高三专题复习:统计与概率 - 丰台区课程改革平台
- 格式:doc
- 大小:472.50 KB
- 文档页数:12
高中数学必修三:概率与统计1.要从已编号(1-50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( ).A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,8,16,322.从鱼塘捕得同一时间放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240尾鱼的总质量大约是( ).A.300克 B.360千克C.36千克D.30千克3.以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y的值分别为()A.2,5B.5,5C.5,8D.8,84.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人得的试验数据中,变量x和y的数据的平均值都分别相等,且值分别为s与t,那么下列说法正确的是( ).A .直线l1和l2一定有公共点(s ,t)B .直线l1和l2相交,但交点不一定是(s ,t)C .必有直线l1∥l2D .直线l1和l2必定重合5..设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是( ).A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重比为58.79kg 6.对于两个变量之间的相关系数,下列说法中正确的是( ) A .r 越大,相关程度越大 B .()0,r ∈+∞,r 越大,相关程度越小,r 越小,相关程度越大 C .1r ≤且r 越接近于1,相关程度越大;r 越接近于0,相关程度越小 D .以上说法都不对7、.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标准差分别为sA 和sB,则( )(A) A x >B x ,sA >sB(B) A x <B x ,sA >sB (C) A x >B x ,sA <sB(D) A x <B x ,sA <sB8.山东采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )19某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为( )(A )7 (B )15 (C )25 (D )3510..样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z ax a y =+-,其中102α<<,则n ,m 的大小关系为( )A .n m < B .n m > C .n m = D .不能确定 11.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显着差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A .抽签法B .随机数法C .系统抽样法D .分层抽样法12 .总体有编号为01,02,…,19,20的20个个体组成。
考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年北京市丰台区高中数学人教B 版 必修二统计与概率章节测试(12)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)46,45,5646,45,5347,45,5645,47,531. 对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本中的中位数、众数、极差分别是( )A. B. C. D. 2. 张家的3个鸡仔钻进了李家装有3个鸡仔的鸡笼里,现打开笼门,让鸡仔一个一个地走出来,若第一个走出来的是张家的鸡仔,那么第二个走出的也是张家的鸡仔的概率是( )A. B. C. D.3,9,185,9,163,10,175,10,153. 某公司有员工150人,其中50岁以上的有15人,35~49岁的有45人,不到35岁的有90人.为了调查员工的身体健康状况,采用分层抽样方法从中抽取30名员工,则各年龄段人数分别为( )A. B. C. D. 甲队平均得分高于乙队的平均得分中乙甲队得分的中位数大于乙队得分的中位数甲队得分的方差大于乙队得分的方差甲乙两队得分的极差相等4. 将甲、乙两个篮球队5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是( )A. B. C. D.5. 若事件A与B互斥,已知P(A)=P(B)= ,则P(A∪B)的值为()A. B. C. D.346. 已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差为()A. B. C. D.8411140141467. 利用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数,(下面摘取了随机数表中的第11行至第15行),根据下图,读出的第3个数是()A. B. C. D.143035258. 某单位青年职工、中年职工、老年职工的人数之比为7:5:3,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为14人,则样本容量为()A. B. C. D.事件“”的概率为0事件“”为必然事件事件“”与“”为对立事件事件“m是奇数”与“”为互斥事件9. 连续掷一枚质地均匀的骰子两次,所得向上的点数分别为a,b,记,则下列说法正确的是()A. B.C. D.7060505610. 由正整数组成的一组数据x1, x2, x3, x4,其平均数和中位数都是2,且标准差等于1,则这组数据的立方和为()A. B. C. D.11. 某高校组织大学生知识竞赛,共设有5个版块的试题,分别是“中华古诗词”“社会主义核心价值观”“科学实践观”“中国近代史”及“创新发展能力”.某参赛队从中任选2个版块作答,则“创新发展能力”版块被该队选中的概率为()A. B. C. D.12. 为了节能减排,发展低碳经济,我国政府从2001年起就通过相关政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:中国新能源汽车产销情况一览表新能源汽车生产情况新能源汽车销售情况产品(万辆)比上年同期增长(%)销量(万辆)比上年同期增长(%)2018年3月 6.8105 6.8117.44月8.1117.78.2138.45月9.685.610.2125.62017年3月份我国新能源汽车的产量不超过 万辆2017年我国新能源汽车总销量超过 万辆2018年8月份我国新能源汽车的销量高于产量2019年1月份我国插电式混合动力汽车的销量低于 万辆6月8.631.78.442.97月953.68.447.78月9.93910.149.59月12.764.412.154.810月14.658.113.85111月17.336.916.937.61-12月12759.9125.661.72019年1月9.11139.61382月 5.950.9 5.353.6根据上述图表信息,下列结论错误的是( )A. B. C. D. 13. 某学院的 三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A 专业有380名学生, B 专业有420名学生,则在该学院的C 专业应抽取 名学生.14. 学校高二足球队有男运动员16人,女运动员8人,现用分层抽样的方法从中抽取一个容量为9的样本,则抽取男运动员的人数是 .15. 空气质量指数AQI 是反映空气质量状况的指数,AQI 指数的值越小,表明空气质量越好,AQI 指数不超过50,空气质量为“优”;AQI 指数大于50且不超过100,空气质量为“良”;AQI 指数大于100,空气质量为“污染”.如图是某市2021年空气质量指数(AQI )的月折线图.下列关于该市2021年空气质量的叙述中,不正确的是 .(填序号)①全年的平均AQI 指数对应的空气质量等级为优或良;②每月都至少有一天空气质量为优;③2月,8月,9月和12月均出现污染天气;④空气质量为“污染”的天数最多的月份是2月份.16. 已知样本9,10,11,x ,y 的平均数是10,标准差是 ,则xy= .阅卷人三、解答题(共6题,共70分)得分17. 网络技术的发展对学生学习方式产生巨大的影响,某校为了解学生每周课余利用网络资源进行自主学习的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题.(1) 求表中的n,中位数落在哪组,扇形统计图中组对应的圆心角为多少度;(2) 请补全频数分布直方图;(3) 该校准备召开利用网络资源进行自主学习的交流机会,计划在组学生中随机选出两人进行经验介绍,已知组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图或列表法求抽取的两名学生都来自九年级的概率.18. 一家保险公司决定对推销员实行目标管理,即给推销员确定一个具体的销售目标.确定的销售目标是否合适,直接影响到公司的经济效益.如果目标定的过高,多数推销员完不成任务,会使推销员失去信心;如果目标定的太低,将不利于挖掘推销员的工作潜力.该保险公司随机抽取50名保险推销员,统计了其2020年的月均推销额(单位:万元),将数据按照,,…,分成6组,制成频率分布直方图如下,其中组比组的频数多4.(1) 求频率分布直方图中和的值;(2) 为调动推销员的积极性,公司设计了两种奖励方案.方案一:奖励月均推销额进入前60%的员工;方案二:奖励月均推销额达到或超过平均数(同一组中的数据用该组区间中点值为代表)的员工.你认为那种方案更好?19. 为积极响应“反诈”宣传教育活动的要求,某企业特举办了一次“反诈”知识竞赛,规定:满分为100分,60分及以上为合格.该企业从甲、乙两个车间中各抽取了100位职工的竞赛成绩作为样本.对甲车间100位职工的成绩进行统计后,得到了如图所示的成绩频率分布直方图.2×2列联表甲车间乙车间合计合格人数不合格人数合计附参考公式:①,其中.②独立性检验临界值表(1) 估算甲车间职工此次“反诈”知识竞赛的合格率;(2) 若将频率视为概率,以样本估计总体.从甲车间职工中,采用有放回的随机抽样方法抽取3次,每次抽1人,每次抽取的结果相互独立,记被抽取的3人次中成绩合格的人数为.求随机变量的分布列;(3) 若乙车间参加此次知识竞赛的合格率为,请根据所给数据,完成下面的列联表,并根据列联表判断是否有的把握认为此次职工“反计”知识竞赛的成绩与其所在车间有关?20. “精准扶贫”的重要思想最早在2013年11月提出,习近平到湘西考察时首次作出“实事求是,因地制宜,分类指导,精准扶贫”的重要指导。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年北京市丰台区高中数学人教B 版 必修二统计与概率专项提升(19)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)①②都采用简单随机抽样①②都采用分层随机抽样①采用简单随机抽样,②采用分层随机抽样①采用分层随机抽样,②采,简单随机抽样1. 现有以下两项调查:①从10台冰箱中抽取3台进行质量检查;②某社区有600户家庭,其中高收入家庭180户,中等收入家庭360户,低收入家庭60户,为了调查家庭购买力的某项指标,拟抽取一个容量为30的样本,则完成这两项调查最适宜采用的抽样方法分别是( )A. B. C. D.2. 10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有1人中奖的概率为( )A. B.C.D.3. 随机抛掷一枚质地均匀的骰子,则其向上一面的点数为偶数的概率为( )A.B.C.D.甲组植树棵数的平均数不高于乙组植树棵数的平均数甲组植树棵数的众数是9乙组植树棵数的方差 甲、乙两组中植树棵数的标准差4. 3.12日为植树节,某单位组织10名职工分成两组开展义务植树活动,以下茎叶图记录了甲、乙两组五名职工的植树棵数.(参考公式:样本数据 , ,,的方差,其中 为样本平均数),下列说法,正确的是( )A. B. C. D.5. 一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动取款机上取钱时,忘记了密码的最后一位数字,如果他记得密码的最后一位是偶数,则他不超过2次就按对的概率是()A.B.C.D.6.已知正四棱锥P—ABCD 的四条侧棱,底面四条边及两条对角线共10条线段,现有一只蚂蚁沿着这10条线段从一个顶点爬行到另一个顶点,规定: (1)从一个顶点爬行到另一个顶点视为一次爬行;(2)从任一顶点向另4个顶点爬行是等可能的(若蚂蚁爬行在底面对角线上时仍按原方向直行). 则蚂蚁从顶点P 开始爬行4次后恰好回到顶点P 的概率是( ) A.B.C.D.7. 宋元两代是我国古代数学非常辉煌的时期,其中秦九韶、李治、杨辉、朱世杰并称宋元数学四大家,其代表作秦九韶的《数书九章》,李治的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.现有古数学著作《数书九章》《测圆海镜》《益古演段》《详解九章算法》《杨辉算法》《算学启蒙》《四元玉鉴》共七本,从中任取两本,至少含有一本秦九韶或杨辉的著作的概率是( )A.B.C.D.8. 总体由编号为的个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第行的第列和第列数字开始由左到右依次选取两个数字(作为个体编号).则选出来的第个个体的编号为( )A.B.C.D.84219. 某人5次上班途中所花的时间(单位:分钟,均为正整数)分别为x ,y ,10,11,9.已知这组数据的平均数为10,则它的极差不可能为( )A. B. C. D. 9.4,0.4849.4,0.0169.5,0.049.5,0.01610. 在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4、8.4、9.4、9.9、9.6、9.4、9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )A. B. C. D. 3640485011.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第1小组的频数为6,则报考飞行员的学生人数是A. B. C. D.都不是一等品恰有一件一等品至少有一件一等品至多一件一等品12. 5件产品中,有3件一等品和2件二等品,从中任取2件,那么以 为概率的事件是( )A. B. C. D. 13. 某校学生高一年级有400人,高二年级有300人,高三年级有200人,现用分层抽样的方法从所有学生中抽取一个容量为的样本.已知从高三学生中抽取的人数为10,那么= .14. 为了唤起全民对睡眠重要性的认识,国际精神卫生组织于2001年发起了一项全球性的活动——将每年的3月54日定为“世界睡眠日”.现从某中学初一至高三学生中随机抽取部分学生进行睡眠质量调查,采用睡眠质量指数量表统计结果如下:性别人数睡眠质量好睡眠质量一般睡眠质量差男220999031女2505012080合计470149210111假设所有学生睡眠质量的程度是相互独立的.以调查结果的频率估计概率,现从该中学男生和女生各随机抽取1人,二人中恰有一人睡眠质量好的概率是 .15. 某医院随机抽取20位急症病人家属了解病人等待急症的时间,记录如下表:等待急症时间(分钟)频数48521根据以上记录,病人等待急症平均时间的估计值分钟.16. 某校组织10名学生参加高校的自主招生活动,其中6名男生,4名女生,根据实际要从10名同学中选3名参加A 校的自主招生,则其中恰有1名女生的概率是 .17. 甲、乙两人进行定点投篮游戏,规则是一人投篮,若投中,则继续投篮,否则由另一人投篮.已知第一次由甲投篮,每次投篮甲、乙命中的概率分别为 .(1) 求第三次仍由甲投篮的概率;(2) 在前3次投篮中,记甲投篮的次数为, 求的分布列和期望18. 如图,在数轴上,一个质点在外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位,质点到达位置的数字记为.(1) 若该质点共移动2次,位于原点的概率;(2) 若该质点共移动6次,求该质点到达数字X 的分布列和数学期望.19. 某市教育部门为了了解全市高一学生的身高发育情况,从本市全体高一学生中随机抽取了100人的身高数据进行统计分析。
专题4.3 统计与概率1.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【试题来源】2020年海南省高考数学试卷(新高考全国Ⅱ卷) 【答案】(1)0.64;(2)答案见解析;(3)有.【解析】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 2.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【试题来源】2020年新高考全国卷Ⅱ(海南卷) 【答案】(1)0.64;(2)答案见解析;(3)有.【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据可得22⨯列联表;(3)计算出2K ,结合临界值表可得结论.【解析】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 3.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【试题来源】2020年全国统一高考数学试卷(文)(新课标Ⅱ)【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【解析】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 【名师点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.4.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.【试题来源】2020年全国统一高考数学试卷(理)(新课标Ⅱ) 【答案】(1)116;(2)34;(3)716. 【分析】(1)根据独立事件的概率乘法公式可求得事件“甲连胜四场”的概率;(2)计算出四局以内结束比赛的概率,然后利用对立事件的概率公式可求得所求事件的概率;(3)列举出甲赢的基本事件,结合独立事件的概率乘法公式计算出甲赢的概率,由对称性可知乙赢的概率和甲赢的概率相等,再利用对立事件的概率可求得丙赢的概率.【解析】(1)记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭;(2)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=; (3)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,所以,甲赢的概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪ ⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等,所以丙赢的概率为()97123216P N =-⨯=. 【名师点睛】本题考查独立事件概率的计算,解答的关键就是列举出符合条件的基本事件,考查计算能力,属于中等题.5.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r=12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.【试题来源】2020年全国统一高考数学试卷(理)(新课标Ⅱ) 【答案】(1)12000;(2)0.94;(3)详见解析【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20()()iix x y y r --=∑计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【解析】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(,)i ix y(i=1,2,…,20)的相关系数为20()()0.943i ix x y yr--===≈∑(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大,采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.6.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:交付金额(元)支付方式(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【试题来源】2019年北京市高考数学试卷(理)【答案】(1)25;(2)见解析;(Ⅱ)见解析. 【分析】(1)由题意利用古典概型计算公式可得满足题意的概率值;(2)首先确定X 可能的取值,然后求得相应的概率值可得分布列,最后求解数学期望即可. (Ⅱ)由题意结合概率的定义给出结论即可.【解析】(1)由题意可知,两种支付方式都是用的人数为1003025540---=人,则: 该学生上个月A ,B 两种支付方式都使用的概率4021005p ==. (2)由题意可知,仅使用A 支付方法的学生中,金额不大于1000的人数占35,金额大于1000的人数占25,仅使用B 支付方法的学生中,金额不大于1000的人数占25,金额大于1000的人数占35,且X 可能的取值为0,1,2.()32605525p X ==⨯=,()22321315525p X ⎛⎫⎛⎫==+=⎪ ⎪⎝⎭⎝⎭,()32625525p X ==⨯=,X 的分布列为其数学期望:()0121252525E X =⨯+⨯+⨯=. (Ⅱ)我们不认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化.理由如下: 随机事件在一次随机实验中是否发生是随机的,是不能预知的,随着试验次数的增多,频率越来越稳定于概率.学校是一个相对消费稳定的地方,每个学生根据自己的实际情况每个月的消费应该相对固定,出现题中这种现象可能是发生了“小概率事件”.【名师点睛】本题以支付方式相关调查来设置问题,考查概率统计在生活中的应用,考查概率的定义和分布列的应用,使学生体会到数学与现实生活息息相关.7.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70.(1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【试题来源】2019年全国统一高考数学试卷(理)(新课标Ⅱ) 【答案】(1) 0.35a =,0.10b =;(2) 4.05,6.【分析】(1)由()0.70P C =及频率和为1可解得a 和b 的值;(2)根据公式求平均数. 【解析】(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=-=-,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯=【名师点睛】本题考查频率分布直方图和平均数,属于基础题. 8.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【试题来源】2019年天津市高考数学试卷(理) 【答案】(1)见解析;(2)20243【分析】(1)由题意可知分布列为二项分布,结合二项分布的公式求得概率可得分布列,然后利用二项分布的期望公式求解数学期望即可;(2)由题意结合独立事件概率公式计算可得满足题意的概率值.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~3,3X B ⎛⎫ ⎪⎝⎭,从面()()33210,1,2,333k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫ ⎪⎝⎭. 且{3,1}{2,0}M X Y X Y =====.由题意知事件{}3,1X Y ==与{}2,0X Y ==互斥,且事件{}3X =与{}1Y =,事件{}2X =与{}0Y =均相互独立, 从而由(1)知{}{}()()3,12,0P M P X Y X Y =====()()3,12,0P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 【名师点睛】本题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.9.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【试题来源】2019年全国统一高考数学试卷(文)(新课标Ⅱ)【答案】(1)43 ,55;(2)能有95%的把握认为男、女顾客对该商场服务的评价有差异.【分析】(1)从题中所给的22⨯列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;(2)利用公式求得观测值与临界值比较,得到能有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由题中表格可知,50名男顾客对商场服务满意的有40人,所以男顾客对商场服务满意率估计为1404 505P==,50名女顾客对商场满意的有30人,所以女顾客对商场服务满意率估计为2303 505P==,(2)由列联表可知22100(40203010)1004.762 3.8417030505021K⨯-⨯==≈>⨯⨯⨯,所以能有95%的把握认为男、女顾客对该商场服务的评价有差异.【名师点睛】该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算2K的值,独立性检验,属于简单题目.10.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.【试题来源】2019年全国统一高考数学试卷(理)(新课标Ⅱ) 【答案】(1)0.5;(2)0.1【分析】(1)本题首先可以通过题意推导出()2P X =所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果; (2)本题首先可以通过题意推导出4P X所包含的事件为“前两球甲乙各得1分,后两球均为甲得分”,然后计算出每种事件的概率并求和即可得出结果.【解析】(1)由题意可知,()2P X =所包含的事件为“甲连赢两球或乙连赢两球” 所以20.50.40.50.60.5P X(2)由题意可知,4P X 包含的事件为“前两球甲乙各得1分,后两球均为甲得分”所以40.50.60.50.4+0.50.40.50.40.1P X【名师点睛】本题考查古典概型的相关性质,能否通过题意得出()2P X =以及4P X所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题.11.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ①证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;②求4p ,并根据4p 的值解释这种试验方案的合理性. 【试题来源】2019年全国统一高考数学试卷(理)(新课标Ⅱ) 【答案】(1)见解析;(2)①见解析;②41257p =. 【分析】(1)首先确定X 所有可能的取值,再来计算出每个取值对应的概率,从而可得分布列;(2)①求解出,,a b c 的取值,可得()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅,从而整理出符合等比数列定义的形式,问题得证;②列出证得的等比数列的通项公式,采用累加的方式,结合8p 和0p 的值可求得1p ;再次利用累加法可求出4p . 【解析】(1)由题意可知X 所有可能的取值为1-,0,1()()11P X αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:(2)0.5α=,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯=①()111,2,,7i i i i p ap bp cp i -+=++=⋅⋅⋅ 即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅,整理可得()11541,2,,7ii i p p p i -+=+=⋅⋅⋅ ()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列②由①知()110144i i i i p p p p p +-=-⋅=⋅,78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅,作和可得()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-,18341p ∴=-, ()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+. 4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.【名师点睛】本题考查离散型随机变量分布列的求解、利用递推关系式证明等比数列、累加法求解数列通项公式和数列中的项的问题.本题综合性较强,要求学生能够熟练掌握数列通项求解、概率求解的相关知识,对学生分析和解决问题能力要求较高. 12.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系. 【试题来源】2018年全国普通高等学校招生统一考试(理)(北京卷)【答案】(1) 概率为0.025;(2) 概率估计为0.35;(3)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ【分析】(1)先根据频数计算是第四类电影的频率,再乘以第四类电影好评率得所求概率,(2)恰有1部获得好评为第四类电影获得好评第五类电影没获得好评和第四类电影没获得好评第五类电影获得好评这两个互斥事件,先利用独立事件概率乘法公式分别求两个互斥事件的概率,再相加得结果,(3) k ξ服从0-1分布,因此()=1k D p p ξ-,即得1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ.【解析】解:(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为500.0252000=. (2)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为P (AB AB +)=P (AB )+P (AB ) =P (A )(1–P (B ))+(1–P (A ))P (B ). 由题意知P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (3)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ.【名师点睛】互斥事件概率加法公式:若A ,B 互斥,则P(A+B)=P(A)+P(B),独立事件概率乘法公式:若A ,B 相互独立,则P(AB)=P(A)P(B).13.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,【试题来源】2018年全国普通高等学校招生统一考试(理)(新课标III卷)【答案】(1)第二种生产方式的效率更高.理由见解析;(2)80;(3)能.【分析】(1)计算两种生产方式的平均时间即可.(2)计算出中位数,再由茎叶图数据完成列联表.(3)由公式计算出2k,再与6.635比较可得结果.【解析】(1)第二种生产方式的效率更高.理由如下:(1)由茎叶图可知用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(2)由茎叶图可知用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(3)由茎叶图可知用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:(3)由于()224015155510 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.【名师点睛】本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活.14.下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【试题来源】2018年全国普通高等学校招生统一考试(文)(新课标II卷)【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠.【分析】(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果;(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为ˆy=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为ˆy=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(1)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型ˆy =99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(2)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.【名师点睛】若已知回归直线方程,则可以直接将数值代入求得特定要求下的预测值;若回x y求参数.归直线方程有待定参数,则根据回归直线方程恒过点(,)15.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一。
概率与统计概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结: 类型一 “非等可能”与“等可能”混同例1 掷两枚骰子,求所得的点数之和为6的概率.错解 掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为P=111剖析 以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=536.类型二 “互斥”与“对立”混同例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .以上均不对 错解 A剖析 本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在 : (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生. 事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C .类型三 “互斥”与“独立”混同例3 甲投篮命中率为O .8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?错解 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,则两人都恰好投中两次为事件A+B ,P(A+B)=P(A) +P(B): 2222330.80.20.70.30.825c c ⨯+⨯=剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同.解: 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,且A ,B 相互独立,则两人都恰好投中两次为事件A·B ,于是P(A·B)=P(A)×P(B)= 0.169类型四 “条件概率P(B / A)”与“积事件的概率P(A·B)”混同例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.错解 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件C,所以P(C)=P(B/A)=6293=.剖析 本题错误在于P(A ⋅B)与P(B/A)的含义没有弄清, P(A ⋅B)表示在样本空间S 中,A 与B 同时发生的概率;而P (B/A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率。
重难点04 概率与统计新高考概率与统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
试题考查特点是以实际应用问题为载体,小题部分主要是考查排列组合与古典概型,解答题部分主要考查独立性检验、超几何分布、离散型分布以及正态分布对应的数学期望以及方差。
概率的应用立意高,情境新,赋予时代气息,贴近学生的实际生活。
取代了传统意义上的应用题,成为高考中的亮点。
解答题中概率与统计的交汇是近几年考查的热点趋势,应该引起关注。
求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因;(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。
相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。
定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法。
标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成。
有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法。
对于二项式定理的应用,只要会求对应的常数项以及对应的n项即可,但是应注意是二项式系数还是系数。
新高考统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年北京市丰台区高中数学北师大 选修一第六章-概率专项提升(4)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1231.从1,2,3,4中取随机选出一个数字,记事件“取出的数字是1或2”, “取出的数字是1或3”, “取出的数字是1或4”,命题“① 与相互独立;②与相互独立;③ 与相互独立中真命题”的个数是( )A. B. C. D. 2. 已知等差数列的公差为 , 随机变量满足 ,, 则的取值范围是( )A. B. C. D.3. 设袋中有12个球,其中9个新球、3个旧球,第一次比赛取3球,比赛后放回,第二次比赛再任取3球,则第二次比赛取得3个新球的概率为( ) A.B.C.D.62%56%46%42%4. 某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A. B. C. D. 5. 袋中有大小、形状相同的白、黑球各一个,现依次有放回地随机摸取3次,每次摸取一个球, 若摸到白球时得2分,摸到黑球时得1分,则3次摸球所得总分为4的概率是( )A.B.C.D.6. 已知P(B|A)= ,P(A)= ,则P(AB)等于( )A. B. C. D.164127. 小明连续投篮20次,他的投篮命中率为0.8,若为投篮命中次数,则()A. B. C.D. 事件A 与B 相互独立事件A 与C 为互斥事件8. 2022卡塔尔世界杯比赛场地是在卡塔尔的8座体育馆举办.将甲、乙、丙、丁4名裁判随机派往卢赛尔,贾努布,阿图玛玛三座体育馆进行执法,每座体育馆至少派1名裁判,A 表示事件“裁判甲派往卢赛尔体有馆”;B 表示事件“裁判乙派往卢赛尔体育馆”;C 表示事件“裁判乙派往贾努布体育馆”,则( )A. B. C.D.以上都不对9. 甲、乙、丙三位学生用计算机联网学习数学,每天上课后独立完成6道自我检测题,甲及格的概率为 , 乙及格的概率为, 丙及格的概率为, 三人各答一次,则三人中只有一人及格的概率为( )A. B. C. D. 某机场候机室中一天的游客数量为X 某寻呼台一天内收到的寻呼次数为X 某水文站观察到一天中长江的水位为X某立交桥一天经过的车辆数为X10. 下列随机变量X 是离散型随机变量的是 ( )不A. B. C. D. 0.060.070.0750.0811. 设某工厂仓库中有10盒同样规格的零部件,已知其中有4 盒、3盒、3盒依次是甲厂、乙厂、丙厂生产的.且甲、乙、丙三厂生产该种零部件的次品率依次为 , 现从这10盒中任取一盒,再从这盒中任取一个零部件,则取得的零部件是次品的概率为( )A. B. C. D. 事件A 发生的概率事件B 发生的概率事件B 不发生条件下事件A 发生的概率事件A 、B 同时发生的概率12. 若将整个样本空间想象成一个边长为1的正方形,任何事件都对应样本空间的一个子集,且事件发生的概率对应子集的面积.则如图所示的阴影部分的面积表示( )A. B. C. D. 13. , , 且 , 则 .14. 已知小明每天步行上学的概率为0.6,骑自行车上学的概率为0.4,且步行上学有0.05的概率迟到,骑自行车上学有0.02的概率迟到.若小明今天上学迟到了,则他今天骑自行车上学的概率为 .15. 随机变量的分布列如下表,其中.当时,取最大值;当时,有最大值.123P p16. 某班有6名班干部,其中男生4人,女生2人.从中任选3名班干部参加学校的义务劳动.设“男生甲被选中”为事件A,“女生乙被选中”为事件B,则 .17. 近年来,我国电影市场非常火爆,有多部优秀国产电影陆续上映,某影评网站统计了100名观众对某部电影的评分情况,得到如下表格:评价等级★★★★★★★★★★★★★★★人数23101075以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.从全国所有观众中随机抽取名,(1) 求恰有人评价为五星,人评价为四星的概率;(2) 记其中评价为五星的观众人数为,求的分布列与数学期望.18. 《2021新锐品牌数字化运营白皮书》中,我国提出了新锐品牌的概念,全称是国货新锐品牌.对这个名称进行拆解:国货、新、锐.新有两个层面,一是针对企业本身,指2011年后成立的品牌.二是针对消费者本身,开拓了新的消费场景(需求),形成了细分化的品类.锐:是在短期内实现大大高于传统品牌的爆发式增长,并且占据了一定的消费者心智.如图是11月份中国某信息网发布的我国市2021年上半年新锐品牌人群用户(新锐品牌人群,指在指定周期内浏览新锐品牌相关内容以及商品详情页的人群)性别分析数据.市对购买家电类新锐品牌人群中随机调查了100位男性顾客和100位女性顾客,统计出每位顾客购买家电消费金额,根据这些数据得到如下的频数分布表:消费金额(元)女性顾客人数50301064男性顾客人数204024106附:,0.0500.0100.0013.841 6.63510.828(1) 若以我国市2021年上半年新锐品牌人群用户性别分析数据作为市抽取新锐品牌人群中性别概率,从市新锐品牌人群中随机抽取四人,为四人中男性的人数,求的概率分布列和期望.(2) 根据市统计购买家电消费金额数据频数分布表,完成下列列联表,并根据列联表,判断是否有99%的把握认为购买家电类新锐品牌人群消费金额千元以上与性别有关?不超千元千元以上合计女性顾客男性顾客合计19. 某村为巩固脱贫成果,积极引导村民种植一种名贵中药材,但这种中药材需加工成半成品才能销售.现有甲、乙两种针对这种中药材的加工方式可供选择,为比较这两种加工方式的优劣,村委会分别从甲.乙两种加工方式所加工的半成品中,各自随机抽取了100件作为样本检测其质量指标值(质量指标值越大,质量越好),检测结果如下表所示:指标区间频数甲种生产方式820362412乙种生产方式62638228已知每件中药半成品的等级与纯利润间的关系如下表所示:指标区间等级二级一级特级纯利润3050100将频率视为概率,解答下列问题.(1) 分别记利用甲种、乙种加工方式所加工的一件中药材半成品的利润为,,求,的分布列;(2) 从数学期望的角度分析村民选择哪种中药材加工方式获利更多.20. 随着如今人们生活水平的不断提高,旅游成了一种生活时尚,尤其是老年人的旅游市场在不断扩大.为了了解老年人每年旅游消费支出(单位:元)的情况,相关部门抽取了某地区名老年人进行问卷调查,并把所得数据列成如下所示的频数分布表:组别频数1202603402502010(1) 求所得样本平均数(精确到元);(2) 根据样本数据,可近似地认为老年人的旅游费用支出X服从正态分布,若该地区共有老年人95000人,试估计有多少位老年人旅游费用支出在5000元以上;(3) 已知样本数据中旅游费用支出在范围内的10名老人中有7名女性,3名男性.现想选其中3名老人回访,记选出的男生人数为,求的分布列.附:若,,, .21. 近期国内疫情反复,对我们的学习生活以及对各个行业影响都比较大,某房地产开发公司为了回笼资金,提升销售业绩,让公司旗下的某个楼盘统一推出了为期10天的优惠活动,负责人记录了推出活动以后售楼部到访客户的情况,根据记录第一天到访了12人次,第二天到访了22人次,第三天到访了42人次,第四天到访了68人次,第五天到访了132人次,第六天到访了2 02人次,第七天到访了392人次,根据以上数据,用x表示活动推出的天数,y表示每天来访的人次,绘制了以下散点图.参考数据:其中,1.8458.556.9(1) 请根据散点图判断,以下两个函数模型与(c,d均为大于零的常数)哪一个适宜作为人次y关于活动推出天数x的回归方程类型?(给出判断即可,不必说明理由);(2) 根据(1)的判断结果及下表中的数据,求y关于x的回归方程,并预测活动推出第8天售楼部来访的人次.(3) 已知此楼盘第一天共有10套房源进行销售,其中6套正价房,4套特价房,设第一天卖出的4套房中特价房的数量为,求的分布列与数学期望.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)19.(1)(2)20.(1)(2)(3)21.(1)(2)(3)。
高中数学统计与概率知识点(文)一、众数: 一组数据中出现次数最多的那个数据。
众数与平均数的区别: 众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
二、.中位数: 一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)三 .众数、中位数及平均数的求法。
①众数由所给数据可直接求出;②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数;当数据为偶数个时,最中间两个数的平均数就是中位数。
③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。
四、中位数与众数的特点。
⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据; ⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;(6)众数可能是一个或多个甚至没有;(7)平均数、众数和中位数都是描述一组数据集中趋势的量。
五.平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广; ⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、对于样本数据x 1,x 2,…,x n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s 表示.假设样本数据x 1,x 2,…,x n 的平均数为x ,则标准差的计算公式是:七、简单随即抽样的含义一般地,设一个总体有N 个个体, 从中逐个不放回地抽取n 个个体作为样本(n≤N), 如果每次12||||||n x x xx x x n22212()()()n x x x x x x sn抽取时总体内的各个个体被抽到的机会都相等, 则这种抽样方法叫做简单随机抽样.八、根据你的理解,简单随机抽样有哪些主要特点?(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.九、抽签法的操作步骤?第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上.第二步,将号签放在一个容器中,并搅拌均匀第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.十一、抽签法有哪些优点和缺点?优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.十一、利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?第一步,将总体中的所有个体编号.第二步,在随机数表中任选一个数作为起始数.第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.简单随机抽样一般采用两种方法:抽签法和随机数表法。
高中数学之概率与统计求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m;等可能事件概率的计算步骤: 计算一次试验的基本事件总数n ;设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()mP A n =求值;答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B);特例:独立重复试验的概率:Pn(k)=kn k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复. 例1. 在五个数字12345,,,,中,。
例2. 若随机取出三个数字,则剩下两个数字都是奇数的概率是(结果用数值表示).[解答过程]0.3提示:1335C 33.54C 102P ===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[解答过程]1.20提示:51.10020P == 例3.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~pn B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例1.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-=(Ⅱ)ξ可能的取值为0,1,2.()2172201360190C P C ξ===, ()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯=.记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795.例12.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示)[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =,∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=, 12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为11235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =.∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一.(3)离散型随机变量的期望与方差 随机变量的数学期望和方差(1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…;方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p E 1=ξ,D ξ =2p q 其中q=1-p.例1.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η则比较两名工人的技术水平的高低为 .思路:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ;工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例2.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 典型例题例1.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= .解答过程:A 种型号的总体是210,则样本容量n=1016802⨯=.例2.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 .解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.正态分布与线性回归1.正态分布的概念及主要性质(1)正态分布的概念如果连续型随机变量ξ 的概率密度函数为 222)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).(2)期望E ξ =μ,方差2σξ=D .(3)正态分布的性质 正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低. ③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”.三σ原则即为数值分布在(μ—σ,μ+σ)中的概率为0.6526 数值分布在(μ—2σ,μ+2σ)中的概率为0.9544 数值分布在(μ—3σ,μ+3σ)中的概率为0.9974 (4)标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.(6)2(,)N μσ与(0,1)N 二者联系.若2~(,)N ξμσ,则~(0,1)N ξμησ-=;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y+=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.例1.如果随机变量ξ~N (μ,σ2),且E ξ=3,D ξ=1,则P (-1<ξ≤1=等于( ) A.2Φ(1)-1 B.Φ(4)-Φ(2)C.Φ(2)-Φ(4)D.Φ(-4)-Φ(-2)解答过程:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P (-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2). 答案:B例2. 将温度调节器放置在贮存着某种液体的容器内,调节器设定在d ℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N (d ,0.52). (1)若d=90°,则ξ<89的概率为 ; (2)若要保持液体的温度至少为80 ℃的概率不低于0.99,则d 至少是 ?(其中若η~N (0,1),则Φ(2)=P (η<2)=0.9772,Φ(-2.327)=P (η<-2.327)=0.01). 解答过程:(1)P (ξ<89)=F (89)=Φ(5.09089-)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228.(2)由已知d 满足0.99≤P (ξ≥80),即1-P (ξ<80)≥1-0.01,∴P (ξ<80)≤0.01.∴Φ(5.080d-)≤0.01=Φ(-2.327).∴5.080d -≤-2.327.∴d ≤81.1635.故d 至少为81.1635.小结:(1)若ξ~N (0,1),则η=σμξ-~N (0,1).(2)标准正态分布的密度函数f (x )是偶函数,x<0时,f (x )为增函数,x>0时,f (x )为减函数.。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年北京市丰台区高中数学人教B 版 必修二统计与概率强化训练(18)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)0.811.21.61. 某射击运动员连续射击5次,射中环数分别为7,7,8,9,9,则这5次射中环数的方差为( )A. B. C. D. 64322. 某班有男生36人,女生18人,用分层抽样的方法从该班全体学生中抽取一个容量为9的样本,则抽取的女生人数为( )A. B. C. D. 公平,每个班被选到的概率都为公平,每个班被选到的概率都为不公平,6班被选到的概率最大不公平,7班被选到的概率最大3. 某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:抛两枚骰子,得到的点数之和是几就选几班,这种选法( )A. B. C. D. 0.350.250.650.64. 某商场为了迎接周年庆开展抽奖活动,奖项设置一等奖、二等奖、三等奖,其他都是幸运奖.设事件 {抽到一等奖},事件 {抽到二等奖},事件 {抽到三等奖},且已知 , , ,则事件“抽到三等奖或者幸运奖”的概率为( ).A. B. C. D. 5. 为了保证抗击新型冠状肺炎期间的蔬菜供应,某大型超市统计了2月1号~10号连续 天蔬菜进货量和出货量(单位:吨)如图所示,则下列说法错误的是( )出货量的最高值与出货量的最低值的比是天中剩余蔬菜最多的一天是2月4号2月3号~4号的进货量的变化率比2月7号~8号进货量的变化率大这10天每天平均剩余蔬菜为21吨A. B. C. D. 中位数极差方差平均数6. 设两组数据分别为和,且,则这两组数据相比,不变的数字特征是()A. B. C. D. 既不互斥也不对立互斥又对立互斥但不对立对立7. 把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”的关系是( )A. B. C. D. 总体是240名学生个体是每一个学生样本是40名学生样本量是408. 为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是( )A. B. C. D. 3.2466.59. 通过实验,得到一组数据如下:,已知这组数据的平均数为6,则这组数据的方差为( )A. B. C. D. 直方图中x 的值为0.004在被抽取的学生中,成绩在区间[60,70)的学生数为10估计全校学生的平均成绩不低于80分估计全校学生成绩的样本数据的80%分位数约为93分10. 某校组织全体学生参加了主题为“建党百年,薪火相传”的知识竞赛,随机抽取了200名学生进行成绩统计,发现抽取的学生的成绩都在50分至100分之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示,下列说法正确的是()A. B. C. D.567811. 已知一组数据 , , , 1,1,3,4,6,6,7的平均数为3,则这组数据方差的最小值为( )A. B. C. D. 600300603012. 新高考改革后,某校2000名学生参加物理学考,该校学生物理成绩的频率分布直方图如图所示,若规定分数达到90分以上为A 级,则该校学生物理成绩达到A 级的人数是( )A. B. C. D. 13. 一个不透明的口袋中装有5个小球,其中有1个红球,2个白球,2个黑球,这些小球除颜色外其他完全相同,从中随机取出2个球,则它们的颜色不相同的概率是 .14. 袋中装有大小相同的2个红球和1个黄球,小明无放回地连续摸取2次,每次从中摸取1个.记摸到红球的个数为 , 则,15. 从3名男生和2名女生中随机选取两人,则两人恰好是一名男生和一名女生的概率是 .16. 某地区有高中学校10所、初中学校30所,小学学校60所,现采用分层抽样的方法从这些学校中抽取20所学校对学生进行体质健康检查,则应抽取初中学校 所.17. 对某校高二年级学生参加社区服务次数进行统计,随机抽取N 名学生作为样本,得到这N 名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表和频率分布直方图如图:分组频数频率[3,6)10m [6,9)n p [9,12)4q [12,15)20.05合计N1(1) 求出表中N ,p 及图中a 的值;(2) 请根据题中的频率分布直方图,估计样本的中位数与平均数.18. 树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,现从参与调查的人群中随机选出20人的样本,并将这20人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示(1) 求样本中第3组人数;(2) 根据频率分布直方图,估计参与调查人群的样本数据的平均数;(3) 若从年龄在的人中随机抽取两位,求至少有一人的年龄在内的概率.19. 某地对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,分别记录了3月1日到3月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差101113128发芽数y(颗)2325302616他们所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对选取的2组数据进行检验.参考公式:,其中(1) 求选取的2组数据恰好是相邻2天数据的概率;(2) 若选取的是3月1日与3月5日的两组数据,请根据3月2日至3月4日的数据,求出y关于x的线性回归方程;并预报当温差为时的种子发芽数.20. 对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:甲273830373531乙332938342836(1) 画出数据的茎叶图;(2) 分别求出甲、乙两名自行车赛手最大速度(m/s)的平均数和方差,并判断选谁参加比赛比较合适?21. 某教育集团向社会招聘一些管理型教师,现对应聘者所考虑的主要因素进行调查,所得统计结果如下表所示:男性女性薪资1016职位104参考公式:,其中.参考数据:0.1000.0500.0100.0012.7063.841 6.63510.828(1) 是否有95%的把握认为应聘者关于工作的首要考虑因素与性别有关;(2) 应聘需要通过两轮测试,才能成功应聘.第一轮测试有三道试题,答对两道以上视为通过;第二轮测试共有两道试题,全部答对视为通过.应聘者小张在第一轮中每道试题答对的概率为,在第二轮中每道试题答对的概率为,求小张通过应聘的概率.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.(1)(2)(3)19.(1)(2)20.(1)(2)21.(1)(2)。
专题十:《概率与统计初步》I、考纲1.统计与统计案例(1)随机抽样① 理解随机抽样的必要性和重要性。
② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。
(2)总体估计① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,了解它们各自的特点。
② 理解样本数据标准差的意义和作用,会计算数据标准差。
③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释。
④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想。
⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。
(3)变量的相关性① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。
② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(不要求记忆线性回归方程系数公式)。
(4)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题。
①独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用。
②假设检验了解假设检验的基本思想、方法及其简单应用。
③回归分析了解回归的基本思想、方法及其简单应用。
2.概率(1)事件与概率① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。
② 了解两个互斥事件的概率加法公式。
(2)古典概型① 理解古典概型及其概率计算公式。
② 会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率。
②了解几何概型的意义。
II、高考考情解读本章知识的高考命题热点有以下两个方面:1.概率统计是历年高考的热点内容之一,考查方式多样,选择题、填空题、解答题中都可能出现,数量各1道,难度中等,主要考查古典概型、几何概型、分层抽样、频率分布直方图、茎叶图的求解.2.预计在2014年高考中,概率统计部分的试题仍会以实际问题为背景,概率与统计相结合命题.II 、基础知识和题型 一、随机抽样1、简单随机抽样:(1).简单随机抽样的概念:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2).最常用的简单随机抽样方法有两种——抽签法和随机数法. 2、系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本: (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段,当N n 是整数时,取k =Nn;(3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本. 通常是将l 加上间隔k 得到第2个个体编号l +k , 再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本. 【提醒】系统抽样的最大特点是“等距”,利用此特点可以很方便地判断一种抽样方法是否是系统抽样. 3、分层抽样(1).分层抽样的概念:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.(2).当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法. (3).分层抽样时,每个个体被抽到的机会是均等的. 4(一)简单随机抽样 1. (2012·宁波月考)在简单随机抽样中,某一个个体被抽到的可能性( )A .与第几次抽样有关,第一次抽到的可能性最大B .与第几次抽样有关,第一次抽到的可能性最小C .与第几次抽样无关,每一次抽到的可能性相等D .与第几次抽样无关,与样本容量无关 2. 下面的抽样方法是简单随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D .用抽签法从10件产品中选取3件进行质量检验 3.(2013年高考江西卷(文5))(2013·江西)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08【总结】采用随机数法时,若重复出现或超出范围的要去掉。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年北京市丰台区高中数学北师大 必修一第六章-统计专项提升(10)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)0.090.200.250.451. 对一批产品的长度(单位:mm )进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A. B. C.D.84,4.8484,1.685,1.685,42. 如图是2012年在某大学自主招生考试的面试中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为 ( )A. B. C. D. 3. 某乡镇为推动乡村经济发展,优化产业结构,逐步打造高品质的农业生产,在某试验区种植了某农作物.为了解该品种农作物长势,在实验区随机选取了100株该农作物苗,经测量,其高度(单位:cm )均在区间内,按照 , ,,,分成5组,制成如图所示的频率分布直方图,记高度不低于16cm 的为“优质苗”.则所选取的农作物样本苗中,“优质苗”株数为( )20406080A. B. C. D. 9320-114. 一组数据共有7个数,记得其中有10,2,5,2,4,2,还有一个数没记清,但知道这组数的平均数、中位数、众数依次成等比数列,这个数的所有可能值的和为( )A. B. C. D. 6070801005. 在一次数学测试中,高一某班50名学生成绩的平均分为82,方差为8.2,则下列四个数中不可能是该班数学成绩的是( )A. B. C. D. 187626.若 ,, …,的方差为2,则,, …,的方差是( )A. B. C. D. 2015—2019年到该地区旅游的人数与年份成正相关2019年到该地区旅游的人数是2015年的12倍2016—2019年到该地区旅游的人数平均值超过了220万人次从2016年开始,与上一年相比,2019年到该地区旅游的人数增加得最多7. 新中国成立70周年以来,党中央、国务院高度重视改善人民生活,始终把脱贫致富和提高人民生活水平作为一切工作的出发点和落脚点新疆某地区为了带动当地经济发展,大力发展旅游业,如图是2015—2019年到该地区旅游的游客数量(单位:万人次)的变化情况,则下列结论错误的是()A. B. C. D. 最低气温与最高气温为正相关10月的最高气温不低于5月的最高气温月温差(最高气温减最低气温)的最大值出现在1月最低气温低于的月份有4个8. 某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:)的数据,绘制了下面的折线图。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年北京市丰台区高中数学人教B 版 必修二统计与概率强化训练(17)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)243646471. 从某班50名同学中选出5人参加户外活动,利用随机数表法抽取样本时,先将50名同学按01,02, ,50进行编号,然后从随机数表的第1行第5列和第6列数字开始从左往右依次选取两个数字,则选出的第5个个体的编号为( )(注:表为随机数表的第1行与第2行)0347437386369647366146986371629774246792428114572042533237321676A. B. C. D. 2. 抽样统计甲、乙两位同学5次数学成绩绘制成如图所示的茎叶图,则成绩较稳定的那位同学成绩的方差为( )A. B. C. D.有甲、乙、丙三种个体按的比例分层抽样调查,如果抽取的乙个体数为9,则样本容量为32数据的平均数、众数、中位数相同若甲组数据的方差为5,乙组数据为 , 则这两组数据中较稳定的是甲一组数的分位数为43. 下列命题是真命题的有( )A. B. C. D.全年各月公交载客量的极差为41全年各月地铁载客量的中位数为22.57月份公交与地铁的载客量相差最多全年地铁载客量要小于公交载客量4. 某城市为了了解市民搭乘公共交通工具的出行情况,收集并整理了2017年全年每月公交和地铁载客量的数据,绘制了下面的折线图:根据该折线图,下列结论错误的是( )A. B. C. D. 5. 一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是( )A.B.C.D.该款服装这3个月的销售额逐月递减该款服装这3个月的销售总额为23.69万元该款服装8月份和9月份的销售额相同该款服装8月份和9月份的销售总额大于7月份的销售额6. 随着互联网的飞速发展,网上购物已成为了流行的消费方式.某网店第三季度的服装产品的销售总额和其中某款服装的销售额占当月服装产品销售总额的百分比如图所示:下列结论正确的是( )A. B. C. D. 7. 3位男生和3位女生共6位同学站成一排,则3位男生中有且只有2位男生相邻的概率为( )A.B.C.D.0.720.890.80.768. 有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为( )A. B. C. D. 0.350.450.550.659. 容量为20的样本数据,分组后的频数如下表,则样本数据落在区间[10,40)的频率为( )分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数234542A. B. C. D. 10. 在新高考“”模式中,“3”是指语文、数学、外语3门科目必考,“1”是指从“首选科目”物理、历史2门中选考1门,“2”是指从“再选科目”思想政治、地理、化学、生物学4门中选考2门.若某同学在“首选科目”已选物理的情况下,从“再选科目”中随机选2门,其中有化学的概率为( )A. B. C. D.7375777911. 某班最近一次化学考试成绩的频率分布直方图如下图所示,若化学老师欲将大家的成绩由高到低排列,并奖励排名在前39%的同学,试估计化学老师选取的学生分数应不低于( )A. B. C. D. 12. 将一个质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则2次抛掷的点数之积是12的概率是( )A.B.C.D.13. 甲、乙两人下棋,两人下成和棋的概率为 ,甲获胜的概率为 ,则甲不输的概率为 .14. ①数据20,14,26,18,28,30,24,26,33,12,35,22的70%分位数为 ;②数据1,5,9,12,13,19,21,23,28,36的第50百分位数是 .15. 如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为 .16. 从2,3,4,5,6这5个数字中任取3个,则所取3个数之和为偶数的概率为17. 疫情后,居民减少了乘坐公共交通工具的频率,于是私家车销量提升了.现对某大型连锁汽车销售店的100名销售人员去年下半年的销售量进行统计,将数据按照 , , , 分成4组,得到如图所示的频率分布直方图.(1) 求这100名销售人员去年下半年销售量的平均数;(同一组中的每个数据可用该组区间的中点值代替)(2) 汽车销售店准备从去年下半年销售量在 , 之间的销售人员中,用分层抽样的方法抽取5名销售人员进行经验交流分享,并从这5人中任意抽取2人派到其他店巡回分享经验,求这2人不是来自同一组的概率.18. 改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B的学生的支付金额分布情况如下:交付金额(元)支付方式(0,1000](1000,2000]大于2000仅使用A 18人9人3人仅使用B10人14人1人(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.19. 一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1) 设抛掷5次的得分为 ,求 的分布列和数学期望 ;(2) 求恰好得到分的概率.20. 自我国爆发新冠肺炎疫情以来,各地医疗单位都加紧了医疗用品的生产,某医疗器械厂统计了口罩生产车间每名工人的生产速度,将所得数据分成五组并绘制出如图所示的频率分布直方图.已知前四组的频率成等差数列,第五组与第二组的频率相等.(1) 估计口罩生产车间工人生产速度的中位数;(2) 为了解该车间工人的生产速度是否与他们的工作经验有关,现从车间所有工人中随机抽样调查了5名工人的生产速度以及他们的工龄(参加工作的年限),数据如下表:工龄x(单位:年)68121014生产速度y(单位:件/小时)4055606065根据上述数据求每名工人的生产速度y 关于他的工龄x 的回归方程,并据此估计该车间某位有18年工龄的工人的生产速度.回归方程中斜率和截距的最小二乘估计公式分别为:,.21. 某校从参加某次知识竞赛的同学中,选取50名同学将其成绩(百分制,均为整数)分成六组:第1组,第2组,第3组,第4组,第5组,第6组,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:(1) 求分数在内的频率,并补全这个频率分布直方图;(2) 从频率分布直方图中,利用组中值估计本次考试成绩的平均数;(3) 已知学生成绩评定等级有优秀、良好、一般三个等级,其中成绩不小于90分时为优秀等级,若从第5组和第6组两组学生中,随机抽取2人,求所抽取的2人中至少一人成绩优秀的概率.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.19.(1)(2)20.(1)(2)21.(1)(2)(3)。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年北京市丰台区高中数学人教B 版 必修二统计与概率专项提升(4)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)1. 如图是某公司 年销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间 内的概率为( )A. B. C. D.2. 袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生0到3之间取整数值的随机数,分别用0,1,2,3代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球三次的结果,经随机模拟产生了以下24个随机数组:232 321 230 023 123 021 132 220 011 203 331 100231 130 133 231 031 320 122 103 233 221 020 132由此可以估计,恰好第三次就停止的概率为( )A. B. C. D.43213. 已知一组数据x ,y ,30,29,31的平均数为30,方差为2,则的值( )A. B. C. D. 4. 假设你和同桌玩数字游戏,两人各自在心中想一个整数,分别记为x ,y ,且x ,y ∈[1,4].如果满足|x ﹣y|≤1,那么就称你和同桌“心灵感应”,则你和同桌“心灵感应”的概率为( )A. B. C. D.5. 2022年北京冬季奥运会中国体育代表团共收获9金4银2铜,金牌数和奖牌数均创历史新高.获得的9枚金牌中,5枚来自雪上项目,4枚来自冰上项目.某体育院校随机调查了100名学生冬奥会期间观看雪上项目和冰上项目的时间长度(单位:小时),,,,,并按,,,,分组,分别得到频率分布直方图如下:估计该体育院校学生观看雪上项目和冰上项目的时间长度的第75百分位数分别是和,方差分别是和,则()A. B. C. D.30辆1700辆170辆300辆6. 在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如右面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120 km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有()A. B. C. D.737577797. 某班最近一次化学考试成绩的频率分布直方图如下图所示,若化学老师欲将大家的成绩由高到低排列,并奖励排名在前39%的同学,试估计化学老师选取的学生分数应不低于()A. B. C. D.平均数为3,中位数为2中位数为3,众数为2平均数为2,方差为3中位数为3,方差为 2.88. 某同学郑一粒均匀的骰子5次,记录每次骰子出现的点数,若其中至少出现了1次点数6,则这组数据不可能得出的统计结果是()A. B. C. D.讲座前问卷答题的正确率的中位数小于70%讲座后问卷答题的正确率的中位数大于85%讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差9. 某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如图,则()A.B.C.讲座后问卷答题的正确率的极差大于讲座前正确率的极差D. 10. 甲、乙、丙、丁4名学生参加体育训练,若每人在A ,B ,C 三个项目中各选一项进行训练,则甲不选A 项、乙不选B 项的概率为( )A. B. C. D.11. 生物实验室有5只兔子,其中只有3只测量过某项指标。
12 4248C A=种甲乙相邻且乙丙相邻的安排方法:甲乙丙看成一个整体,种方法,丁戊有2种排法,∴甲乙相邻且乙丙相邻的安排方法有122232212N C A A==种481236=-=先不考虑附加条件,再减去不合要求的种方法,不合理的是“甲乙相邻且乙丙相邻”有1、我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,右图就是一重卦.如果某重卦中有2个阳爻,则它可以组成种重卦.(用数字作答)2、一排九个座位有六个人坐,若每个空位两边都坐有人,共有种不同的坐法。
3、用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有_________个。
4、十二生肖,又叫属相,依次为鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪.现有十二生肖的吉祥物各一个,甲、乙、丙三名同学从中各选一个,甲没有选择马,乙、丙二人恰有一人选择羊,则不同的选法有()(A)242种(B)220种(C)200种(D)110种5、某校实行选科走班制度(语文、数学、英语为必选科目,此外学生需在物理、化学、生物、历史、地理、政治六科中任选三科).根据学生选科情况,该校计划利用三天请专家对九个学科分别进行学法指导,每天依次安排三节课,每节课一个学科.语文、数学、英语只排在第二节;物理、政治排在同一天,化学、地理排在同一天,生物、历史排在同一天,则不同的排课方案的种数为()(A)36(B)48(C)144(D)2886、动点M位于数轴上的原点处,M每一次可以沿数轴向左或者向右跳动,每次可跳动1个单位或者2个单位的距离,且每次至少跳动1个单位的距离.经过3次跳动后,M在数轴上可能位置的个数为( )(A)7(B)9 (C)11 (D)13答案:1、152、72003、144、C5、D6、D(n x x+-)在核酸检测中,“k 合1次检测,如果这k 个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测难点不通过计算推断几个方差的大小教学内容【例题1】(2015高考北京,理16)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A,B 两组随机各选1人, A组选出的人记为甲, B组选出的人记为乙.(Ⅲ)当 a为何值时,A,B 两组病人康复时间的方差相等?(结论不要求证明)过程简析:把2组数据到大排列A组:10,11,12,13,14,15,16B组:12,13,14,15,16,17, a两组数据个数相等,方差相等,A组相邻2数据相差1,所以B组数据若相邻2数据相差1,则方差相等,所以1118a a==或变式1:(2021年西城期末18) 防洪工程对防洪减灾起着重要作用,水库是我国广泛采用的防洪工程之一,既有滞洪作用又有蓄洪作用.北京地区2010年至2019年每年汛末(10月1日)水库的蓄水量数据如下:年份2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 蓄水量(亿立方米)11.25 13.25 13.58 17.4 12.4 12.1 18.3 26.5 34.3 34.1 (Ⅲ)由表中数据判断从哪年开始连续三年的水库蓄水量方差最大?(结论不要求证明)变式2:(2021年房山期末18) 2020年5月1日起,北京市实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类. 生活垃圾中有一部分可以回收利用,回收1吨废纸可再造出0.8吨好纸,降低造纸的污染排放,节省造纸能源消耗.某环保小组调查了北京市房山区某垃圾处理场2020年6月至12月生活垃圾回收情况,其中可回收物中废纸和塑料品的回收量(单位:吨)的折线图如下图:回收量(单位:吨)(Ⅲ)假设2021年1月该垃圾处理场可回收物中塑料品的回收量为a 吨. 当a 为何值时,自2020年6月至2021年1月该垃圾处理场可回收物中塑料品的回收量的方差最小.(只需写出结论,不需证明) 答案:变式1、从2016年开始连续三年的水库蓄水量方差最大 变式2、 4.4a = 【小结】样本平均数反映了数据取值的平均水平,而样本方差、标准差描述了一组数据围绕平均数波动的大小,标准差、方差越大,数据离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定. 【例题2】1、一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX= 过程简析:由题意X ~(100,0.02)B ,由二项分布的方差公式可得DX=(1)np p -=1000.02(10.02) 1.96⨯⨯-=.2、已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则( ) A .1()E ξ<2()E ξ,1()D ξ<2()D ξ B .1()E ξ<2()E ξ,1()D ξ>2()D ξ C .1()E ξ>2()E ξ,1()D ξ<2()D ξD .1()E ξ>2()E ξ,1()D ξ>2()D ξ2021(2,0.3B0.49(Ⅰ)样本中教师使用教育软件3(3,)B10.2,,20. 当我国脱贫攻坚战取得全面胜利,现行标准下农村贫困人口全部脱贫,消除了绝对贫困.为了解脱贫家庭人均年纯收入情况,某扶贫工作组。
高三专题复习:统计与概率北京十中王玲一、问题引导复习1、抽取样本的目的是什么?抽样应该遵循哪些原则?(抽样的原则应该遵循如下两条:(1)尽力使为每个个体被抽取的可能性相等;(2)用抽取样本的数字特征去估计总体,误差越小越好。
)2、常用的抽样方法有哪些?说说它们各自的步骤。
它们的区别与联系分别是什么?3、根据你对抽样基本方法的理解,完成如下题目:在随机抽样、系统抽样、分层抽样中,对下列问题,你分别采取那种抽样方式好?并说说理由。
(1)从10位同学中任选2人去参加会议。
(2)从100位同学中任选10人,测算身高、体重的比值。
(3)全校三个年级2000学生中,一年级640人,二年级800人,三年级560人,从中任选100人,调查近视眼发生率。
4、如何整理样本数据?常用的统计图表有哪些?设计意图:在提问的过程中,带领学生完善统计的知识框架,使学生对统计内容有整体的把握。
二、真题演练某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是。
若用分层抽样方法,则40岁以下年龄段应抽取人.图设计意图:通过上述小题让学生初步感受不同抽样方法的特点,并掌握相应的计算方法。
三、典例分析例1、某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100]。
(1)求图中x 的值;(2) 由此表你能估计出这组数据的众数,中位数及平均数吗?解:(1)由300.006100.01100.054101x ⨯+⨯+⨯+=得0.018x =(2)略设计意图:本题主要呈现频率分布直方图,熟悉这种统计中处理数据的方式,难度不大,给学生一定时间独立完成,感受用频率估计概率的想法。
预设:将学生的学案实物投影,进而发现学生的问题。
(1) 教会学生读图、识图,并获取有用的数据信息。
(2) 强化在频率分布直方图中纵坐标的意义。
(3) 明确如何在直方图中求数字特征,如众数、中位数、平均数。
例2、为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:(I )估计该校男生的人数;(II )估计该校学生身高在170~185cm 之间的概率;(III )从样本中身高在165~180cm 之间的女生中任选2人,求至少有1人身高在170~180cm 之间的概率。
解 :(I )样本中男生人数为40 ,由分层抽样比例为10%估计全校男生人数为400。
(II )由统计图知,样本中身高在170~185cm 之间的学生有14+13+4+3+1=35人,样本容量为70 ,所以样本中学生身高在170~185cm 之间的频率5.07035==f ,故有f 估计该校学生身高在170~180cm 之间的概率5.0=p 。
(III )样本中女生身高在165~180cm 之间的人数为10,身高在170~180cm 之间的人数为4。
设A 表示事件“从样本中身高在165~180cm 之间的女生中任选2人,求至少有1人身高在170~180cm 之间”,则)32)((321)(21024141621026=+==-=C C C C A P C C A P 或.设计意图:本题与例1设计目的基本一致,但主要让学生感受处理数据的不同方式,本题主要呈现条形图这一统计数表。
同时第3问与概率问题相结合,难度不大,让学生可以体会古典概型的特点以及常用的两种处理方法。
例3、某班甲、乙两名同学参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:(1)请作出样本数据的茎叶图,如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论)。
(2)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率。
(3)用表格数据求出“甲、乙成绩之差的绝对值小于0.8秒的概率”变式训练:经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀[]5.14,5.11之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于分布在0.8秒的概率。
设计意图:(1)本题通过茎叶图的方式呈现,让学生与频率分布直方图及条形图进行对比,感受茎叶图的好处.:保留了原始数据,便于记录及表示,能反映数据在各段生的分布情况。
(2)在第二问中帮助学生理解“至少”之类的词语。
(3)第3问设计运用古典概型的知识,凭借罗列即可求解,更有利于学生参与。
第三问变式是本例题的难点,预设学生的问题在于不会用二维的几何概型分析问题,知道了几何概型的同学难以联想到相遇问题的模型,我个人觉得应让学生有充分的时间讨论,并在必要时可以给出教材中的原例题,让学生感受其实高考题离我们很近,不惧怕,有信心。
四、课堂练习及作业1、(2012天津):某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取________所学校.【解析】共有学校2502575150=++所,抽取30所,所以从小学抽取1815025030=⨯所,从中学抽取97525030=⨯所。
【答案】18,92、(2011四川)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18[27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是(A)16 (B)13 (C)12 (D )23答案:B解析:从31.5到43.5共有22,所以221663P ==。
设计意图:让学生明确数据中频数、频率、样本容量三者之间的关系。
3、(2010北京)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知a = 。
若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为 。
0.030, 3解析:由所有小矩形面积为1不难得到0.030a =,而三组身高区间的人数比为3:2:1,由分层抽样的原理不难得到140-150区间内的人数为3人。
设计意图:学会识图,通过直方图让学生明确频率之和等于所有小矩形面积之和,且学生的易错点在于将纵坐标当作频率来处理。
4、(2012山东):采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15【解析】从960中用系统抽样抽取32人,则每30人抽取一人,因为第一组号码为9,则第二组为39,公差为30.所以通项为2130)1(309-=-+=n n a n ,由7502130451≤-≤n ,即302125302215≤≤n ,所以25,17,16 =n ,共有1011625=+-人,选C.【答案】C5、统计某校400名学生数学会考成绩,得到样本频率分布直方图如下,则根据直方图,上述数据的众数,中位数,平均数(结果保留一位小数)6、为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品。
用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列极其均值(即数学期望)。
解:(1)987,573514=⨯=,即乙厂生产的产品数量为35件。
(2)易见只有编号为2,5的产品为优等品,所以乙厂生产的产品中的优等品2,50.分数0.0.0.0.故乙厂生产有大约235145⨯=(件)优等品,(3)ξ的取值为0,1,2。
21123323222555331(0),(1),(2)10510C C C C P P P C C C ξξξ⨯=========所以ξ的分布列为故3314012.105105E ξξ=⨯+⨯+⨯+=的均值为7、随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差(3)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率.【解析】(1)由茎叶图可知:甲班身高集中于160179:之间,而乙班身高集中于170180: 之间。
因此乙班平均身高高于甲班;(2) 15816216316816817017117917918217010x +++++++++==甲班的样本方差为()()()()222221[(158170)16217016317016817016817010-+-+-+-+-()()()()()22222170170171170179170179170182170]+-+-+-+-+-=57 (3)设身高为176cm 的同学被抽中的事件为A ;从乙班10名同学中抽中两名身高不低于173cm 的同学有:(181,173) (181,176)(181,178) (181,179) (179,173) (179,176) (179,178) (178,173)(178, 176) (176,173)共10个基本事件,而事件A 含有4个基本事件;()42105P A ∴==8、根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API 数据按照区间[0,50],(50,1,250],(250,300进行分组,得到频率分布直方图如图5.(1)求直方图中x 的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.(结果用分数表示.已知7732738123578125,2128,,36573518253651825182591259125==++++==⨯解:(1)由图可知-=150x ++365218253(18257509125123150)9125818253⨯-=⨯++,解得18250119=x ;(2)219)5036525018250119(365=⨯+⨯⨯;(3)该城市一年中每天空气质量为良或轻微污染的概率为533652195036525018250119==⨯+⨯,则空气质量不为良且不为轻微污染的概率为52531=-,一周至少有两天空气质量为良或轻微污染的概率为7812576653)53()52()53()52(116670777=--C C .设计意图:在作业中布置了6道题目,难度不大,主要是让学生学会。