定理得,cos∠ABC=AB2+BC2−AC22AB⋅BC=402×2+102×5−102×132×402×105=31010,从而sin∠ABC=1−cos2∠ABC=1−910=1010,在△ABQ中,由正弦定理得,AQ=AB sin∠ABCsin45∘−∠ABC =402×10102×210=40.由于AE=55>40=AQ,所以点Q位于点A和点E之间,且QE=AE−AQ=15.过点E作EP⊥BC于点P,则EP为点E到直线BC的距离.在Rt△QPE中,PE=QE⋅sin∠PQE=QE⋅sin45∘−∠ABC=15×55=35<7.所以船会进入警戒水域.19. (1)由题意,圆心坐标为3,1,半径为10,则设直线l2的方程y=k x−1,即kx−y−k=0,所以圆心到直线的距离d=2=10−9,所以k=0或43,所以直线l2的方程为y=0或4x−3y−1=0.(2)设M x,y,由点M在线段AD上,得xt +y2=1,即2x+ty−2t=0,由 AM ≤2 BM ,得 x−432+ y+232≥209,依题意,线段AD与圆 x−432+ y+232≥209至多有一个公共点,故83−83t4+t2≥253,解得t≤16−10311或t≥16+10311,因为t是使 AM ≤2 BM 恒成立的最小正整数,所以t=4,所以圆C的方程为x−22+y−12=5.①当直线l2:x=1时,直线l1的方程为y=0,此时S△EPQ=2;②当直线l2的斜率存在时,设l2的方程为y=k x−1,k≠0,则l1的方程为y=−1k x−1,点E0,1k,所以BE=1+1k,又圆心到l2的距离为1+k2,所以PQ =24k2−2k+41+k,所以S△EPQ=1⋅1+12⋅24k2−2k+42=4k2−2k+4=41−12+15≥15 2.因为152<2,所以 S△EPQmin =152.20. (1)当a=1时,f x=x+的定义域为−1,+∞,由y=x和y=x+1均为增函数,故f x=x+x+1为增函数,故当x=−1时,f x取最小值−1.(2)若函数f x图象上的点都在不等式组x+1≥0,x−y−1≤0表示的平面区域内,则f x=ax+x+1≥x−1在−1,+∞上恒成立,即a−1x+x+1+1≥0在−1,+∞上恒成立,令t=x=t2−1t≥0,则a−1t2−1+t+1≥0在0,+∞上恒成立,当a=1时,t+1≥1满足条件,当a≠1时,若a−1t2−1+t+1≥0在0,+∞上恒成立,则a−1>0,2−a≥0,解得:1<a≤2,综上所述,实数a的取值范围为1,2.(3)令 x=x4+ f x−x+1x2+1+bx2+1=0,即x2+ax+b+ax +1x=0,令t=x+1x,则方程可化为t2+at+b−2=0,t≥2,设令g t=t2+at+b−2=0,t≥2,当−a2>2,即a<−4时,只需Δ=a2−4b+8≥0,此时,a2+b2≥16;当−a2≤2,即a≥−4时,只需4+2b+b−2≤0,即2a+b+2≤0,此时a2+b2≥45.综上所述a2+b2的最小值为45.。
江苏省扬州中学高三数学(文科)月考试卷数 学(满分160分,考试时间120分钟)一、填空题:(本大题共14小题,每小题5分,共70分.)1、已知集合M ={x |x <1},N ={x |lg(2x +1)>0},则M ∩N = .2、复数z =a +i 1-i 为纯虚数,则实数a 的值为 .3、抛物线24y x =的焦点到准线的距离是 .4、“1x >”是“11x<”的 条件. 5、向量a =(1,2)、b =(-3,2),若(ka b +)∥(3a b -),则实数k =_________.6、已知m 为任意实数,则直线(m -1)x +(2m -1)y =m -5必过定点_________.7、若关于x 的方程cos 2x +4sin x -a =0有解,则实数a 的取值范围是 .8、将y =sin2x 的图像向右平移φ单位(φ>0),使得平移后的图像仍过点⎝⎛⎭⎫π3,32,则φ的最小值为_______.9、若函数f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是_________. 10、已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________.11、已知△ABC 是等边三角形,有一点D 满足→AB +12→AC =→AD ,且|→CD |=3,那么→DA ·→DC = .12、已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12F F 、,点 P 是椭圆上某一点,椭圆的左准线为l ,PQ l ⊥于Q 点,若四边形12PQFF 为平行四边形,则椭圆的离心率的取值范围是13、已知函数f (x )=⎩⎨⎧-x 2+ax (x ≤1)2ax -5(x >1),若∃x 1, x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是 .14、已知函数f (x )满足f (x )=f (1x ),当x ∈[1,3]时,f (x )=ln x ,若在区间[13,3]内,函数g (x )=f (x )-ax 与x 轴有三个不同的交点,则实数a 的取值范围是 .二、解答题(本大题共6小题,共90分解答应写出文字说明、证明过程或演算步骤) 15、(本小题满分14分)2015.10已知直线1:(2)(3)50l m x m y +++-=和2:6(21)5l x m y +-=. 问:m 为何值时,有:(1)12l l ; (2)12l l ⊥.16、(本小题满分14分)已知函数f (x )=sin(ωx +φ) (ω>0,0<φ<π),其图像经过点M ⎝⎛⎭⎫π3,12,且与x 轴两个相邻的交点的距离为π. (1)求f (x )的解析式;(2)在△ABC 中,a =13,f (A )=35,f (B )=513,求△ABC 的面积.17、(本小题满分15分)已知|a |=3,|b |=2,a 与b 的夹角为120º,当k 为何值时, (1)k a -b 与a -k b 垂直;(2)|k a -2b |取得最小值?并求出最小值.18、(本小题满分15分)如图①,一条宽为1km 的两平行河岸有村庄A 和供电站C ,村庄B 与A 、C 的直线距离都是2km ,BC 与河岸垂直,垂足为D .现要修建电缆,从供电站C 向村庄A 、B 供电.修建地下电缆、水下电缆的费用分别是2万元/km 、4万元/km .(1)已知村庄A 与B 原来铺设有旧电缆,但旧电缆需要改造,改造费用是0.5万元/km .现决定利用此段旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值.(2)如图②,点E 在线段AD 上,且铺设电缆的线路为CE 、EA 、EB .若∠DCE =θ(0≤θ≤ π 3),试用θ表示出总施工费用y (万元)的解析式,并求y 的最小值.19、(本小题满分16分)已知椭圆22221(0)x y a b a b +=>>的两个焦点为12,F F ,P 点是椭圆上某一点,12PF F ∆的周长为4+(1)求椭圆的标准方程;(2)以椭圆的上顶点B 为直角顶点作椭圆的内接等腰直角三角形ABC ,设直线AB 的斜率为k (0k >),求所有满足要求的k .20、(本小题满分16分)已知a 为实数,函数f (x )=a ·ln x +x 2-4x .(1)是否存在实数a ,使得f (x )在x =1处取极值?证明你的结论; (2)若函数f (x )在[2, 3]上存在单调递增区间,求实数a 的取值范围;(3)设g (x )=2a ln x +x 2-5x -1+a x ,若存在x 0∈[1, e],使得f (x 0)<g (x 0)成立,求实数a 的取值范围.高三数学(文科)月考试卷 答案2015.10.61、(0,1)2、13、184、充分不必要”5、-136、 (9,-4)7、[-4,4]8、π69、[12,+∞) 10、411、3 12、1(,1)213、 (-∞,4) 14、⎣⎡ln33,⎭⎫1e15、解:(1)∵12l l ,∴(2)(21)618m m m +-=+,得4m =或52m =-; 当m =4时,l 1:6x +7y -5=0,l 2:6x +7y =5,即l 1与l 2重合,故舍去.当25-=m 时,1211:50,:665,22l x y l x y -+-=-=即12l l∴当25-=m 时,12l l .………7分(2)由6(2)(3)(21)0m m m +++-=得1m =-或92m =-;∴当1m =-或92m =-时,12l l ⊥.………14分16、解:(1)依题意知,T =2π,∴ω=1,∴f (x )=sin(x +φ)∵f (π3)=sin(π3+φ)=12,且0<φ<π ∴π3<π3+φ<4π3 ∴π3+φ=5π6 即φ=π2∴f (x )=sin ⎝⎛⎭⎫x +π2=cos x . ………6分(2)∵f (A )=cos A =35,f (B )=cos B =513, ∴A ,B ∈(0,π2)∴sin A =45,sin B =1213 ………8分∴sin C =sin(A +B )=sin A cos B +cos A sin B =5665 ………10分∵在△ABC 中a sin A =bsin B ∴b =15. ………12分∴S △ABC =12ab sin C =12×13×15×5665=84. ………14分17、解:(1)∵k a -b 与a -k b 垂直,∴(k a -b )·(a -k b )=0. ∴k a 2-k 2a ·b -b ·a +k b 2=0.∴9k -(k 2+1)×3×2·cos120°+4k =0.∴3k 2+13k +3=0.∴k =-13±1336. ………7分(2)∵|k a -2b |2=k 2a 2-4k a ·b +4b 2=9k 2-4k ×3×2·cos120°+4×4 =9k 2+12k +16=(3k +2)2+12.∴当k =-23时,|k a -2b |取得最小值为23. ………15分18、解:(1)由已知可得△ABC 为等边三角形,∵AD ⊥CD ,∴水下电缆的最短线路为CD .过D 作DE ⊥AB 于E ,可知地下电缆的最短线路为DE 、AB .………3分又CD =1,DE =32,AB =2,故该方案的总费用为 1×4+32×2+2×0.5=5+ 3 (万元). …………6分 (2)∵∠DCE =θ (0≤θ≤ π3)∴CE =EB =1cos θ,ED =tan θ,AE =3-tan θ.则y =1cos θ×4+1cos θ×2+(3-tan θ)×2=2×3-sin θcos θ+2 3 ……9分 令f (θ)=3-sin θcos θ (0≤θ≤ π3) 则f '(θ)=-cos 2θ-(3-sin θ)(-sin θ)cos 2θ=3sin θ-1cos 2θ ,……11分∵0≤θ≤ π 3,∴0≤sin θ≤32,记sin θ0=13,θ0∈(0, π3)当0≤θ<θ0时,0≤sin θ<13,∴f '(θ)<0当θ0<θ≤ π 3时,13<sin θ≤32,∴f '(θ)>0∴f (θ)在[0,θ0)上单调递减,在(θ0, π3]上单调递增.……13分∴f (θ)min =f (θ0)=3-13223=22,从而y min =42+23,此时ED =tan θ0=24,答:施工总费用的最小值为(42+23)万元,其中ED =24. ……15分 19、解:(1)由题意得224a c c a⎧+=+⎪⎨=⎪⎩,∴2a c =⎧⎪⎨=⎪⎩1b ∴= ∴椭圆的标准方程为:221.41x y += ---------------------6分(2)设BA 的直线方程为设1y kx =+,(不妨设0k >) 由221141y kx x y =+⎧⎪⎨+=⎪⎩得22(14)80k x kx ++=,12280,41k x x k -∴==+22288(,1)4141k k A k k --∴+++ ----------------------8分AB ∴==BC ∴=由AB BC =得22(4)41k k k +=+,即2(1)(31)0k k k --+=,即1k =或k 注:求出1k =给2分20、解:(1)函数f (x )定义域为(0,+∞),f '(x )=ax +2x -4=2x 2-4x +a x假设存在实数a ,使f (x )在x =1处取极值,则f '(1)=0,∴a =2, ……2分此时,f '(x )=2(x -1)2x,∴当0<x <1时,f '(x )>0,f (x )递增;当x >1时,f '(x )>0,f (x )递增. ∴x =1不是f (x )的极值点.故不存在实数a ,使得f (x )在x =1处取极值. ………4分(2)f '(x )=2x 2-4x +a x =2(x -1)2+a -2x,①当a ≥2时,∴f '(x )≥0,∴f (x )在(0,+∞)上递增,成立; ………6分②当a <2时,令f '(x )>0,则x >1+1-a 2或x <1-1-a2,∴f (x )在(1+1-a2,+∞)上递增,∵f (x )在[2, 3]上存在单调递增区间,∴1+1-a2<3,解得:6<a <2综上,a >-6. ………10分(3)在[1,e]上存在一点x 0,使得()()00f x g x <成立,即在[1,e]上存在一点0x ,使得()00h x <,即函数()1ln a h x x a x x+=+-在[1,e]上的最小值小于零.有22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==①当1a e +≥,即1a e ≥-时, ()h x 在[]1e ,上单调递减,所以()h x 的最小值为()h e ,由()10ah e e a e+=+-<可得211e a e +>-, 因为2111e e e +>--,所以211e a e +>-; ………12分 ②当11a +≤,即0a ≤时,()h x 在[]1e ,上单调递增,所以()h x 最小值为()1h ,由()1110h a =++<可得2a <-; ………14分③当11a e <+<,即01a e <<-时,可得()h x 最小值为()()12ln 1h a a a a +=+-+, 因为()0ln 11a <+<,所以,()0ln 1a a a <+<,故()()12ln 12h a a a a +=+-+> 此时不存在0x 使()00h x <成立.综上可得所求a 的范围是:211e a e +>-或2a <-. ………16分解法二:由题意得,存在x ∈[1, e],使得a (ln x -1x )>x +1x成立.令m (x )=ln x -1x ,∵m (x )在[1, e]上单调递增,且m (1)=-1<0, m (e)=1-1e>0故存在x 1∈(1,e),使得x ∈[1, x 1)时,m (x )<0;x ∈(x 1, e]时,m (x )>0 故存在x ∈[1, x 1)时,使得a <x 2+1x ln x -1成立,·························(☆)或存在x ∈(x 1, e]时,使得a >x 2+1x ln x -1成立,·························(☆☆) ………12分记函数F (x )=x 2+1x ln x -1,F(x )=(x 2-1)ln x -(x +1)2(x ln x -1)2当1<x ≤e 时,(x 2-1)ln x -(x +1)2=(x 2-1)·⎝ ⎛⎭⎪⎫ln x -x +1x -1∵G (x )=ln x -x +1x -1=ln x -2x -1-1递增,且G (e)=-2e -1<0∴当1<x ≤e 时,(x 2-1)ln x -(x +1)2<0,即F (x )<0∴F (x )在[1, x 1)上单调递减,在(x 1, e]上也是单调递减, ………14分 ∴由条件(☆)得:a <F (x )max =F (1)=-2 由条件(☆☆)得:a >F (x )min =F (e)=e 2+1e -1综上可得,a >e 2+1e -1或a <-2. ………16分。
2024-2025学年江苏省扬州中学高三(上)月考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知角α的终边上一点P(3t,4t)(t ≠0),则sinα=( )A. 45B. −45C. ±45D. 不确定2.已知集合A ={x ∈N|0<x <4},B ={−1,0,1,2},则集合A ∩B 的真子集的个数为( )A. 7B. 4C. 3D. 23.设a ,b 都是不等于1的正数,则“log a 3>log b 3>1”是“3a <3b ”的( )A. 充要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件4.函数f(x)=xcosxe |x|−1的图象大致为( )A. B.C. D.5.已知函数f(x)=a(e x +e −x +2x)−1,g(x)=−x 2+2ax ,若f(x)与g(x)的图象在x ∈(−1,1)上有唯一交点,则实数a =( )A. 2B. 4C. 12D. 16.在△ABC 中,a 2+b 2a 2−b 2=sin (A +B)sin (A−B),则△ABC 的形状是( )A. 等腰三角形但一定不是直角三角形 B. 等腰直角三角形C. 直角三角形但一定不是等腰三角形D. 等腰三角形或直角三角形7.已知不等式ln (x +1)a >x 3−2x 2(其中x >0)的解集中恰有三个正整数,则实数a 的取值范围是( )A. (3,8]B. [3,8)C. [9ln4,32ln5)D. (9ln4,32ln5]8.已知定义在(0,+∞)上的函数f(x)满足xf′(x)=(1−x)f(x),且f(1)>0,则( )A. f(12)<f(1)<f(2)B. f(2)<f(1)<f(12)C. f(12)<f(2)<f(1)D. f(2)<f(12)<f(1)二、多选题:本题共3小题,共18分。
一、选择题:(本大题共14小题,每小题5分,共70分.)1.已知集合M={x|x<1},N={x|lg(2x+1)>0},则M∩N =.【答案】(0,1)【解析】试题分析:由题意{|211}{|0}N x x x x=+>=>,所以{|01}M N x x=<<.考点:集合的运算.2.复数z=错误!为纯虚数,则实数a的值为.【答案】1考点:复数的运算与复数的概念.3.不等式|x+1|·(2x―1)≥0的解集为.【答案】{x|x=―1或x≥错误!}【解析】试题分析:原不等式等价于10x+=或210x-≥,即1x=-或12x≥.考点:解不等式.4.函数f(x)=13x-1+a(x≠0),则“f(1)=1"是“函数f(x)为奇函数"的 条件(用“充分不必要”,“必要不充分”“充要”“既非充分又非必要”填写). 【答案】充要 【解析】试题分析:f (x )=错误!+a 为奇函数,则()()0f x f x -+=,即1103131x x a a -+++=--,12a =,此时11(1)1312f =+=-,反之也成立,因此填“充要”.考点:充分必要条件.5.m 为任意实数时,直线(m -1)x +(2m -1)y =m -5必过定点_________.【答案】(9,-4)考点:直线方程.6.向量a =(1,2)、b =(-3,2),若(k a +b )∥(a -3b ),则实数k =_________. 【答案】-错误! 【解析】试题分析:由题意知,a 与b 不共线,故k ∶1=1∶(-3),∴k =-错误!。
考点:向量平行的条件.7.关于x的方程cos2x+4sin x-a=0有解,则实数a的取值范围是.【答案】【解析】试题分析:原方程化为21sin4sin0x x a-+-=,即22(sin4sin1)(sin2)5a x x x=---=--+,因为1sin1x-≤≤,所以44a-≤≤.考点:转化与化归思想,二次函数值域,正弦函数性质.8.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是________.【答案】4【解析】试题分析:x+2y=8-x·(2y)≥8-错误!2,整理得(x+2y)2+4(x +2y)-32≥0,即(x+2y-4)(x+2y+8)≥0.又x+2y>0,∴x +2y≥4.考点:基本不等式.9.已知点x,y满足不等式组错误!,若ax+y≤3恒成立,则实数a的取值范围是__________.【答案】(-∞,3]【解析】试题分析:不等式组错误!表示的平面区域是以(0,0),(0,2),(1,0)O A B为顶点的三角形内部(含边界),由题意00302303a+≤⎧⎪+≤⎨⎪+≤⎩,所以3a≤.考点:简单的线性规划问题.10.已知△ABC是等边三角形,有一点D满足错误!+错误!·错误!=错误!,且|错误!|=错误!,那么错误!·错误!=.【答案】3考点:向量的线性运算,向量的数量积.11.若函数f(x)=mx2+ln x-2x在定义域内是增函数,则实数m 的取值范围是_________.【答案】[错误!,+∞)【解析】试题分析:f(x)=2mx+错误!-2≥0对x>0恒成立,2mx2+1-2x≥0∴2m≥错误!=-错误!+错误!,令t=错误!>0∴2m≥-t2+2t,∵错误!max =1,∴2m≥1,∴m≥错误!.考点:函数的单调性.12.已知函数f(x)=错误!,若 x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是.【答案】(-∞,4)【解析】试题分析:此命题的否命题是函数()f x在R上是单调的,由于函数2y x ax =-+在(,]2a-∞上单调递增,因此120125a a a a ⎧≥⎪⎪>⎨⎪-+≤-⎪⎩,解得4a ≥,因此满足题意的a 的取值范围是4a <.考点:函数的单调性,逆否命题的等价性.13.将y =sin2x 的图像向右平移φ单位(φ>0),使得平移后的图像仍过点错误!,则φ的最小值为_______. 【答案】错误!考点:三角函数的图象变换.14.已知函数f (x )满足f (x )=f (错误!),当x ∈时,f (x )=ln x ,若在区间[错误!,3]内,函数g (x )=f (x )-ax 与x 轴有三个不同的交点,则实数a 的取值范围是 . 【答案】错误!,错误! 【解析】试题分析: 函数g (x )=f (x )-ax (1[,1]3x ∈)与x 轴有三个不同的交点,等价于直线y ax =与1(),[,3]3y f x x =∈的图象有三个交点,由题意,当1[,1]3x ∈时,1()ln ln f x x x==-,作出1(),[,3]3f x x ∈的图象(如图),(3,ln 3)A ,ln 33OA k =,对函数ln y x =,1'y x=,直线y ax =与()ln (1)f x x x =>相切的切点为0(,)x y ,则01y x x =,即0ln 1x=,0x e =,所以1k e=,由图象可知直线y ax =与1(),[,3]3y f x x =∈的图象有三个交点时有ln 313a e≤<.考点:函数图象交点,数形结合思想.二、解答题(本大题共6小题,共90分解答应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知直线1:(2)(3)50l m x m y +++-=和2:6(21)5l x m y +-=.问:m 为何值时,有:(1)12ll ;(2)12l l ⊥.【答案】(1)25-=m ;(2)1m =-或92m =-考点:两直线平行与垂直.16.(本小题满分14分)已知函数f(x)=sin(ωx+φ) (ω>0,0<φ<π),其图像经过点M错误!,且与x轴两个相邻的交点的距离为π.(1)求f(x)的解析式;(2)在△ABC中,a=13,f(A)=错误!,f(B)=错误!,求△ABC的面积.【答案】(1)()cos;(2)84.f x x考点:函数()sin()f x A x ωϕ=+的图象,两角和的正弦公式,三角形的面积,同角关系式.17.(本小题满分15分)已知|a |=3,|b |=2,a 与b 的夹角为120º,当k 为何值时,(1)k a -b 与a -k b 垂直;(2)|k a -2b |取得最小值?并求出最小值.【答案】(1)k =错误!;(2)当k =-错误!时,|k a -2b |取得最小值为2错误!. 【解析】试题分析:(1)k a -b 与a -k b 垂直的条件是(k a -b )·(a -k b )=0,由此可得k 值;(2)要求|k a -2b |取得最小值,可以把|k a -2b |平方化为向量的平方,从而化为k 的二次函数,可得最小值.试题解析:(1)∵k a -b 与a -k b 垂直,∴(k a -b )·(a -k b )=0. ∴k a 2-k 2a ·b -b ·a +k b 2=0.∴9k -(k 2+1)×3×2·cos120°+4k =0.∴3k 2+13k +3=0.∴k =错误!. ………7分(2)∵|k a -2b |2=k 2a 2-4k a ·b +4b 2=9k 2-4k ×3×2·cos120°+4×4=9k 2+12k +16=(3k +2)2+12.∴当k =-23时,|k a -2b |取得最小值为2错误!. ………15分考点:向量的垂直,向量的模. 18.(本小题满分15分)如图①,一条宽为1km 的两平行河岸有村庄A 和供电站C ,村庄B 与A 、C 的直线距离都是2km ,BC 与河岸垂直,垂足为D .现要修建电缆,从供电站C 向村庄A 、B 供电.修建地下电缆、水下电缆的费用分别是2万元/km 、4万元/km .(1)已知村庄A 与B 原来铺设有旧电缆,但旧电缆需要改造,改造费用是0。
江苏省扬州中学2023-2024学年第一学期考试高 三 物 理2023.10一、单项选择题:共10小题,每小题4分,共计40分.每小题只有一个选项符合题意.1.如图甲所示为一款环保袋,既可反复使用,又美观大方.手提环保袋静止时,简化示意图如图乙所示,设环保袋的重力大小为G ,不考虑绳带的重量,下列说法正确的是 A .绳带中的张力等于2GB .若缩短绳带长度,则绳带中的张力将变大C .绳带对环保袋的拉力与环保袋的重力是一对相互作用力D .绳带对环保袋的拉力与环保袋对绳带的拉力是一对平衡力2.一质点做匀变速直线运动时,速度变化v ∆时发生的位移为1x ,紧接着速度变化同样的v ∆时发生的位移为2x ,则该质点的加速度为( )A .()2v ∆B .212vx x ∆-C .()21211v x x ⎛⎫∆- ⎪⎝⎭D .()221v x x ∆-3.如图所示,质量分别为1m 和2m 的甲、乙两本书叠放在水平桌面上。
已知甲、乙间动摩擦因数为1μ2μ,且12<μμ,水平推力()0F F ≠作用在甲书上,设最大静摩擦力等于滑动摩擦力,下列说法正确的是( ) A .若甲、乙均静止不动,甲、乙之间摩擦力大小为0 B .若11>F m g μ,甲书能相对乙书滑动C .若将F 作用在乙书上,无论F 多大,甲、乙之间都不会相对滑动D .若将F 作用在乙书上,使两本书具有某一相同速度时再去掉F ,则两本书会相对静止一起做匀减速运动4.如图甲所示,橡皮筋弹弓夜光飞箭是一种小玩具,其运动过程可简化为:质量为m 的飞箭以初速度v 0竖直向上射出,运动过程中受到的空气阻力与其速率成正比,速度随时间的变化关系如图乙所示。
2t 时刻落回发射点,且此前已做匀速运动,则下列关于飞箭运动的描述中正确的是( ) A .飞箭的加速度先减小后增大 B .飞箭上升的最大高度为()011v gt v g-C .上升和下落过程中平均速度大小相等D .从射出到落回发射点的过程中克服阻力做功为22101122mv mv -7.中子星PSR J17482446ad 是目前已知宇宙中旋转速度最快的天体,已知该星自转的周期为T ,两极处的重力加速度是赤道处的a 倍,引力常量为G ,由此可计算出该星的( ) A .密度B .质量C .半径D .第一宇宙速度8.如图所示,木板C静止在光滑水平面上,两个质量分别为m A、m B的物块A、B从木板两侧同时滑上木板,最终都停在木板上,这一过程中木板C始终保持静止,若A在C 上滑行的距离大于B在C上滑行的距离,则( )A.物块B先停止运动B.A与C之间的动摩擦因数小于B与C之间的动摩擦因数C.A的初动能可能等于B的初动能D.A的质量一定小于B的质量9.如图所示,一根轻质弹簧一端固定于光滑竖直杆上,另一端与质量P穿在杆上,一根轻绳跨过定滑轮将滑块P和重物为m的滑块P连接,Q连接起来,滑块Q的质量为4m,把滑块从图中A点由静止释放后沿竖直杆上下运动,当它经过A、B两点时弹簧对滑块的弹力大小相等,已知OA与水平面的夹角θ=53°,OB长为3L,与AB垂直,不计滑轮的摩擦力,重力加速度为g,滑块P从A到B的过程中,下列说法正确的是( )A.滑块P的加速度一直减小B.滑块P在A和B的中点速度最大C.轻绳对滑块P做功8mgL D.重力对滑块Q做功的功率一直减小10.如图所示,同种材料制成的粗糙曲面AB和斜面AC高度相同,以底端BC所在水平直线为x轴,顶端A在x O为原点建立坐标系。
邗江中学2015-2016学年度第一学期高三数学 2015.10一、填空题1.复数2)21(i +的共轭复数是。
2. 若点)9,(a 在函数x y 3=的图像上,则6tanπa =。
3. 函数)2lg()(x x f -=的定义域为。
4.已知△ABC 中,030,1,3===A BC AB ,则=AC 。
5. 给出如下命题:A 、若“p 且q ”为假命题,则p,q 均为假命题;B 、命题“若b a >,则122->b a ”的否命题为“若b a ≤,则122-≤b a ”C 、命题“02,00≤∈∃x R x ”的否定是“02,00>∈∀x R x ”D 、“5≥a ”是“0],2,1[2≤-∈∀a x x 恒成立”的充要条件其中正确的命题序号是。
6. 已知31sin =θ,则)2cos(θπ+=。
7. 已知向量)2,1(,),1(,)1,2(-=-=-=m ,若)(+与夹角为锐角,则m 的取值范围为。
8. 已知正实数y x ,满足16)1)(1(=+-y x ,则=+max )(y x 。
9. 已知直线)40(π<<=a a x 与函数x x h x x g x x f sin )(,2sin )(,cos )(===的图像及x 轴依次交于点Q N M P ,,,,则22MQ PN +的最小值为。
10. 平面上满足约束条件⎪⎩⎪⎨⎧≤--≤+≥01002y x y x x 的点),(y x 行程的区域D ,区域D 关于直线xy 2=对称的区域为E ,则区域D 和E 中距离最近两点的距离为。
11. 如下图,四边形ABCD 是正方形,延长CD 至E ,使得DE=CD 。
若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,其中AE AB AP υλ+=,则υλ+的最大值为。
12. 已知圆4)2(:22=++y x C ,相互垂直的两条直线21,l l 都过点A(2,0)。
2015-2016学年江苏省扬州市江都一中高三(上)10月月考数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1.函数y=的定义域为A,函数y=lg(2﹣x)的定义域为B,则A∩B=.2.写出命题“∃x>0,x2﹣1≤0”的否定:.3.已知复数z=,其中i是虚数单位,则|z|=.4.函数y=(sinx+cosx)2的最小正周期是.5.设向量,不平行,向量与平行,则实数λ=.6.已知角α的终边经过点(﹣1,),则sin(α+)的值=.7.“φ=”是“函数y=sin(x+φ)的图象关于y轴对称"的条件.(在“充分必要”、“充分不必要"、“必要不充分"、“既不充分也不必要”中选一个合适的填空)8.圆x2+y2+2x﹣4y+1=0关于直线2ax﹣by+2=0对称(a,b∈R),则ab的最大值是.9.如图所示为函数f(x)=2sin(ωx+φ)(ω>0,≤φ≤π)的部分图象,其中A,B分别是图中的最高点和最低点,且AB=5,那么ω+φ的值=.10.若f(x)=是R上的单调函数,则实数a的取值范围为.11.设α为锐角,若cos(α+)=,则sin(2α+)的值为.12.设f(x)=x2﹣3x+a,若函数f(x)在区间(1,3)内有零点,则实数a的取值范围为.13.在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是.14.若不等式|ax3﹣lnx|≥1对任意x∈(0,1]都成立,则实数a取值范围是.二、解答题:本大题共6小题,共90分.请在答题纸指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.已知集合A={x|x2﹣2x﹣3≤0,x∈R},集合B={x|m﹣2≤x≤m+2,x∈R,m∈R}(1)若A∩B=[0,3],求实数m的值;(2)若A⊆∁R B,求实数m的取值范围.16.在△ABC中,角A,B,C的对边分别为a,b,c,向量,,且.(1)求角C的大小;(2)若a2=2b2+c2,求tanA的值.17.已知函数f(x)=sin(+x)sin(﹣x)+sinxcosx(x∈R).(1)求的值;(2)在△ABC中,若f()=1,求sinB+sinC的最大值.18.已知平面直角坐标系,圆C是△OAB的外接圆.(1)求圆C的方程;(2)若过点(2,6)的直线l被圆C所截得的弦长为,求直线l的方程.19.如图,公路AM、AN围成的是一块顶角为α的角形耕地,其中tanα=﹣2.在该块土地中P处有一小型建筑,经测量,它到公路AM,AN的距离分别为3km,km.现要过点P 修建一条直线公路BC,将三条公路围成的区域ABC建成一个工业园.(1)现有两种方案:①方案一:以A为原点,AB为x轴,建立平面直角坐标系,设直线BC的斜率为k,把△ABC的面积S表示为关于k的函数;②方案二:设AB=x,AC=y,把△ABC的面积S表示为x、y关系式,并说明x、y满足的关系.(2)任选一种方案,确定B点的位置,使得该工业园区的面积最小?并求最小面积.20.已知函数f(x)=lnx﹣x,.(1)求h(x)的最大值;(2)若关于x的不等式xf(x)≥﹣2x2+ax﹣12对一切x∈(0,+∞)恒成立,求实数a的取值范围;(3)若关于x的方程f(x)﹣x3+2ex2﹣bx=0恰有一解,其中e是自然对数的底数,求实数b的值.2015—2016学年江苏省扬州市江都一中高三(上)10月月考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题纸相应位置上.1.函数y=的定义域为A,函数y=lg(2﹣x)的定义域为B,则A∩B=[1,2).【考点】函数的定义域及其求法;交集及其运算.【分析】分别求出两函数的定义域,确定出A与B,求出两集合的交集即可.【解答】解:由函数y=,得x﹣1≥0,即x≥1,∴A=[1,+∞);由函数y=lg(2﹣x),得到2﹣x>0,即x<2,∴B=(﹣∞,2),∴A∩B=[1,2).故答案为:[1,2)2.写出命题“∃x>0,x2﹣1≤0”的否定:∀x>0,x2﹣1>0.【考点】特称命题;命题的否定.【分析】根据特称命题的否定是全称命题,写出其否定命题.【解答】解,根据特称命题的否定是全称命题,∴命题的否定是:∀x>0,x2﹣1>0.故答案是:∀x>0,x2﹣1>0.3.已知复数z=,其中i是虚数单位,则|z|=.【考点】复数代数形式的乘除运算;复数求模.【分析】利用复数代数形式的除法运算化简,然后利用模的计算公式求模.【解答】解:∵z==.∴|z|=.故答案为:.4.函数y=(sinx+cosx)2的最小正周期是π.【考点】同角三角函数间的基本关系;两角和与差的正弦函数;三角函数的周期性及其求法.【分析】利用同角三角函数的基本关系,二倍角公式可得函数y=1+sin2x,根据最小正周期等于求出结果.【解答】解:函数y=(sinx+cosx)2=1+2sinxcosx=1+sin2x,故它的最小正周期等于=π,故答案为:π.5.设向量,不平行,向量与平行,则实数λ=.【考点】平行向量与共线向量.【分析】利用向量平行即共线的条件,列出关系式,利用向量相等解答.【解答】解:因为向量,不平行,向量与平行,所以=μ(),所以,解得λ=μ=;故答案为:.6.已知角α的终边经过点(﹣1,),则sin(α+)的值=.【考点】任意角的三角函数的定义.【分析】直接利用任意角的三角函数的定义,求出cosα,利用诱导公式化简所求表达式,求解即可.【解答】解:角α的终边经过点(﹣1,),x=﹣1,y=,r=2,cosα==﹣.sin(α+)=cosα=﹣.故答案为:﹣.7.“φ=”是“函数y=sin(x+φ)的图象关于y轴对称”的充分不必要条件.(在“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”中选一个合适的填空)【考点】必要条件、充分条件与充要条件的判断.【分析】根据函数奇偶性的定义和性质,结合充分条件和必要条件的定义即可得到结论.【解答】解:若函数y=sin(x+φ)的图象关于y轴对称,则φ=+kπ,k∈Z,∴必要性不成立,若φ=,则函数y=sin(x+φ)=cosx的图象关于y轴对称,∴充分性成立,故“φ="是“函数y=sin(x+φ)的图象关于y轴对称”的充分不必要条件,故答案为:充分不必要8.圆x2+y2+2x﹣4y+1=0关于直线2ax﹣by+2=0对称(a,b∈R),则ab的最大值是.【考点】直线与圆的位置关系;基本不等式.【分析】由题意知,直线2ax﹣by+2=0经过圆的圆心(﹣1,2),可得a+b=1,再利用基本不等式求得ab的最大值.【解答】解:由题意可得,直线2ax﹣by+2=0经过圆x2+y2+2x﹣4y+1=0的圆心(﹣1,2),故有﹣2a﹣2b+2=0,即a+b=1,故1=a+b≥2,求得ab≤,当且仅当a=b=时取等号,故ab的最大值是,故答案为:.9.如图所示为函数f(x)=2sin(ωx+φ)(ω>0,≤φ≤π)的部分图象,其中A,B分别是图中的最高点和最低点,且AB=5,那么ω+φ的值=.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先确定函数的周期,由图可知AB=5,AB间的纵向距离为4,故可由勾股定理计算AB间的横向距离,即半个周期,进而得ω值,再利用函数图象过点(0,1),且此点在减区间上,代入函数解析式即可求出φ值,故可计算ω+φ的值.【解答】解:由图可知函数的振幅为2,半周期为AB间的横向距离,==3, ∴T=6,即=6,∴ω=,由图象知函数过点(0,1),∴1=2sinφ,∴φ=2kπ+,k∈Z,∵≤φ≤π,∴φ=,故ω+φ=.故答案为:.10.若f(x)=是R上的单调函数,则实数a的取值范围为[,+∞).【考点】函数单调性的性质.【分析】若f(x)=是R上的单调函数,根据第二段函数为减函数,故第一段也应该为减函数,且x=1时,第二段的函数值不小于第一段的函数值,进而构造关于a的不等式组,解不等式组可得实数a的取值范围.【解答】解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)11.设α为锐角,若cos(α+)=,则sin(2α+)的值为.【考点】三角函数中的恒等变换应用;两角和与差的余弦函数;两角和与差的正弦函数;二倍角的正弦.【分析】先设β=α+,根据cosβ求出sinβ,进而求出sin2β和cos2β,最后用两角和的正弦公式得到sin(2α+)的值.【解答】解:设β=α+,∴sinβ=,sin2β=2sinβcosβ=,cos2β=2cos2β﹣1=,∴sin(2α+)=sin(2α+﹣)=sin(2β﹣)=sin2βcos﹣cos2βsin=.故答案为:.12.设f(x)=x2﹣3x+a,若函数f(x)在区间(1,3)内有零点,则实数a的取值范围为(0,] .【考点】函数零点的判定定理;函数奇偶性的性质.【分析】函数f(x)在区间(1,3)内有零点,即a=﹣x2+3x在x∈(1,3)上成立即可,转化出求函数的值域问题即可获得问题的解答.【解答】解:函数f(x)在区间(1,3)内有零点,即a=﹣x2+3x在x∈(1,3)上成立,∵a=﹣x2+3x=﹣(x﹣)2+,x∈(1,3)∴a∈(0,].故答案为:(0,].13.在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是[2,5].【考点】平面向量的综合题.【分析】画出图形,建立直角坐标系,利用比例关系,求出M,N的坐标,然后通过二次函数求出数量积的范围.【解答】解:建立如图所示的直角坐标系,则B(2,0),A(0,0),D(),设==λ,λ∈[0,1],M(2+),N(),所以=(2+)•()=﹣λ2﹣2λ+5,因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,所以λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].故答案为:[2,5].14.若不等式|ax3﹣lnx|≥1对任意x∈(0,1]都成立,则实数a取值范围是.【考点】利用导数求闭区间上函数的最值;函数恒成立问题.【分析】令g(x)=ax3﹣lnx,求导函数,确定函数的单调性,从而可求函数的最小值,利用最小值大于等于1,即可确定实数a取值范围.【解答】解:显然x=1时,有|a|≥1,a≤﹣1或a≥1.令g(x)=ax3﹣lnx,①当a≤﹣1时,对任意x∈(0,1],,g(x)在(0,1]上递减,g(x)min=g(1)=a≤﹣1,此时g(x)∈[a,+∞),|g(x)|的最小值为0,不适合题意.②当a≥1时,对任意x∈(0,1],,∴函数在(0,)上单调递减,在(,+∞)上单调递增∴|g(x)|的最小值为≥1,解得:.∴实数a取值范围是二、解答题:本大题共6小题,共90分.请在答题纸指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.已知集合A={x|x2﹣2x﹣3≤0,x∈R},集合B={x|m﹣2≤x≤m+2,x∈R,m∈R}(1)若A∩B=[0,3],求实数m的值;(2)若A⊆∁R B,求实数m的取值范围.【考点】交、并、补集的混合运算.【分析】(1)利用一元二次不等式的解法求出集合A,然后根据A∩B=[0,3]建立关系式,解之即可;(2)先根据补集的定义求出C R B,然后根据子集的含义建立关系式,解之即可.【解答】解:由已知得:集合A={x|﹣1≤x≤3},集合B={x|m﹣2≤x≤m+2}(1)因为A∩B=[0,3],所以所以,所以m=2;…(2)C R B={x|x<m﹣2或x>m+2}因为A⊆C R B,所以m﹣2>3或m+2<﹣1,所以m>5或m<﹣3.…16.在△ABC中,角A,B,C的对边分别为a,b,c,向量,,且.(1)求角C的大小;(2)若a2=2b2+c2,求tanA的值.【考点】三角函数的化简求值;数量积判断两个平面向量的垂直关系;余弦定理.【分析】(1)先利用向量垂直的充要条件,得三角等式,再利用二倍角公式化简等式即可求得cosC的值,从而得角C;(2)先利用余弦定理化简已知等式,再利用正弦定理将等式中的边化为角,并利用(1)和三角变换公式化简,最后利用同角三角函数基本关系式即可得所求【解答】解:(1)∵,∴=0即=2cos2﹣2sin2C=0∴cos2﹣4sin2cos2﹣=0∴sin2=∴cosC=1﹣2sin2=,又C∈(0,π)∴C=(2)由余弦定理,a2=2b2+c2=b2+c2﹣2bccosA,∴b=﹣2ccosA,正弦定理得sinB=﹣2sinCcosA,C=∴sin(﹣A)=﹣cosA,即cosA+sinA+cosA=0,cosA=﹣sinA∴tanA==﹣317.已知函数f(x)=sin(+x)sin(﹣x)+sinxcosx(x∈R).(1)求的值;(2)在△ABC中,若f()=1,求sinB+sinC的最大值.【考点】三角函数的恒等变换及化简求值.【分析】(1)利用倍角公式与辅助角公式将f(x)=sin(+x)sin(﹣x)+sinxcosx化为:f(x)=sin(2x+),即可求得f()的值;(2)由A为三角形的内角,f()=sin(2A+)=1可求得A=,从而sinB+sinC=sinB+sin (﹣B),展开后利用三角函数的辅助角公式即可求得sinB+sinC的最大值.【解答】(1)∵f(x)=sin(+x)sin(﹣x)+sinxcosx=cos2x+sin2x…=sin(2x+),…∴f()=1.…(2)由f()=sin(A+)=1,而0<A<π可得:A+=,即A=.∴sinB+sinC=sinB+sin(﹣B)=sinB+cosB=sin(B+).…∵0<B<,∴<B+<,<sin(B+)≤1,∴sinB+sinC的最大值为.…18.已知平面直角坐标系,圆C是△OAB的外接圆.(1)求圆C的方程;(2)若过点(2,6)的直线l被圆C所截得的弦长为,求直线l的方程.【考点】圆的标准方程;直线的一般式方程;直线和圆的方程的应用.【分析】(1)由题意设出圆的一般式方程,把三点坐标代入列方程组,求出系数;(2)分两种情况求解:当直线的斜率不存在时,只需要验证即可;当直线的斜率存在时,根据弦的一半、半径和弦心距构成直角三角形来求直线的斜率.【解答】解:(1)设圆C方程为x2+y2+Dx+Ey+F=0,由题意列方程组,解得D=﹣8,E=F=0.∴圆C:(x﹣4)2+y2=16.(2)当斜率不存在时,,符合题意;当斜率存在时,设直线l:y﹣6=k(x﹣2),即kx﹣y+6﹣2k=0,∵被圆截得弦长为,∴圆心到直线距离为2,∴,∴直线故所求直线l为x=2,或4x+3y﹣26=0.19.如图,公路AM 、AN 围成的是一块顶角为α的角形耕地,其中tan α=﹣2.在该块土地中P 处有一小型建筑,经测量,它到公路AM ,AN 的距离分别为3km , km .现要过点P 修建一条直线公路BC ,将三条公路围成的区域ABC 建成一个工业园.(1)现有两种方案:①方案一:以A 为原点,AB 为x 轴,建立平面直角坐标系,设直线BC 的斜率为k ,把△ABC 的面积S 表示为关于k 的函数;②方案二:设AB=x ,AC=y ,把△ABC 的面积S 表示为x 、y 关系式,并说明x 、y 满足的关系.(2)任选一种方案,确定B 点的位置,使得该工业园区的面积最小?并求最小面积.【考点】基本不等式在最值问题中的应用.【分析】方法一、以A 为原点,AB 为x 轴,建立平面直角坐标系.求出直线AN 的方程,设点P (x 0,y 0),根据条件求得P 的坐标,设出BC 的方程,求得B 的横坐标和C 的纵坐标,求得S=⋅x B ⋅y C 的解析式,运用导数求得单调区间,可得极小值也为最小值;方法二、同方法一求得S=⋅x B ⋅y C 的解析式,运用换元法和对勾函数的单调性,可得最小值;方法三、过点P 作PE ⊥AM ,PF ⊥AN ,垂足为E 、F,连接PA .设AB=x ,AC=y .由S △ABC =S△ABP +S △APC ,求得面积的表达式,运用基本不等式可得最小值.【解答】解:(方法一)如图1,以A 为原点,AB 为x 轴,建立平面直角坐标系. 因为tan α=﹣2,故直线AN 的方程是y=﹣2x .设点P (x 0,y 0).因为点P 到AM 的距离为3,故y 0=3.由P 到直线AN 的距离为, 得=,解得x 0=1或x 0=﹣4(舍去),所以点P (1,3). …显然直线BC 的斜率存在.设直线BC 的方程为y ﹣3=k(x ﹣1),k ∈(﹣2,0). 令y=0得x B =1﹣. … 由解得y C =. …设△ABC 的面积为S ,则S=⋅x B ⋅y C ==﹣1+. …由S ′==0得k=﹣或k=3.当﹣2<k <﹣时,S ′<0,S 单调递减;当﹣<k <0时,S ′>0,S 单调递增.… 所以当k=﹣时,即AB=5时,S 取极小值,也为最小值15.答:当AB=5km 时,该工业园区的面积最小,最小面积为15km 2.…(方法二)同方法一:S=⋅x B ⋅y C ==﹣1+. …令8k ﹣9=t ,则t ∈(﹣25,﹣9),从而k=.因此S=﹣1+=﹣1+=﹣1+.…因为当t ∈(﹣25,﹣9)时,t +∈(﹣34,﹣30],当且仅当t=﹣15时,此时AB=5,34+t +的最大值为4.从而S 有最小值为15. 答:当AB=5km 时,该工业园区的面积最小,最小面积为15km 2.…(方法三)如图2,过点P 作PE ⊥AM ,PF ⊥AN,垂足为E 、F ,连接PA .设AB=x,AC=y . 因为P 到AM,AN 的距离分别为3,,即PE=3,PF=.由S △ABC =S △ABP +S △APC =⋅x ⋅3+⋅y ⋅=(3x +y ). ①…因为tan α=﹣2,所以sin α=. 所以S △ABC =⋅x ⋅y ⋅. ②… 由①②可得⋅x ⋅y ⋅=(3x +y ).即3x +5y=2xy . ③…因为3x +5y ≥2,所以 2xy ≥2.解得xy ≥15. …当且仅当3x=5y 取“=",结合③解得x=5,y=3.所以S △ABC =⋅x ⋅y ⋅有最小值15.答:当AB=5km 时,该工业园区的面积最小,最小面积为15km 2.…20.已知函数f(x)=lnx﹣x,.(1)求h(x)的最大值;(2)若关于x的不等式xf(x)≥﹣2x2+ax﹣12对一切x∈(0,+∞)恒成立,求实数a的取值范围;(3)若关于x的方程f(x)﹣x3+2ex2﹣bx=0恰有一解,其中e是自然对数的底数,求实数b的值.【考点】利用导数研究函数的单调性;函数恒成立问题;函数的零点.【分析】(1)已知h(x)的解析式,对其进行求导,利用导数研究其单调性,从而求解;(2)因为关于x的不等式xf(x)≥﹣2x2+ax﹣12对一切x∈(0,+∞)恒成立,将问题转化为xlnx﹣x2≥﹣2x2+ax﹣12对一切x∈(0,+∞)恒成立,利用常数分离法进行求解;(3)关于x的方程f(x)﹣x3+2ex2﹣bx=0恰有一解,可得=x2﹣2ex+b+1恰有一解,构造新函数h(x)=利用导数研究h(x)的最大值,从而进行求解;【解答】解:(1)因为,所以,…由h′(x)>0,且x>0,得0<x<e,由h′(x)<0,且x>0,x>e,…所以函数h(x)的单调增区间是(0,e],单调减区间是[e,+∞),所以当x=e时,h(x)取得最大值;…(2)因为xf(x)≥﹣2x2+ax﹣12对一切x∈(0,+∞)恒成立,即xlnx﹣x2≥﹣2x2+ax﹣12对一切x∈(0,+∞)恒成立,亦即对一切x∈(0,+∞)恒成立,…设,因为,故ϕ(x)在(0,3]上递减,在[3,+∞)上递增,ϕ(x)min=ϕ(3)=7+ln3,所以a≤7+ln3.…(3)因为方程f(x)﹣x3+2ex2﹣bx=0恰有一解,即lnx﹣x﹣x3+2ex2﹣bx=0恰有一解,即恰有一解,由(1)知,h(x)在x=e时,,…而函数k(x)=x2﹣2ex+b+1在(0,e]上单调递减,在[e,+∞)上单调递增,故x=e时,k(x)min=b+1﹣e2,故方程=x2﹣2ex+b+1恰有一解当且仅当b+1﹣e2=,即b=e2+﹣1;2016年12月8日。
江苏省扬州中学2024届高三化学月考试题2023.10可能用到的相对原子质量:H -1 C -12 N -14 O -16 S -32 Cl -35.5 K -39 Cr-52 Mn -55 Fe -56 Zn -65 Sn -119 Ba -137I 卷(选择题 共39分)单项选择题:本题包括13题,每题3分,共39分。
每题只有一个选项最符合题意。
1.北京冬奥会成功举办、神舟十三号顺利往返、“天宫课堂”精彩呈现均展示了我国科技发展的巨大成就。
下列相关叙述正确的是A.飞船返回舱表层材料中的玻璃纤维属于无机非金属材料B.“泡腾片实验”中,柠檬酸与小苏打反应时,有电子的转移C.乙酸钠过饱和溶液结晶形成温热“冰球”,该过程吸收热量D.吉祥物“冰墩墩”的材质中有聚氯乙烯,聚氯乙烯是纯净物2. 实验室用下列装置模拟侯氏制碱法制取少量NaHCO 3固体。
不能达到实验目的的是A .装置Ⅰ制取CO 2B .装置Ⅱ中Na 2CO 3溶液可除去CO 2中的少量HClC .装置Ⅲ中冰水浴有利于析出NaHCO 3固体D .装置Ⅳ可获得少量NaHCO 3固体3. 2022年诺贝尔化学奖授予了对点击化学和生物正交化学做出贡献的三位科学家。
我国科学家在寻找新的点击反应砌块的过程中,意外发现一种安全、高效的合成化合物,其结构简式如图所示,其中X 、Y 、Z 和W 是原子序数依次增大的短周期元素,Y 与W 是同一主族元素。
下列说法正确的是A .原子半径:r (X)>r (Y)>r (Z)>r (W)B .简单氢化物的沸点:Y>ZC .电解Z 的简单氢化物水溶液可制得H 2和Z 2D .同周期主族元素中第一电离能大于X 的元素有2种阅读下列资料,完成4~6题:氮及其化合物在生产生活中具有广泛应用,工业上用氨的催化氧化生产硝酸,其热化学方程式为4NH 3(g)+5O 2(g)⇌4NO(g)+6H 2O(g)904H ∆=-1kJ mol -⋅。
2012-2013学年江苏省扬州中学高三(上)10月月考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,计70分)1.(5分)已知集合A={0,1},B={﹣1,0,a+3},且A⊆B,则a= ﹣2 .2.(5分)在复平面内,复数对应的点在第一象限.复数=+i,)3.(5分)已知510°终边经过点P(m,2),则m= ﹣2 .sin30°=,解得4.(5分)(2008•普陀区二模)已知向量,若,则实数n= 3 .||•+|=||=•5.(5分)已知等差数列的前n项和为S n,若a4=18﹣a5,则S8= 72 .=726.(5分)(2011•上海二模)已知直线m⊥平面α,直线n在平面β内,给出下列四个命题:①α∥β⇒m⊥n;②α⊥β⇒m∥n;③m⊥n⇒α∥β;④m∥n⇒α⊥β,其中真命题的序号是①,④.7.(5分)函数y=x+2cosx在区间上的最大值是.进行求导,研究函数在区间,][]x=故答案为8.(5分)(2013•石景山区一模)在△AB C中,若,则∠C=.:∵b=sinA sinB=sin=∴sinA=,得到∠A<∠B=,,.故答案为:9.(5分)已知a>0,b>0,a+b=2,则的最小值是.的表达式转化成()(=1(++≥+2=故答案为:.10.(5分)已知平面直角坐标系xOy上的区域D由不等式组给定,若M(x,y)为D上的动点,点A的坐标为,则的最大值为 4 .•x+y x+zx+z•=﹣x11.(5分)函数f(x)=x2+bx在点A(1,f(1))处的切线方程为3x﹣y﹣1=0,设数列的前n项和为S n,则S2012为.===++…+﹣++…+=12.(5分)设若存在互异的三个实数x1,x2,x3,使f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是(3,4).x=2x=2,且,即13.(5分)已知△ABC中,AB=3,AC=2,∠BAC=120°,点O是△ABC的外心,且,则λ+μ= .,x=,)tan120°=﹣=()的方程联立方程组,,,,),==故答案为:.14.(5分)数列{a n}满足a1=a∈(0,1],且a n+1=,若对任意的,总有a n+3=a n成立,则a的值为或1 .,当,,解得当时,,=,则,解得时,=综上所述,故答案为:或二、解答题(本大题共6小题,计90分)15.(14分)(2009•江苏模拟)在△ABC中,设角A,B,C的对边分别为a,b,c,若sinA=sinB=﹣cosC,(1)求角A,B,C的大小;(2)若BC边上的中线AM的长为,求△ABC的面积.,故有,,,的长为.①中,由正弦定理得,即由①②解得16.(15分)(2013•惠州二模)正方体ABCD_A1B1C1D1,AA1=2,E为棱CC1的中点.(Ⅰ)求证:B1D1⊥AE;(Ⅱ)求证:AC∥平面B1DE;(Ⅲ)求三棱锥A﹣BDE的体积.••AD•AB•EC=••2•2•1=17.(14分)已知数列{a n}是首项a1=a,公差为2的等差数列,数列{b n}满足2b n=(n+1)a n;(Ⅰ)若a1、a3、a4成等比数列,求数列{a n}的通项公式;(Ⅱ)若对任意n∈N*都有b n≥b5成立,求实数a的取值范围.n+=))由题意得:≤﹣≤,18.(15分)某企业拟在2012年度进行一系列促销活动,已知某产品年销量x万件与年促销费用t万元之间满足3﹣x与t+1成反比例,当年促销费用t=0万元时,年销量是1万件,已知2012年产品的设备折旧、维修等固定费用为3万元,每生产1万件产品需再投入32万元的生产费用.若将每件产品售价定为:其生产成本的150%与“平均每件促销费的一半”之和,则当年生产的商品正好能销完.(1)将2012年的利润y(万元)表示为促销费t(万元)的函数(2)该企业2012年的促销费投入多少万元时,企业年利润最大?(注:利润=销售收入﹣生产成本﹣促销费,生产成本=固定费用+生产费用))由题意:==150%19.(16分)已知函数,a为正常数.(Ⅰ)若f(x)=lnx+φ(x),且,求函数f(x)的单调减区间;(Ⅱ)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有,求a的取值范围.(Ⅰ),∵,令)的单调减区间为(Ⅱ)∵,∴+x═对,则)有最大值为,∴,,,则,∴a≥0,综上所述,20.(16分)已知集合A={x|x2+a≤(a+1)x,a∈R}.(1)是否存在实数a,使得集合A中所有整数的元素和为28?若存在,求出符合条件的a,若不存在,请说明理由.(2)若以a为首项,a为公比的等比数列前n项和记为S n,对于任意的n∈N+,均有S n∈A,求a的取值范围.1+2++n=是关于时,满足即的取值范围是三、加试题21.(10分)已知⊙O的方程为(θ为参数),求⊙O上的点到直线(t为参数)的距离的最大值.r=2,d+r=322.(10分)在四棱锥S﹣OABC中,SO⊥平面OABC,底面OABC为正方形,且SO=OA=2,D为BC的中点,=λ,问是否存在λ∈[0,1]使⊥?若存在,求出λ的值;若不存在,说明理由.为原点,、、方向为,则,∴∴存在∴,使23.(10分)(2011•朝阳区二模)为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为,两轮检测是否合格相互没有影响.(Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利﹣80元).已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值E(X)..…(=24.(10分)已知二项式,其中n∈N,n≥3.(1)若在展开式中,第4项是常数项,求n;(2)设n≤2012,在其展开式,若存在连续三项的二项式系数成等差数列,问这样的n共有多少个?)连续三项的二项式系数分别为、)∵为常数项,=0)连续三项的二项式系数分别为、,代入整理得,,∵44。
一、填空题(本大题共14小题,每题5分,满分70分.) 1.已知集合{0}A x x =>,{1012}B =-,,,,则A B等于 .【答案】{}1,2 【解析】试题分析:根据交集运算的意义知,{1,2}A B =,所以答案应填:19.考点:集合交集运算.2.已知虚数z 满足216i z z -=+,则||z = . 【答案】5考点:复数的运算.3.抛物线22y x =的准线方程为 .【答案】81-=y【解析】试题分析:由22y x =得:212xy =,所以128p =,准线方程为81-=y ,所以答案应填:81-=y .考点:抛物线方程.4.角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(1,2)P ,则)cos(απ-的值是 .【答案】55- 【解析】试题分析:由三角函数定义知15cos 55α==,又由诱导公式知5cos()cos 5παα-=-=-,所以答案应填:55-. 考点:1、三角函数定义;2、诱导公式.5.设函数f (x )=错误!cos(ωx +φ),对任意x ∈R 都有f 错误!=f 错误!,若函数g (x )=3sin(ωx +φ)-2,则g (错误!)的值为_________.【答案】2- 【解析】试题分析:由33f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭知,3x π=是()f x 的对称轴,所以3πωϕ+的终边在x 轴上,所以320223()()3g sin x ππϕ=--==+-,所以答案应填:2-.考点:三角函数的性质. 6.“N M >”是“N M 22log log>”成立的________条件.(填“充分不必要"“必要不充分"“充要"或“既不充分也不必要”)。
【答案】必要不充分考点:充分条件、必要条件.7.若nS 为等差数列}{na 的前n 项和,,104,36139-=-=S S则5a 与7a 的等比中项为___. 【答案】24±【解析】 试题分析:由,104,36139-=-=S S知57936,13104a a =-=-,因而574,8a a =-=-,故5a 与7a 的等比中项为24±,所以答案应填:24±.考点:等差数列前n 项和的性质.8.设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则()1f '=__________. 【答案】2 【解析】试题分析:令xt e =,()ln (0)f t t t t =+>,所以()ln ,(0)f x x x x =+>,1()1+f x x'=,()21f '=,所以答案应填:2. 考点:导数的运算.9.若实数,a b 满足20101a b b a a +-≥⎧⎪--≤⎨⎪≤⎩,则22a b a b ++的最大值为_________.【答案】57考点:线性规划.10.在边长为1的正ABC ∆中,向量,BA x BD =,CA y CE =0,0>>y x ,且,1=+y x 则BE CD ⋅的最大值为________。
高三数学10月检测1. 设集合{}{}21,0,1,0,A B x x x =-=+≤则A B =2. 已知i 是虚数单位,则31ii-+的虚部为 3. 若命题“,x R ∃∈使得2(1)10x a x +-+≤”为假命题,则实数a 的取值范围为 4. 直线l :tan105x y π++=的倾斜角α=5. 设221,0()26,0x x x f x x x ⎧--≥=⎨-+<⎩,若()f t >2,则实数t 的取值范围是6. 已知sin()6x π+=则25sin()sin ()63x x ππ-+-= 7. 已知向量a=(xe ,1),向量b =(1,x-1),设函数()f x =a.b,则函数()f x 的零点个数为8、已知正三棱锥的底面边长为2,则侧棱长为3,则它的体积为 9、过平面区域202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩内一点P 作圆O: 221x y +=的两条切线,切点分别为A,B,记APB α∠=,则当α最小时cos α的值为10、已知M 是 ABC 内一点,且AB .AC =030BAC ∠=,若 MBC, MCA, MAB的面积分别为12,x ,y ,则14x y+的最小值是 11、已知函数32()(,,)f x x ax bx c a b c R =+++∈若函数()f x 在区间[]1,0-上是单调减函数,则22a b +的最小值是12、设F 是椭圆22221(0)x y a b a b+=>>的右焦点,A 是其右准线与x 轴的交点,若在椭圆上存在一点P ,使线段PA 的垂直平分线恰好经过点F,则椭圆的离心率的取值范围是13、如图:边长为4的正方形ABCD 的中心为E ,以E 为圆心,1为半径作圆。
点P 是圆上任意一点,点Q 是边AB 、BC 、CD 上的任意一点(包括端点),则PQ DA ∙的取值范围为14、我们把形如y=(0,0)ba b x a>>-的函数称为“莫言函数”,并把其与y 轴的交点关于原点的对称点称为“莫言点”,以“莫言点”为圆心,凡是与“莫言函数”图像有公共点的圆,皆称为“莫言圆”。
2018-2019学年高三上学期阶段检测数学试卷18.10一.填空题1.= ▲ .2.”的否定是▲ .3.4.”的▲ .条件.(从“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中选择填空)5.为▲ ..6.▲ ..7.▲ .8. 的值为▲ .9.由大到小的顺序是▲ .10.的值为▲ .11.的取值集合为▲ .12. 已知点在所在平面内,且0,AB=(的长度是▲ .13.的最大值为▲ .14.的取值范围是▲.二.解答题15.3.,,.16.内的图象如图所示图象的最高点,角形.AM值.17.(1)(2)在(1)成立的条件下,的取值范围.18. 为丰富农村业余文化生活,决定在A ,B ,N 三个村子的中间地带建造文化中心.通过测量,发现三个村子分别位于矩形ABCD 的两个顶点A ,B 和以边AB 的中心M 为圆心,以MC长为半径的圆弧的中心N 处,且AB =8km ,BC .经协商,文化服务中心拟建在与A ,B 等距离的O 处,并建造三条道路AO ,BO ,NO 与各村通达.若道路建设成本AO ,BO 段为每公里NO 段为每公里a 万元,(1)若三条道路建设的费用相同,求该文化中心离N 村的距离; (2)若建设总费用最少,求该文化中心离N 村的距离.19.(1(2(3)1,20.(1(2若不存在,请说明理由;(3理科加试题1.已知矩阵A =⎣⎢⎡⎦⎥⎤ 3 3 c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤3-2.求矩阵A ,并写出A 的逆矩阵.2.3. 某商场举办“迎新年摸球”活动,主办方准备了甲、乙两个箱子,其中甲箱中有四个球、乙箱中有三个球(每个球的大小、形状完全相同),每一个箱子中只有一个红球,其余都是黑规定:①参与者每个箱子只能摸一次,一次摸一个球;②可选择先摸甲箱,也可先摸乙箱;③如果在第一个箱子中摸到红球,则可继续在第二个箱子中摸球,否则活动终止.(1(2)若要使得该参与者获奖金额的期望值较大,请你帮他设计摸箱子的顺序,并说明理由.4.(1表达式,无需证明.(2…扬州中学高三年级10月份阶段检测数学试卷答案18.10一.填空题1. {1};3.4.必要不充分;5.—2或11;8.1;9.b>a>c ;二.解答题15.解:(1216.ABC。
江苏省扬州中学高三数学月考试卷数 学(满分160分,考试时间120分钟)一、填空题:(本大题共14小题,每小题5分,共70分.)1. 已知集合M ={x |x <1},N ={x |lg(2x +1)>0},则M ∩N = .(0,1)2. 复数z =a +i 1-i 为纯虚数,则实数a 的值为 .13. 不等式|x +1|·(2x ―1)≥0的解集为 . {x |x =―1或x ≥12}4. 函数f (x )=13x -1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的 条件(用“充分不必要”,“必要不充分”“充要”“既非充分又非必要”填写). 充要5. m 为任意实数时,直线(m -1)x +(2m -1)y =m -5必过定点_________.(9,-4)6. 向量a =(1,2)、b =(-3,2),若(k a +b )∥(a -3b ),则实数k =_________.由题意知,a 与b 不共线,故k ∶1=1∶(-3),∴k =-137. 关于x 的方程cos 2x +4sin x -a =0有解,则实数a 的取值范围是 .[-4,4]8. 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________.4解:x +2y =8-x ·(2y )≥8-⎝⎛⎭⎫x +2y 22,整理得(x +2y )2+4(x +2y )-32≥0,即(x +2y -4) (x+2y +8)≥0.又x +2y >0,∴x +2y ≥4.9. 已知点x ,y 满足不等式组⎩⎪⎨⎪⎧x ≥0y ≥02x +y ≤2,若ax +y ≤3恒成立,则实数a 的取值范围是__________.(-∞,3]10. 已知△ABC 是等边三角形,有一点D 满足→AB +12·→AC =→AD ,且|→CD |=3,那么→DA ·→DC = . 311. 若函数f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是_________.[12,+∞)解:f '(x )=2mx +1x -2≥0对x >0恒成立,2mx 2+1-2x ≥0∴2m ≥2x -1x 2=-1x 2+2x ,令t =1x >0∴2m ≥-t 2+2t ,∵()-t 2+2t max =1,∴2m ≥1,∴m ≥12. 12. 已知函数f (x )=⎩⎨⎧-x 2+ax (x ≤1)2ax -5(x >1),若∃x 1, x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是 . (-∞,4)2015.1013. 将y =sin2x 的图像向右平移φ单位(φ>0),使得平移后的图像仍过点⎝⎛⎭⎫π3,32,则φ的最小值为_______.解法一:点代入y =sin(2x -2φ)∴sin(2π3-2φ)=32∴-2φ+2π3=2k π+π3或-2φ+2π3=2k π+2π3∴φ=-k π+π6或φ=-k π∴φ的最小值为π6.解法二:结合函数y =sin2x 的图形.14. 已知函数f (x )满足f (x )=f (1x ),当x ∈[1,3]时,f (x )=ln x ,若在区间[13,3]内,函数g (x )=f (x )-ax 与x 轴有三个不同的交点,则实数a 的取值范围是 .⎣⎡ln33,⎭⎫1e 二、解答题(本大题共6小题,共90分解答应写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)已知直线1:(2)(3)50l m x m y +++-=和2:6(21)5l x m y +-=. 问:m 为何值时,有:(1)12l l ;(2)12l l ⊥.解:(1)∵12l l ,∴(2)(21)618m m m +-=+,得4m =或52m =-; 当m =4时,l 1:6x +7y -5=0,l 2:6x +7y =5,即l 1与l 2重合,故舍去.当25-=m 时,1211:50,:665,22l x y l x y -+-=-=即12l l∴当25-=m 时,12l l .………7分(2)由6(2)(3)(21)0m m m +++-=得1m =-或92m =-;∴当1m =-或92m =-时,12l l ⊥.………14分16. (本小题满分14分)已知函数f (x )=sin(ωx +φ) (ω>0,0<φ<π),其图像经过点M ⎝⎛⎭⎫π3,12,且与x 轴两个相邻的交点的距离为π. (1)求f (x )的解析式;(2)在△ABC 中,a =13,f (A )=35,f (B )=513,求△ABC 的面积.解:(1)依题意知,T =2π,∴ω=1,∴f (x )=sin(x +φ)∵f (π3)=sin(π3+φ)=12,且0<φ<π ∴π3<π3+φ<4π3 ∴π3+φ=5π6 即φ=π2∴f (x )=sin ⎝⎛⎭⎫x +π2=cos x . ………6分(2)∵f (A )=cos A =35,f (B )=cos B =513, ∴A ,B ∈(0,π2)∴sin A =45,sin B =1213………8分∴sin C =sin(A +B )=sin A cos B +cos A sin B =5665 ………10分∵在△ABC 中a sin A =bsin B ∴b =15. ………12分∴S △ABC =12ab sin C =12³13³15³5665=84. ………14分17. (本小题满分15分)已知|a |=3,|b |=2,a 与b 的夹角为120º,当k 为何值时, (1)k a -b 与a -k b 垂直;(2)|k a -2b |取得最小值?并求出最小值.解:(1)∵k a -b 与a -k b 垂直,∴(k a -b )²(a -k b )=0.∴k a 2-k 2a ²b -b ²a +k b 2=0.∴9k -(k 2+1)³3³2²cos120°+4k =0.∴3k 2+13k +3=0.∴k =-13±1336. ………7分(2)∵|k a -2b |2=k 2a 2-4k a ²b +4b 2=9k 2-4k ³3³2²cos120°+4³4 =9k 2+12k +16=(3k +2)2+12.∴当k =-23时,|k a -2b |取得最小值为23. ………15分18. (本小题满分15分)如图①,一条宽为1km 的两平行河岸有村庄A 和供电站C ,村庄B 与A 、C 的直线距离都是2km ,BC 与河岸垂直,垂足为D .现要修建电缆,从供电站C 向村庄A 、B 供电.修建地下电缆、水下电缆的费用分别是2万元/km 、4万元/km .(1)已知村庄A 与B 原来铺设有旧电缆,但旧电缆需要改造,改造费用是0.5万元/km .现决定利用此段旧电缆修建供电线路,并要求水下电缆长度最短,试求该方案总施工费用的最小值.(2)如图②,点E 在线段AD 上,且铺设电缆的线路为CE 、EA 、EB .若∠DCE =θ(0≤θ≤ π3),试用θ表示出总施工费用y (万元)的解析式,并求y 的最小值.解:(1)由已知可得△ABC 为等边三角形,∵AD ⊥CD ,∴水下电缆的最短线路为CD .过D 作DE ⊥AB 于E ,可知地下电缆的最短线路为DE 、AB . ………3分又CD =1,DE =32,AB =2,故该方案的总费用为1³4+32³2+2³0.5=5+ 3 (万元). …………6分(2)∵∠DCE =θ (0≤θ≤ π3)∴CE =EB =1cos θ,ED =tan θ,AE =3-tan θ.则y =1cos θ³4+1cos θ³2+(3-tan θ)³2=2³3-sin θcos θ+2 3 ……9分令f (θ)=3-sin θcos θ (0≤θ≤ π3)则f '(θ)=-cos 2θ-(3-sin θ)(-sin θ)cos 2θ=3sin θ-1cos 2θ,……11分∵0≤θ≤ π 3,∴0≤sin θ≤32,记sin θ0=13,θ0∈(0, π3)当0≤θ<θ0时,0≤sin θ<13,∴f '(θ)<0当θ0<θ≤ π 3时,13<sin θ≤32,∴f '(θ)>0∴f (θ)在[0,θ0)上单调递减,在(θ0, π3]上单调递增.……13分∴f (θ)min =f (θ0)=3-13223=22,从而y min =42+23,此时ED =tan θ0=24,答:施工总费用的最小值为(42+23)万元,其中ED =24. ……15分19. (本小题满分16分)已知a 为实数,函数f (x )=a ·ln x +x 2-4x .(1)是否存在实数a ,使得f (x )在x =1处取极值?证明你的结论; (2)若函数f (x )在[2, 3]上存在单调递增区间,求实数a 的取值范围;(3)设g (x )=2a ln x +x 2-5x -1+a x ,若存在x 0∈[1, e],使得f (x 0)<g (x 0)成立,求实数a 的取值范围.解:(1)函数f (x )定义域为(0,+∞),f '(x )=ax +2x -4=2x 2-4x +a x假设存在实数a ,使f (x )在x =1处取极值,则f '(1)=0,∴a =2, ……2分 此时,f '(x )=2(x -1)2x,∴当0<x <1时,f '(x )>0,f (x )递增;当x >1时,f '(x )>0,f (x )递增. ∴x =1不是f (x )的极值点.故不存在实数a ,使得f (x )在x =1处取极值. ………4分(2)f '(x )=2x 2-4x +a x =2(x -1)2+a -2x,①当a ≥2时,∴f '(x )≥0,∴f (x )在(0,+∞)上递增,成立; ………6分②当a <2时,令f '(x )>0,则x >1+1-a 2或x <1-1-a2,∴f (x )在(1+1-a2,+∞)上递增,∵f (x )在[2, 3]上存在单调递增区间,∴1+1-a2<3,解得:6<a <2综上,a >-6. ………10分(3)在[1,e]上存在一点x 0,使得()()00f x g x <成立,即在[1,e]上存在一点0x ,使得()00h x <,即函数()1ln a h x x a x x+=+-在[1,e]上的最小值小于零.有22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==①当1a e +≥,即1a e ≥-时, ()h x 在[]1e ,上单调递减,所以()h x 的最小值为()h e ,由()10ah e e a e+=+-<可得211e a e +>-, 因为2111e e e +>--,所以211e a e +>-; ………12分 ②当11a +≤,即0a ≤时,()h x 在[]1e ,上单调递增,所以()h x 最小值为()1h ,由()1110h a =++<可得2a <-; ………14分 ③当11a e<+<,即01a e <<-时,可得()h x 最小值为()()12ln 1h a a a a +=+-+,因为()0ln 11a <+<,所以,()0ln 1a a a <+<,故()()12ln 12h a a a a +=+-+> 此时不存在0x 使()00h x <成立.综上可得所求a 的范围是:211e a e +>-或2a <-. ………16分解法二:由题意得,存在x ∈[1, e],使得a (ln x -1x )>x +1x成立.令m (x )=ln x -1x ,∵m (x )在[1, e]上单调递增,且m (1)=-1<0, m (e)=1-1e >0故存在x 1∈(1,e),使得x ∈[1, x 1)时,m (x )<0;x ∈(x 1, e]时,m (x )>0 故存在x ∈[1, x 1)时,使得a <x 2+1x ln x -1成立,·························(☆)或存在x ∈(x 1, e]时,使得a >x 2+1x ln x -1成立,·························(☆☆) ………12分记函数F (x )=x 2+1x ln x -1,F (x )=(x 2-1)ln x -(x +1)2(x ln x -1)2当1<x ≤e 时,(x 2-1)ln x -(x +1)2=(x 2-1)·⎝⎛⎭⎪⎫ln x -x +1x -1 ∵G (x )=ln x -x +1x -1=ln x -2x -1-1递增,且G (e)=-2e -1<0∴当1<x ≤e 时,(x 2-1)ln x -(x +1)2<0,即F (x )<0∴F (x )在[1, x 1)上单调递减,在(x 1, e]上也是单调递减, ………14分 ∴由条件(☆)得:a <F (x )max =F (1)=-2 由条件(☆☆)得:a >F (x )min =F (e)=e 2+1e -1综上可得,a >e 2+1e -1或a <-2. ………16分20. (本小题满分16分)已知常数a >0,函数f (x )=13ax 3-4(1-a )x ,g (x )=ln(ax +1)-2xx +2.(1)讨论f (x )在(0,+∞)上的单调性;(2)若f (x )在⎝⎛⎭⎫-1a ,+∞上存在两个极值点x 1、x 2,且g (x 1)+g (x 2)>0,求实数a 的取值范围.解:(1)由题意可知:f '(x )=ax 2-4(1-a )当a ≥1时,f '(x )>0,此时,f (x )在区间(0,+∞)上单调递增.当0<a <1时,由f '(x )=0得:x 1=2a (1-a )a (x 2=-2a (1-a )a <0舍去)当x ∈(0, x 1)时,f '(x )<0;当x ∈(x 1,+∞)时,f '(x )>0.故f (x )在区间(0, x 1)上单调递减,在区间(x 1,+∞)上单调递增. 综上所述,当a ≥1时,f (x )在区间(0,+∞)上单调递增; 当0<a <1时,f (x )在区间(0,2a (1-a )a )上单调递减,在区间(2a (1-a )a,+∞)上单调递增. ………6分(2)由(1)知,当a ≥1时,f '(x )≥0,此时f (x )不存在极值点, 因而要使得f (x )有两个极值点,必有0<a <1.又∵f (x )的极值点只可能是x 1=2a (1-a )a 和x 2=-2a (1-a )a,由g (x )的定义可知,x >-1a 且x ≠-2,∴-2a (1-a )a >-1a 且2a (1-a )a x ≠2解得:0<a <12或12<a <1 【定义域在这里很重要】 ………8分此时,由(*)式易知,x 1, x 2分别是f (x )的极小值点和极大值点. 而g (x 1)+g (x 2)=ln(ax 1+1)(ax 2+1)-2x 1x 1+2-2x 2x 2+2=ln[a 2x 1x 2+a (x 1+x 2)+1]-4x 1x 2+4(x 1+x 2)x 1x 2+2(x 1+x 2)+4=ln(2a -1)2-4(a -1)2a -1=ln(2a -1)2-22a -1-2………10分令x =2a -1,由0<a <12且a ≠12知,当0<a <12时,-1<x <0;当12<a <1时,0<x <1 ,记h (x )=ln x 2+2x-2.①当-1<x <0时,h (x )=2ln(-x )+2x-2,设t =-x ∈(0,1), (t )=2ln t -2t -2单调递增 ∴ (t )< (1)=-4<0∴h (x )<-4<0,故当0<a <12时,g (x 1)+g (x 2)<0,不合题意,舍去.②当0<x <1时,h (x )=2ln x +2x -2,∴h (x )=2x -2x 2=2x -2x2<0,∴h (x )在(0,1)上单调递减,∴h (x )>h (1)=0,故当12<a <1时,g (x 1)+g (x 2)>0.1综上,a的取值范围为⎝⎛⎭⎫2,1.………16分附加题(考试时间:30分钟 总分:40分)2015.1021.(选修4—2:矩阵与变换)(本小题满分10分)已知矩阵312221⎡⎤⎢⎥=⎢⎥⎣⎦A(1)求1-A ;(2)满足AX =1-A 二阶矩阵X解:(1) 12143A --⎡⎤=⎢⎥-⎣⎦………5分(2)852013X -⎡⎤=⎢⎥-⎣⎦………10分22.(选修4—4:坐标系与参数方程)(本小题满分10分)在极坐标系中,曲线C 的极坐标方程为ρ=2cos θ+2sin θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =1+t ,y =3t(t 为参数),求直线l 被曲线C 所截得的弦长.解:曲线C 的直角坐标方程为x 2+y 2-2x -2y =0,圆心为(1,1),半径为2,(3分)直线的直角坐标方程为3x -y -3=0,(5分)所以圆心到直线的距离为d =||3-1-32=12,(8分) 所以弦长=22-14=7.(10分)23.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,AB =3,AA 1=AC =4,AA 1⊥平面ABC ; AB ⊥AC , (1)求二面角A 1-BC 1-B 1的余弦值; (2)在线段BC 1存在点D ,使得AD ⊥A 1B ,求BDBC 1的值. 解: (1)如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4), 设平面A 1BC 1的法向量为,,)x y z n =(,则11100A B A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,即34040y z x -=⎧⎨=⎩, 令3z =,则0x =,4y =,所以(0,4,3)n =.1A 1B 1C ABC同理可得,平面BB 1C 1的法向量为(3,4,0)m =, 所以16cos 25⋅==n m n,m |n ||m |. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. ………5分 (2)设D (,,)x y z 是直线BC 1上一点,且1BD BC λ=. 所以(,3,)(4,3,4)x y z λ-=-.解得4x λ=,33y λ=-,4z λ=.所以(4,33,4)AD λλλ=-.由1·0AD A B = ,即9250λ-=.解得925λ=. 因为9[0,1]25∈,所以在线段BC 1上存在点D , 使得AD ⊥A 1B .此时,1925BD BC λ==. ………10分 24.(本小题满分10分)(1)证明:①111r r r n n n C C C ++++=;②122212n nn n C C +++=(其中,,01,n r N r n *∈≤≤-); (2)某个比赛的决赛在甲、乙两名运动员之间进行,比赛共设21n +局,每局比赛甲获胜的概率均为12p p ⎛⎫>⎪⎝⎭,首先赢满1n +局者获胜(n N *∈). ①若2n =,求甲获胜的概率;②证明:总局数越多,甲获胜的可能性越大(即甲获胜的概率越大). 解:(1)①()()()()()()()()()111!1!!!()!1!(1)!1!()!1!1!11!r r n nr n n r n r n n C C r n r r n r r n r n C r n r +++++-⎡⎤⎣⎦+=+=-+--+-+==++-+……2分②由①1+122212121=+2n n n nn n n n C C C C +++++=……3分(2)①若2n =,甲获胜的概率()10156)1()1(2322242233+-=-+-+=p p p p p pC p p pC p P ……5分②证明:设乙每一局获胜的概率为q ,则210,1<<=+q q p . 记在甲最终获胜的概率为n P ,则()nn nn n n n n nn n nn n n n n n n n qC q Cq Cpq p pC q p pC q p pC p P 2221122211...1...++++=++++=++++++所以,()()()()()[]()()[()][][]()()()0122)()()(...)1()1()11(......1...1...11...1...1 (112111212111212211122211212211122211212211211221)3221211212231321211222131222211112221312222111122213122222111<-=-=-=+--=+--+-+++-++-+-=+++++++++-++++=++++--++++=++++-++++=-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++q C q p C qC q p C qC q p C qC C q p C q C C q C C C q C C q C C q p qC q C q C q q C q C q C qC q C q C p q C q C q C q qC q C q C p q C q C q C p q C q C q C p P P n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n nn n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n n所以1+<n n P P即总局数越多,甲获胜的可能性越大(即甲获胜的概率越大). ………10分。