高考物理牛顿第二定律思路总结
- 格式:ppt
- 大小:241.00 KB
- 文档页数:15
牛顿第二定律解题思路一、高中物理研究问题,有两条最基本的途径:一是从运动和力的角度去进行研究,另一条是从功和能的角度去进行研究。
这两条途径,几乎渗透于整个高中物理的全部,其中第一条途径的核心是牛顿运动定律。
应用牛顿定律来解决问题,我们应该遵循的最基本的方法是:对象→受力→过程→模型→规律→方程→结果即首先要弄清研究的对象是哪个物体,它受到哪些力,运动的过程是怎么样的;然后建立起一个合理的动力学模型,确定所应用规律,例出方程,求得结果。
一般来说,应用牛顿定律来解决问题通常有如下二大类问题:第一类是非常重视力和加速度的因果关系。
第二类是动力学与运动学结合在一起。
二、解题方法(1)矢量合成法:若物体只受两个力作用时,应用平行四边形定则求这两个力的合力,再由牛顿第二定律求出物体的加速度的大小及方向.加速度的方向就是物体所受合外力的方向.反之,若知道加速度的方向也可应用平行四边形定则求物体所受的合力.(2)正交分解法:当物体受多个力作用时,常用正交分解法求物体的合外力.应用牛顿第二定律求加速度,在实际应用中常将受力分解,且将加速度所在的方向选为x 轴或y 轴,有时也可分解加速度,即⎩⎪⎨⎪⎧F x =ma x F y =ma y 基本(3)解题步骤:1、 确定研究对象2、 对研究对象进行受力分析3、 分析对象的运动情况(特别确定加速度的情况:包括方向和大小)4、 把物体受到的所有外力分解到加速度方向和垂直加速度方向5、 在加速度方向:利用牛顿第二定律建议程;在垂直加速度方向:利用单方向平衡建方程解题。
6、 关于加速度:利用已知条件或其它求解。
三:应用举例:例1:11.如图6-2-2所示,位于水平面上的质量为M 的小木块,在大小为F 、方向与水平方向成α角的拉力作用下沿地面做加速运动.若木块与地面之间的动摩擦因数为μ,则木块的加速度为[ ] 图6-2-2A F/MB .Fcos α/MC .(Fcos α-μMg)/M D.[Fcos α-μ(Mg-Fsin α)]/M 例2:如图所示,车内绳AB 与绳BC 拴住一小球,BC 绳水平,车由静止向右作匀加速直线运动,小球仍处于图中所示位置,则[ ]A .AB 绳拉力变大,BC 绳拉力变大 B .AB 绳拉力变大,BC 绳拉力变小C .AB 绳拉力变大,BC 绳拉力不变D .AB 绳拉力不变,BC 绳拉力变大例3. 如图所示,质量为m 2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m 1的物体l ,与物体l 相连接的绳与竖直方向成θ角,则( )A. 车厢的加速度为gsin θB. 绳对物体1的拉力为m 1g /cos θC. 底板对物体2的支持力为(m 2-m 1)gD. 物体2所受底板的摩擦力为m 2gtan θ例4:风洞实验中可产生水平方向的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径,如图1所示。
「核心物理4」高中物理之牛顿第二定律核心知识讲解附例题
讲解
牛顿第二定律
1.定义:
物体的加速度a跟物体所受的合外力F成正比,跟物体的质量m 成反比,加速度的方向跟合外力的方向相同。
2.公式:
3.重要意义:
解决不平衡问题
牛顿第二定律揭示了运动和力的关系,始终记住合力和加速度具有同一性,即合力的大小和加速度大小同时变化、它们方向始终相同。
确定出一个物理量的变化即能判断另一个物理量的变化。
4.解题思路:
①首先是受力分析;
②当各力的方向不在同一直线是正交分解;
③找到加速度a方向,即合力F合方向;
④列式子时,通过受力分析表示出合力大小,写在公式左边,公式右边仅用ma表示即可,在写公式第一步时不可随意移项。
5.两种考察方式
(1)从受力确定运动情况(已知受力情况)
解题思路:
①根据牛顿第二定律求出加速度——a
②根据运动学规律确定物体运动情况——位移x、速度v、时间t
(2)从运动情况确定受力(已知运动情况)
解题思路:
①根据运动学规律确定物体的加速度——a
②根据牛顿第二定律求出力——F
6.用到的知识:
受力分析、力的分解、牛顿第二定律、匀变速直线运动公式。
7.考题猜想:
题目中含有加速度a、各种力,常和匀变速直线运动几个公式联立考察。
物理牛顿第二定律知识点总结牛顿第二定律是经典力学中的重要定律之一,它描述了物体受力时的运动规律。
该定律的数学表达形式为F=ma,其中F表示物体所受的合力,m表示物体的质量,a表示物体的加速度。
下面将对牛顿第二定律的几个关键点进行总结。
1. 牛顿第二定律的基本原理牛顿第二定律是基于质点力学的基本原理之一,它指出物体所受的合力与物体的质量和加速度成正比。
当物体受到合力时,它将产生加速度,而加速度的大小与合力成正比,与物体的质量成反比。
2. 牛顿第二定律的数学表达牛顿第二定律的数学表达形式为F=ma,其中F表示物体所受的合力,m表示物体的质量,a表示物体的加速度。
这个公式表明,当物体所受的合力增大时,它的加速度也会增大;当物体的质量增大时,它的加速度会减小。
3. 牛顿第二定律的单位根据国际单位制,力的单位是牛顿(N),质量的单位是千克(kg),加速度的单位是米每平方秒(m/s²)。
因此,牛顿第二定律的单位可以表示为N=kg×m/s²。
4. 牛顿第二定律的应用牛顿第二定律在物理学中有广泛的应用。
例如,在机械运动中,可以利用牛顿第二定律来计算物体的加速度、速度和位移。
在工程学中,可以利用牛顿第二定律来设计和分析各种机械系统。
在天体力学中,可以利用牛顿第二定律来研究行星、卫星等天体的运动规律。
5. 牛顿第二定律的局限性牛顿第二定律在某些情况下可能不适用。
例如,在极小尺度的微观领域,量子力学的规律会取代经典力学的描述;在高速运动的情况下,相对论效应需要考虑。
此外,牛顿第二定律也无法解释某些特殊情况下的运动规律,如黑洞的行为等。
6. 牛顿第二定律的推广形式牛顿第二定律可以推广到多体系统中。
对于多个物体组成的系统,每个物体所受的合力等于其质量乘以加速度。
通过对每个物体的运动方程进行联立,可以求解出整个系统的运动规律。
牛顿第二定律是经典力学中的重要定律,它描述了物体受力时的运动规律。
通过对物体所受的合力、质量和加速度之间的关系进行分析,可以应用牛顿第二定律解决各种物理问题。
一、课堂导入质量m一定,加速度a与力F的关系力F一定,加速度a与质量m的关系二、新课传授一、牛顿第二定律1、内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的3.求出合力.注意用国际单位制统一各个物理量的单位.4.根据牛顿运动定律和运动学规律建立方程并求解.例1:如图所示,质量为4kg的物体与水平地面的动摩擦因数为μ=0.20。
现对它施加一向右与水平方向成37°、大小为20N的拉力F,使之向右做匀加速运动,求物体运动的加速度大小。
例2.从牛顿第二定律公式m=F/a可得,对某一物体来说,它的质量(D)A.与外力成正比B.与合外力成正比C.与加速度成反比D.与合外力以及加速度都无关例3.当作用在物体上的合外力不等于零时(D)A.物体的速度将一定越来越大B.物体的速度将一定越来越小来源:网络转载C.物体的速度将有可能不变D.物体的速度将一定改变三、巩固训练1、静止在光滑的水平面上的物体,受到一个水平拉力,则在力刚开始作用的瞬间,下列说法正确的是(B)A.物体立即获得加速度和速度B.物体立即获得加速度,但速度仍为零C.物体立即获得速度,但加速度仍为零D.物体的速度和加速度均为零2、下列说法中正确的是(D )A物体所受合力为零,物体的速度必为零.B物体所受合力越大,物体的加速度越大,速度也越大.(3)F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a 也方向变.(4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。
(5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度.(6)F=ma的适用范围:宏观、低速。
来源:网络转载。
高中物理基本模型解题思路——板块模型(一)本模型难点:(1)长板下表面是否存在摩擦力,摩擦力的种类;静摩擦力还是滑动摩擦力,如滑动摩擦力,N F 的计算(2)物块和长板间是否存在摩擦力,摩擦力的种类:静摩擦力还是滑动摩擦力。
(3)长板上下表面摩擦力的大小。
(二)在题干中寻找注意已知条件:(1)板的上下两表面是否粗糙或光滑(2)初始时刻板块间是否发生相对运动(3)板块是否受到外力F ,如受外力F 观察作用在哪个物体上(4)初始时刻物块放于长板的位置(5)长板的长度是否存在限定一、光滑的水平面上,静止放置一质量为M ,长度为L 的长板,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为μ。
首先受力分析:对于m :由于板块间发生相对运动,所以物块所受长板向左的滑动摩擦力, 即:⎪⎩⎪⎨⎧===m N N ma f F f mg F 动动μg a m μ= (方向水平向左)由于物块的初速度向右,加速度水平向左,所以物块将水平向右做匀减速运动。
对于M :由于板块间发生相对运动,所以长板上表面所受物块向右的滑动摩擦力,但下表面由于光滑不受地面作用的摩擦力。
即:动f N F N F '⎪⎩⎪⎨⎧==+='M N N N Ma f F f F Mg F 动动μM mg a M μ= (方向水平向右) 由于长板初速度为零,加速度水平向右,所以物块将水平向右做匀加速运动。
假设当M m v v=时,由于板块间无相对运动或相对运动趋势,所以板块间的滑动摩擦力会突然消失。
则物块和长板将保持该速度一起匀速运动。
关于运动图像可以用t v -图像表示运动状态:公式计算:设经过时间 t 板块共速,共同速度为共v 。
由 共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共M 做初速度为零的匀加速直线运动:t a v M M =可计算解得时间: t a t a v M m =-0物块和长板位移关系:m : 2021t a t v x m m -= M : 221t a x M M = 相对位移:M m x x x -=∆v v二、粗糙的水平面上,静止放置一质量为M ,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为1μ,长板和地面间的动摩擦因数为2μ,长板足够长。
高中物理基本模型解题思路——板块模型(一)本模型难点:(1)长板下表面是否存在摩擦力,摩擦力的种类;静摩擦力还是滑动摩擦力,如滑动摩擦力,N F 的计算(2)物块和长板间是否存在摩擦力,摩擦力的种类:静摩擦力还是滑动摩擦力。
(3)长板上下表面摩擦力的大小。
(二)在题干中寻找注意已知条件:(1)板的上下两表面是否粗糙或光滑(2)初始时刻板块间是否发生相对运动(3)板块是否受到外力F ,如受外力F 观察作用在哪个物体上(4)初始时刻物块放于长板的位置(5)长板的长度是否存在限定一、光滑的水平面上,静止放置一质量为M ,长度为L 的长板,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为μ。
首先受力分析:对于m :由于板块间发生相对运动,所以物块所受长板向左的滑动摩擦力, 即:⎪⎩⎪⎨⎧===m N N ma f F f mg F 动动μg a m μ= (方向水平向左)由于物块的初速度向右,加速度水平向左,所以物块将水平向右做匀减速运动。
对于M :由于板块间发生相对运动,所以长板上表面所受物块向右的滑动摩擦力,但下表面由于光滑不受地面作用的摩擦力。
即:动f N F N F '⎪⎩⎪⎨⎧==+='M N N N Ma f F f F Mg F 动动μM mg a M μ= (方向水平向右) 由于长板初速度为零,加速度水平向右,所以物块将水平向右做匀加速运动。
假设当M m v v=时,由于板块间无相对运动或相对运动趋势,所以板块间的滑动摩擦力会突然消失。
则物块和长板将保持该速度一起匀速运动。
关于运动图像可以用t v -图像表示运动状态:公式计算:设经过时间 t 板块共速,共同速度为共v 。
由 共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共M 做初速度为零的匀加速直线运动:t a v M M =可计算解得时间: t a t a v M m =-0物块和长板位移关系:m : 2021t a t v x m m -= M : 221t a x M M = 相对位移:M m x x x -=∆v v二、粗糙的水平面上,静止放置一质量为M ,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为1μ,长板和地面间的动摩擦因数为2μ,长板足够长。
牛顿第二定律专题复习指导高中物理最主要的两大块知识就是受力和运动,而牛顿第二定律是将两者联系起来的重要桥梁,非常简单的F=ma,将受力与加速度联系在一起,从而使得在科学与工程应用中,可以根据受力来预测运动,也可以根据运动来监测受力。
正是从其应用场景出发,高考对牛二定律的考察也集中在这两个角度,已知运动求受力和已知受力求运动。
其实因为考卷题目数量有限而知识点众多,所以对运动和受力的考察往往结合在一起,这就尤其显的牛二定律的核心作用。
一、核心思路解题思路①受力分析②运动分析③找相等关系列方程组牛二定律的题目常常综合了受力分析和运动分析问题,需要先分别完成前边的章节的受力分析和运动分析。
常见形式为已知运动求受力,或已知受力求运动。
基础公式F=ma牛顿第二定律是是高中物理最核心的公式,没有之一。
二、思路总结1、高中物理最主要的两大块知识就是受力和运动,而牛顿第二定律是将两者联系起来的重要桥梁,非常简单的F=ma,将受力与加速度联系在一起,从而使得在科学与工程应用中,可以根据受力来预测运动,也可以根据运动来监测受力。
正是从其应用场景出发,高考对牛二定律的考察也集中在这两个角度,已知运动求受力和已知受力求运动。
其实因为考卷题目数量有限而知识点众多,所以对运动和受力的考察往往结合在一起,这就尤其显的牛二定律的核心作用。
2、已知运动求受力如本文基础例题中,我们只知道物块沿斜面2s内下滑了4m,就可以求出其摩擦力,进而得知斜面的摩擦系数。
经典的纸带打点计时试验,也是通过运动观察求得重力加速度,就可以得出重力与质量的关系。
这种通过运动来间接测量受力的例子比比皆是,而展现在题目中时,问题是求受力,却给了一堆的运动条件,立即就会明白,求出加速度就可以了。
3、已知受力求运动电磁场问题中,给定的条件经常是已知电荷量、电场强度、磁场强度,受力就确定了,问题的关键往往是,带电粒子,做什么运动,到某个点时运动多久,或者从哪个位置飞出等等,看似复杂,实际也就是根据已知的受力,求出做什么运动就可以,无非还是匀速、匀变速、平抛、圆周4种运动形式,题目难度集中在运动轨迹的几何运算。
高中物理基本模型解题思路——板块模型(一)本模型难点:(1)长板下表面就是否存在摩擦力,摩擦力的种类;静摩擦力还就是滑动摩擦力,如滑动摩擦力,NF的计算(2)物块与长板间就是否存在摩擦力,摩擦力的种类:静摩擦力还就是滑动摩擦力。
(3)长板上下表面摩擦力的大小。
(二)在题干中寻找注意已知条件:(1)板的上下两表面就是否粗糙或光滑(2)初始时刻板块间就是否发生相对运动(3)板块就是否受到外力F,如受外力F观察作用在哪个物体上(4)初始时刻物块放于长板的位置(5)长板的长度就是否存在限定一、光滑的水平面上,静止放置一质量为M,长度为L的长板,一质量为m的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为μ。
,即:⎪⎩⎪⎨⎧NffF动动gamμ= (方向水平向左)由于物块的初速度向右,加速度水平向左,所以物块将水平向右做匀减速运动。
对于M:由于板块间发生相对运动,所以长板上表面所受物块向右的滑动摩擦力,但下表面由于光滑不受地面作用的摩擦力。
即:⎪⎩⎪⎨⎧==+='MNNMafFfMgF动动μMmgaMμ= (方向水平向右),所以物块将水平向右做匀加速运动。
假设当Mmvv=时,由于板块间无相对运动或相对运动趋势,所以板块间的滑动摩擦力会突然消失。
则物块与长板将保持该速度一起匀速运动。
关于运动图像可以用tv-图像表示运动状态:v公式计算:设经过时间 t 板块共速,共同速度为共v 。
由 共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共M 做初速度为零的匀加速直线运动:t a v M M =可计算解得时间: t a t a v M m =-0物块与长板位移关系:m : 2021t a t v x m m -= M : 221t a x M M = 相对位移:M m x x x -=∆二、粗糙的水平面上,静止放置一质量为M ,一质量为m 的物块,以速度0v 从长板的一段滑向另一段,已知板块间动摩擦因数为1μ,长板与地面间的动摩擦因数为2μ,长板足够长。
牛顿第二定律的应用、超重与失重内容讲解:一、应用牛顿第二定律分析问题的基本思路:(1)已知力求物体的运动状态:先对物体进行受力分析,由分力确定合力;根据牛顿第二定律确定加速度,再由初始条件分析物体的运动状态,应用运动学规律求出物体的速度或位移。
(2)已知物体的运动状态求物体的受力情况:先由物体的运动状态(应用运动学规律)确定物体的加速度;根据牛顿第二定律确定合力,再根据合力与分力的关系求出某一个分力。
二、解题步骤:(1)根据题意,确定研究对象;(2)用隔离法或整体法分析研究对象的受力情况,画受力示意图;(3)分析物理过程是属于上述哪种类型的问题,应用牛顿第二定律分析问题的基本思路进行分析;(4)选择正交坐标系(或利用力的合成与分析)选定正方向,列动力学方程(或结合初始条件列运动学方程);(5)统一单位,代入数据,解方程,求出所需物理量;(6)思考结果的合理性,决定是否需要讨论。
三、例题分析:例1:如图所示,质量m=2kg的物体,受到拉力F=20N的作用,F与水平成37°角。
物体由静止开始沿水平面做直线运动,物体与水平面间的摩擦因数μ=0.1,2s末撤去力F,求:撤去力F 后物体还能运动多远?(sin37°=0.6,cos37°=0.8)分析与解:物体受到重力mg,拉力F,支持力N1和摩擦力f1的作用,受力方向如图所示。
在竖直方向上,合外力为零;在水平方向上合外力不为零,由静止开始做匀加速直线运动。
根据牛顿第二定律:水平方向:Fcos37°-f1=ma1竖直方向:Fsin37°+N1-mg=0滑动摩擦力:f1=μN1得:a1=(Fcos37°+μFsin37°-μmg)/m=(20×0.8+0.1×20×0.6-0.1×2×9.8)/2=7.6m/s2根据运动学公式2s末物体瞬时速度:V2=a1×t=7.6×2=15.2m/s2s末撤去力F,物体受力情况发生变化,将做匀减速直线运动,受力如图所示:水平方向:f2=ma2竖直方向:N2-mg=0滑动摩擦力:f2=μN2得:a2=f2/m=μg=0.1×9.8=0.98m/s2根据运动学公式:V t2-V22=2a2S得:S=V22/2a=15.22/(2×0.98)=118.5m撤去力F后,物体物体还能运动118.2m。
高二物理《牛顿第二定律简单运用》知识点总结
一、牛顿第二定律
1.内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比.加速度的方向跟作用力的方向相同;
2.表达式:F=ma
3. 对牛顿第二定律的理解
4.应用牛顿第二定律求瞬时加速度的技巧
在分析瞬时加速度时应注意两个基本模型的特点:
(1)轻绳、轻杆或接触面——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间;
(2)轻弹簧、轻橡皮绳——两端同时连接(或附着)有物体的弹簧或橡皮绳,特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.二、动力学两类基本问题
1.动力学两类基本问题
(1)已知受力情况,求物体的运动情况;
(2)已知运动情况,求物体的受力情况;
2.解决两类基本问题的方法
以加速度为“桥梁”,由运动学公式和牛顿运动定律列方程求解,具体逻辑关系如图:
3.解决动力学问题的技巧和方法
1.两个关键
(1)两类分析——物体的受力分析和物体的运动过程分析;
(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.
2.两种方法
(1)合成法:在物体受力个数2个或3个时,一般采用“合成法”;
(2)正交分解法:若物体的受力个数3个或3个以上时,则采用“正交分解法”。
(完整)⾼中物理⽜顿第⼆定律——板块模型解题基本思路⾼中物理基本模型解题思路——板块模型(⼀)本模型难点:(1)长板下表⾯是否存在摩擦⼒,摩擦⼒的种类;静摩擦⼒还是滑动摩擦⼒,如滑动摩擦⼒,N F 的计算(2)物块和长板间是否存在摩擦⼒,摩擦⼒的种类:静摩擦⼒还是滑动摩擦⼒。
(3)长板上下表⾯摩擦⼒的⼤⼩。
(⼆)在题⼲中寻找注意已知条件:(1)板的上下两表⾯是否粗糙或光滑(2)初始时刻板块间是否发⽣相对运动(3)板块是否受到外⼒F ,如受外⼒F 观察作⽤在哪个物体上(4)初始时刻物块放于长板的位置(5)长板的长度是否存在限定⼀、光滑的⽔平⾯上,静⽌放置⼀质量为M ,长度为L 的长板,⼀质量为m 的物块,以速度0v 从长板的⼀段滑向另⼀段,已知板块间动摩擦因数为µ。
⾸先受⼒分析:对于m :由于板块间发⽣相对运动,所以物块所受长板向左的滑动摩擦⼒,即:===m N N ma f F f mg F 动动µg a m µ= (⽅向⽔平向左)由于物块的初速度向右,加速度⽔平向左,所以物块将⽔平向右做匀减速运动。
对于M :由于板块间发⽣相对运动,所以长板上表⾯所受物块向右的滑动摩擦⼒,但下表⾯由于光滑不受地⾯作⽤的摩擦⼒。
即:动f N F N F '==+='M N N N Ma f F f F Mg F 动动µ M mg a M µ= (⽅向⽔平向右)由于长板初速度为零,加速度⽔平向右,所以物块将⽔平向右做匀加速运动。
假设当M m v v=时,由于板块间⽆相对运动或相对运动趋势,所以板块间的滑动摩擦⼒会突然消失。
则物块和长板将保持该速度⼀起匀速运动。
关于运动图像可以⽤t v -图像表⽰运动状态:公式计算:设经过时间 t 板块共速,共同速度为共v 。
由共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共M 做初速度为零的匀加速直线运动:t a v M M =可计算解得时间: t a t a v M m =-0物块和长板位移关系:m : 2021t a t v x m m -= M : 221t a x M M = 相对位移:M m x x x -=?v v⼆、粗糙的⽔平⾯上,静⽌放置⼀质量为M ,⼀质量为m 的物块,以速度0v 从长板的⼀段滑向另⼀段,已知板块间动摩擦因数为1µ,长板和地⾯间的动摩擦因数为2µ,长板⾜够长。
牛顿第二定律的解题技巧牛顿第二定律是物理学中的基础概念之一,它描述了物体运动的原理和力的作用效果。
在解题过程中,熟练掌握牛顿第二定律的应用是非常重要的。
本文将讨论牛顿第二定律的解题技巧,从加速度、质量、力的关系以及应用实例等方面展开。
一、理解牛顿第二定律牛顿第二定律的数学表示为F=ma,其中F代表物体所受的力,m代表物体的质量,a代表物体的加速度。
这个公式表明物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
二、应用加速度、质量、力的关系1. 求解加速度当已知物体受到的力和质量时,可以通过牛顿第二定律求解加速度。
首先,将所受力的大小代入公式中,然后根据物体的质量求解加速度。
例如,一物体受到的外力为10N,质量为2kg,则根据F=ma可求出加速度为5m/s^2。
2. 求解质量有时候,我们需要求解物体的质量,而已知物体所受的力和加速度。
在这种情况下,我们可以通过牛顿第二定律的公式重新排列,得到质量的表达式m=F/a。
例如,如果一个物体所受力为20N,加速度为4m/s^2,则可得到质量为5kg。
3. 求解力当已知物体的质量和加速度时,可以通过牛顿第二定律求解作用在物体上的力。
根据公式F=ma,将质量和加速度代入可求出力的大小。
例如,当一物体的质量为3kg,加速度为6m/s^2时,力的大小为18N。
三、应用实例1. 下雨天的刹车距离假设某辆车质量为1000kg,在下雨天行驶时受到的制动力为500N,求车辆的减速度和刹车距离。
根据牛顿第二定律可得 F=ma,将已知数据代入可得500N=1000kg*a。
由此可求出车辆的减速度为0.5m/s^2。
刹车距离的计算可通过公式s=v^2/(2a)求解,其中v表示刹车前车辆的速度,a表示车辆的减速度。
假设车速为20m/s,则刹车距离为20^2/(2*0.5),计算后得到刹车距离为200m。
2. 摩擦力对斜坡上物体的影响一质量为2kg的物体放置在一个角度为30度的斜坡上,斜坡表面的摩擦系数为0.2。