小升初奥数冲刺合集
- 格式:doc
- 大小:2.82 MB
- 文档页数:88
小升初奥数题必考100道及答案(完整版)题目1:有一个两位数,十位上的数字是个位上数字的2 倍,如果把十位上的数字与个位上的数字交换,就得到另外一个两位数,把这个两位数与原两位数相加,和是132。
求原两位数。
答案:设原两位数个位上的数字为x,则十位上的数字为2x。
原两位数为20x + x = 21x,交换后的两位数为10x + 2x = 12x。
根据题意可得:21x + 12x = 132,33x = 132,x = 4。
所以原两位数为84。
题目2:小明从家到学校,如果每分钟走50 米,就要迟到3 分钟;如果每分钟走70 米,则可提前5 分钟到校。
小明家到学校的路程是多少米?答案:设小明按时到校要x 分钟。
50(x + 3) = 70(x - 5),50x + 150 = 70x - 350,20x = 500,x = 25。
路程为50×(25 + 3) = 1400(米)题目3:甲乙两数的和是180,甲数的1/4 等于乙数的1/5,甲乙两数各是多少?答案:设甲数为x,则乙数为180 - x。
1/4 x = 1/5 (180 - x),5x = 4×(180 - x),5x = 720 - 4x,9x = 720,x = 80,乙数为100。
题目4:某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:设三个车间总人数为x 人。
第一车间人数为0.25x,第二车间和第三车间人数之和为0.75x。
第二车间人数为0.75x×3/7 = 9/28 x。
0.25x + 40 = 9/28 x,9/28 x - 7/28 x = 40,2/28 x = 40,x = 560 人。
题目5:一桶油,第一次用去2/5 ,第二次用去10 千克,这时剩下的油正好是整桶油的一半。
这桶油有多少千克?答案:设这桶油有x 千克。
小升初数学冲刺奥数题100道附答案(完整版)1. 某班有40 名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89 分,缺考的同学补考各得99 分,这个班期中考试平均分是多少?答案:89.5 分思路:班级总分(40 - 2)×89 = 3382 分,加上补考同学的分数3382 + 99×2 = 3580 分,平均分3580÷40 = 89.5 分。
2. 修一条路,第一天修了全长的1/4 ,第二天修了余下的1/3 ,还剩120 米没修,这条路全长多少米?答案:240 米思路:设全长为x 米,第一天修了1/4x 米,余下3/4x 米,第二天修了3/4x×1/3 = 1/4x 米,可列方程x - 1/4x - 1/4x = 120 ,解得x = 240 米。
3. 一个长方体,如果高增加2 厘米,就变成一个正方体,这时表面积比原来增加56 平方厘米,原来长方体的体积是多少?答案:441 立方厘米思路:增加的表面积是4 个同样的长方形的面积和,一个面的面积为56÷4 = 14 平方厘米,长方形的长即正方体的棱长为14÷2 = 7 厘米,原长方体高为7 - 2 = 5 厘米,体积为7×7×5 = 245 立方厘米。
4. 甲、乙两车同时从A、B 两地相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距A 地60 千米处相遇。
A、B 两地相距多少千米?答案:150 千米思路:第一次相遇时,甲乙合走一个全程,甲走了80 千米。
第二次相遇时,甲乙合走三个全程,甲走了80×3 = 240 千米。
此时距离A 地60 千米,所以两个全程为240 + 60 = 300 千米,全程为150 千米。
5. 有一批零件,甲单独做要12 天完成,乙单独做要15 天完成,两人合作3 天后,剩下的由乙单独做,还要几天完成?答案:5 天思路:甲每天完成1/12 ,乙每天完成1/15 ,两人合作 3 天完成(1/12 + 1/15)×3 = 9/20 ,剩下11/20 ,乙单独做需要11/20÷1/15 = 8.25 天,约为5 天。
小升初奥数题集锦及答案(全面)1、某市小学数学竞赛,不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍。
求参赛的总人数。
解:设不低于80分的人数为4x+2,80分以下的人数为x,及格的人数为4x+24,不及格的人数为x/6.因为总人数为不低于80分的人数加上80分以下的人数,即4x+2+x=5x+2,所以总人数为5x+2.又因为及格的人数比不低于80分的人数多22人,即4x+24=5x+2+22,解得x=44.所以总人数为5x+2=222.2、一张电影票原价为x元,根据题意可列出方程:(x-3)*1.5=1.2x,解得x=15,所以一张电影票原价为15元。
3、设乙的存款为y元,则甲的存款为9600-y元。
根据题意可列出方程:9600*0.6-120=(9600-y)*0.6,解得y=3600,所以乙的存款为3600元。
4、设原混合糖中有奶糖x颗,巧克力糖y颗。
根据题意可列出方程组:y+10=0.6(x+10+y)y+30=0.75(x+10+y)解得x=60,y=90,所以原混合糖中有60颗奶糖,90颗巧克力糖。
5、设XXX原有玻璃球为x个,则XXX原有玻璃球为3x/4,根据题意可列出方程:x/6=(3x/4+2)-x,解得x=24,所以XXX原有玻璃球24个。
6、设丙帮助甲的时间为x小时,帮助乙的时间为y小时,则可列出方程组:10/x+12/y=110/(x+y)+12/(x+y)+15/(x+y)=1解得x=20,y=30,所以丙帮助甲10小时,帮助乙12小时。
7、设全部工作需要的时间为x天,则可列出方程组:1/72)+(1/72+1/48)*2+(1/72+1/48+1/28)*4/3=1/31/72)+(1/72+1/48)*3+(1/72+1/48+1/28)*4/3+8=(5/6)*x1/72+1/48+1/28)*2/3=(1/72+1/48+1/28+1/x)*1/6解得x=72,所以余下的工作由丙单独完成需要36天。
平面图形的面积【思维规律】在小学里,我们学过了正方形、长方形、梯形、平行四边形、三角形、圆形以及扇形的面积计算,实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合,拼凑成的,它们的面积及周长无法应用公式直接计算。
一般我们称这样的图形为不规则图形。
本专题介绍较复杂、不规则图形的面积的求法,主要通过将复杂图形分解成熟悉的基本,或将不规则图形进行划归为基本图形,或者用等积变换等方法进行转化。
名称 图形周长公式 面积公式长方形 2(a +b )ab 正方形4aa ²三角形a +b +c12ah 平行四边形2(a +b ) ah梯形a +b +c +d12(a +b )h 菱形4a12AC ·BD 圆2r π r π²扇形180n rπ或2r +l 360nr π²【重点点拨】例1、甲和乙都是正方形。
甲的边长为4厘米,乙的边长为6厘米,求阴影部分的面积。
思考:如果只知道甲的边长为4厘米,是否还可以求出阴影部分的面积?例2、如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求△AEF的面积。
例3、如右图,A为△CDE的DE边上的中点,3BC=CD,若△ABC(阴影部分)面积为5平方厘米,求△ABD及△ACE的面积。
例4、如下图,已知ABCD是平行黑眼圈这形,AC是对角线,AC=3CG,AE=EF =FB,△EFG的面积是6平方厘米,求平行四边形ABCD的面积。
例5、如图,△ABC的面积是1平方厘米,DC=2BD,AE=3ED,则△ACE的面积是平方厘米。
例6、如图,长方形ABCCD中,△ABP的面积为20平方厘米,△CDQ的面积为35平方厘米,则阴影四边形的面积等于________厘米。
例7、如图,长方形被其内的一些直线划分了若干块,已知边上有3块面积分别是13、35、49.那么图中阴影部分的面积是多少?例8、有四条线段的长度已知知道,还有两个角是直角,那么四边形(阴影部分)的面积是多少?例9、在各图中,ABCD是长方形,三长线段贩长度如图所示,M是线段DE的中点,求边开边ABMD(阴影部分)的面积。
小升初数学常考奥数题100道附答案(完整版)1. 计算:1+2-3-4+5+6-7-8+9+10-11-12+...+2017+2018-2019-2020答案:-2020思路:每4 个数的计算结果为-4,2020÷4 = 505,所以结果为-4×505 = -20202. 某数除以4 余3,除以5 余2,除以6 余1,这个数最小是多少?答案:57思路:满足除以4 余3 的数有3、7、11、15、19...;满足除以5 余2 的数有2、7、12、17、22...;满足除以6 余1 的数有1、7、13、19、25...。
所以这个数最小是573. 鸡兔同笼,鸡比兔多15 只,共有脚180 只,鸡兔各有多少只?答案:鸡45 只,兔30 只思路:设兔有x 只,则鸡有x + 15 只。
4x + 2×(x + 15) = 180,解得x = 30,鸡有45 只4. 一个数减去7 的差再乘以7,所得的结果与它减去13 的差再乘以13 的结果相同,这个数是多少?答案:20思路:设这个数为x,(x - 7)×7 = (x - 13)×13,解得x = 205. 甲乙两人同时从A、B 两地相向而行,第一次在离A 地75 千米处相遇,相遇后继续前进,到达目的地后又立即返回,第二次在离 B 地55 千米处相遇,A、B 两地相距多少千米?答案:170 千米思路:第一次相遇时,甲走了75 千米,两人共走了一个全程;第二次相遇时,两人共走了三个全程,所以甲走了75×3 = 225 千米,此时甲走了一个全程多55 千米,所以全程为225 - 55 = 170 千米6. 一个长方体,如果高增加2 厘米,就变成一个正方体,这时表面积比原来增加56 平方厘米,原来长方体的体积是多少?答案:441 立方厘米思路:增加的表面积是4 个相同的长方形的面积,一个面的面积为56÷4 = 14 平方厘米,长方形的长(即正方体的棱长)为14÷2 = 7 厘米,原长方体高为7 - 2 = 5 厘米,体积为7×7×5 = 245 立方厘米7. 有三根铁丝,一根长54 米,一根长72 米,一根长36 米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?答案:18 米思路:求54、72、36 的最大公因数,为188. 一个最简分数,分子、分母的和是50,如果把这个分数的分子、分母都减去5,所得分数的值是2/3,原来的分数是多少?答案:21/29思路:设分子为x,则分母为50 - x,(x - 5) / (50 - x - 5) = 2 / 3,解得x = 21,分数为21/299. 小明买了3 支铅笔和2 支钢笔,共用去22 元,钢笔的单价是铅笔的6 倍,钢笔和铅笔的单价各是多少元?答案:钢笔12 元,铅笔2 元思路:设铅笔单价为x 元,则钢笔单价为6x 元,3x + 2×6x = 22,解得x = 2,钢笔单价12 元10. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩16 千克,这桶油有多少千克?答案:60 千克思路:设这桶油有x 千克,x - 1/5x - 1/5x - 20 = 16,解得x = 6011. 某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第三车间少40 人,三个车间共有多少人?答案:560 人思路:设总人数为x 人,第三车间人数为3/7×(3/4x + x),则3/7×(3/4x + x) - 1/4x = 40,解得x = 56012. 学校组织数学竞赛,按参赛人数的1/5 颁奖,分设一、二、三等奖,已知获二等奖的人数比一等奖多20 人,且获二等奖的人数是三等奖的4/5,一共有多少人参赛?答案:1500 人思路:设参赛总人数为x 人,二等奖人数为1/5x×4/9,一等奖人数为1/5x×1/9,1/5x×4/9 - 1/5x×1/9 = 20,解得x = 150013. 有一堆糖果,其中奶糖占45%,再放入16 块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?答案:9 块思路:设原来糖果总数为x 块,45%x = 25%(x + 16),解得x = 20,奶糖有45%×20 = 9 块14. 修一条路,已修的和未修的长度比是1∶3,再修300 米后,已修的和未修的长度比是1∶2,这条路全长多少米?答案:3600 米思路:设已修的长度为x 米,未修的长度为3x 米,(x + 300) / (3x - 300) = 1 / 2,解得x = 900,全长4x = 3600 米15. 甲、乙两仓库存货吨数比为4∶3,如果从甲库中取出8 吨放到乙库中,则甲、乙两仓库存货吨数比为4∶5,两仓库原存货总吨数是多少吨?答案:63 吨思路:设甲仓库原存货4x 吨,乙仓库原存货3x 吨,(4x - 8) / (3x + 8) = 4 / 5,解得x = 9,总吨数7x = 63 吨16. 在一个底面半径是10 厘米的圆柱形杯中装水,在水中放一底面半径为5 厘米的圆锥形铝锤,使铝锤全部被水淹没,当铝锤从杯中取出后,杯里水面下降了 5 毫米,求铝锤的高是多少厘米?答案:6 厘米思路:下降的水的体积等于圆锥形铝锤的体积,3.14×10×10×0.5 = 1/3×3.14×5×5×h,解得h = 6 厘米17. 一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1 小时到达,如果以原速行驶120 千米后,再将速度提高25%,则可提前40 分钟到达,那么甲、乙两地相距多少千米?答案:270 千米思路:设原速度为v,原时间为t,vt = 1.2v×(t - 1),解得t = 6 小时。
小升初奥数题集锦及答案1、某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:2、电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款4、由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5、小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
”小明原有玻璃球多少个?6、搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7、一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8、股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。
老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?9、某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。
第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。
小升初奥数冲刺1.平均数问题 (2)2.差倍问题 (3)3.归一问题 (4)4.归总问题 (4)5.植树问题 (5)6.年龄问题 (7)7.鸡兔问题 (9)8.行程问题 (10)1)直线上的相遇与追及 (11)2)火车过人、过桥与错车问题 (12)3)多个对象间的行程问题 (14)4)环形问题与时钟问题 (14)9.流水行船行程问题 (14)10.盈亏问题 (17)11.工程问题 (19)12.百分数与纳税问题 (21)13.时钟问题—钟面追及问题、快慢表问题 (23)1)钟面追及问题 (23)2)快慢表问题 (24)14.图形问题 (26)15.牛吃草问题 (35)16.浓度与配比 (39)17.约数与倍数 (45)18.质数与合数 (46)19.抽屉原理 (48)1.平均数问题1、李明在期中考试中语文、外语和自然的平均分是74分,数学成绩公布后,四门成绩的平均分提高了3分。
李明数学数学考多少分?【解答】74×3=222分74+3=77分77×4=308分308-222=86分2、这学期,王平前四个单元测验的平均成绩是85分,他想使前五个单元的平均成绩上升到87分,第五个单元必须考多少分?【解答】85×4=340分87×5=435分435-340=95分3、李明在期中考试中语文、外语和自然的平均分是95分,数学成绩公布后四门成绩的平均分减少了2分。
你知道李明的数学得了几分吗?【解答】95×3=285分95-2=93分93×4=372分372-285=87分4、甲地到乙地的全程是120千米。
小红骑车从甲地到乙地每小时行30千米,从乙地返回甲地每小时行20千米。
求小红往返甲乙两地的平均速度。
【解答】120÷30=4小时120÷20=6小时120+120=240千米4+6=10小时240÷10=24千米此题需要注意,求平均速度,一定要用总路程除以总时间。
小升初奥数精讲精练500题100题精讲(一)数论------100题数论(1)例题1:(第7题)一个三位数是3的倍数,去掉它的个位数字后,所得的两位数是17的倍数。
这个三位数最大是____。
例题2:(第8题)将被11除余1,被15除余12的自然数按从小到大的顺序排成一列:a1,a2,a3,……,则a1=____;若a m-1<2011<a m,则m=_____。
例题3:(第15题)请选择一个你喜欢的两位数,将它连续写5遍组成一个十位数(如:两位数12连续写5遍成为1212121212),将这个十位数除以这个两位数,所得到的商再除以9,所得的余数是_____。
例题4:(第18题)六年级1班有30多人,个子最高的小明发现,放学站队时无论是2人、还是3人或者4人站成一排,他都只能自己单独站在最后,没有人与他站一排。
则六年级1班共有_____人。
例题5:(第46题)如果现在是上午的10点21分,那么经过2879……9(共20个9)分钟之后的时间是____点____分。
100题精讲(一)数论------ 100题数论(2)例题1:(第49题)一个六位数的末位数字是2,如果将2移到首位,则原数就是新数的3倍。
原数是_____。
例题2:(第53题)有一个两位数,如果用它除以它的个位数字,商9余6;如果用它除以个位数字与十位数字的和,商5余3。
这个两位数是_____。
例题3:(第54题)一串数的前4项分别是2、0、1、0,从第5项开始,每一项都是它前面4项数字和的个位数字,那么该数列中_____(填“会”或“不会”)出现2、0、1、1连续4项。
例题4:(第64题)有三箱螺帽,其中第一个箱子里有303只螺帽,第二个箱子里的螺帽是全部螺帽的,第三个箱子里的螺帽是全部螺帽的7(n是自然数)。
则第三个箱子里有螺帽_____只。
例题5:(第74题)由2011个9组成的多位数999……99除以74所得余数是_____。
100题精讲(一)数论------ 100题数论(3)例题1:(第75题)小萌在超市买了3种糖果,其中红色糖果每粒8分,绿色糖果每粒1角,黄色糖果每粒2角,她共付了1元2角2分。
小升初最常考奥数题100道及答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)2. 小明看一本书,第一天看了全书的1/4,第二天看了全书的2/5,第二天比第一天多看了21 页,这本书一共有多少页?答案:21÷(2/5 - 1/4)= 21÷3/20 = 140(页)3. 有一批货物,第一天运走了总数的2/5,第二天运走的货物比总数的1/4 多4 吨,这时还剩17 吨,这批货物共有多少吨?答案:(17 + 4)÷(1 - 2/5 - 1/4)= 21÷7/20 = 60(吨)4. 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:40÷[(1 - 25%)×3/(3 + 4) - 25%] = 40÷[3/7 - 1/4] = 560(人)5. 师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21 个,这批零件有多少个?答案:21÷(1 - 2/7 - 2/7)= 21÷3/7 = 49(个)6. 仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3 少12 袋,这时仓库里还剩24 袋,两次共取出多少袋?答案:(24 - 12)÷(1 - 2/5 - 1/3)= 12÷4/15 = 45(袋),45 - 24 = 21(袋)7. 甲、乙、丙三个数的和是110,甲与乙的比是3:2,乙与丙的比是4:1,乙数是多少?答案:甲:乙= 3:2 = 6:4,乙:丙= 4:1,所以甲:乙:丙= 6:4:1,乙数:110×4/(6 + 4 + 1) = 408. 一辆汽车从甲地开往乙地,行了全程的3/8,离乙地还有135 千米,两地之间的公路长多少千米?答案:135÷(1 - 3/8)= 216(千米)9. 修一条路,已修的与未修的比是1:5,又修了490 米后,已修的与未修的比是3:1,这时还有多少米未修?答案:490÷(3/4 - 1/6)×1/4 = 180(米)10. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,4/5 x - 2/3×(465 - x) = 20 ,解得x = 225,女生人数:465 - 225 = 240(人)11. 水果店里卖出的梨的重量是苹果的5/7,梨比苹果少卖30 千克,梨卖了多少千克?答案:30÷(1 - 5/7)×5/7 = 75(千克)12. 一筐苹果卖掉1/5 后,又卖掉6 千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?答案:6÷(1/3 - 1/5)= 45(千克)13. 甲、乙两班共有84 人,甲班人数的5/8 与乙班人数的3/4 共有58 人,甲、乙两班各有多少人?答案:设甲班有x 人,5/8 x + 3/4×(84 - x) = 58 ,解得x = 40,乙班:84 - 40 = 44(人)14. 学校买来两种图书共220 本,取出甲种图书的1/4 和乙种图书的1/5 共50 本借给五年级(1)班同学阅读,问甲、乙两种图书各买来多少本?答案:设甲种图书有x 本,1/4 x + 1/5×(220 - x) = 50 ,解得x = 120,乙种图书:220 - 120 = 100(本)15. 某工厂第一车间有工人150 人,第二车间有工人90 人,要使第一车间人数是第二车间的2 倍,需要从第二车间调多少人到第一车间?答案:(150 + 90)÷(2 + 1) = 80(人),90 - 80 = 10(人)16. 甲、乙两堆煤共180 吨,甲堆煤的1/3 比乙堆煤的2/3 多18 吨,甲、乙两堆煤各有多少吨?答案:设甲堆煤有x 吨,1/3 x - 2/3×(180 - x) = 18 ,解得x = 138,乙堆煤:180 - 138 = 42(吨)17. 学校图书馆有科技书和文艺书共3200 本,科技书的本数是文艺书的4/5,科技书和文艺书各有多少本?答案:文艺书:3200÷(1 + 4/5)= 16000/9 ≈1778(本),科技书:3200 - 1778 = 1422(本)18. 一辆汽车从甲地到乙地,已经行了全程的1/5,再向前行50 千米,就比全程的2/3 少6 千米,求甲乙两地的距离。
小升初奥数冲刺题大全汇总1、(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?4800÷5÷60=16(米) 计划每人每天修16米4800÷【(60+20)×(16+4)】=3(天)实际3天完成5-3=2(天)少用2天2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车距中点40千米处相遇。
东西两地相距多少千米?40×2=80(千米)相遇时,甲车比乙车多走80千米80÷(56-48)=10(小时)甲乙两车开车时间都是10小时(56+48)×10=1040(千米)东西两地相距1040千米3、(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?84-60=24千米小轿车每小时比大客车多走24千米60×2÷24=5小时 5小时小轿车能追上大客车(小轿车把大客车多走的路补回来,就追上了的大客车)4、(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。
已知列车的速度是每分钟1000米,列车车身长多少米?分析:要想列车完全通过桥,则列车要走的距离=桥的长度+列车的长度1000×3=3000米列车3分钟走了3000米,即桥的长度+列车的长度=3000米3000-2700=300米列车车身长300米5、(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。
如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。
客车的速度和货车的速度分别是多少?分析:客车相对货车走的距离,两次都是两车的车身长之和,只不过行驶方向不一样,造成用时不一样的结果(280+200)÷20=24(米/秒)两车速度之和为24米/秒(280+200)÷120=4(米/秒)客车速度每秒比货车快4米(24-4)÷2=10(米/秒)货车速度为10米/秒24-10=14(米/秒)客车速度为14米/秒6、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。
小升初数学必考奥数题100道附答案(完整版)题目1:有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄乘积是360。
他们中年龄最大的是多少岁?答案:将360 分解因数,360 = 2×2×2×3×3×5 = 3×4×5×6,所以年龄最大的是6 岁。
题目2:计算:1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +…+ 2014 - 2015 - 2016 + 2017 + 2018答案:原式= (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +…+ (2013 + 2014 - 2015 - 2016) + 2017 + 2018 = 2017 + 2018 = 4035题目3:一项工程,甲单独做10 天完成,乙单独做15 天完成。
甲乙合作,几天可以完成?答案:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要6 天完成。
题目4:在一个比例中,两个外项互为倒数,其中一个内项是2.5,另一个内项是多少?答案:两个外项互为倒数,乘积为1。
根据比例的性质,两个内项的积也为1,所以另一个内项是1÷2.5 = 0.4题目5:一个数除以8 余5,除以9 余6,这个数最小是多少?答案:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数最小是72 - 3 = 69题目6:一个圆形花坛的周长是25.12 米,在它的周围加宽1 米,加宽后的面积比原来增加了多少平方米?答案:原来花坛的半径为25.12÷3.14÷2 = 4 米,加宽后的半径为5 米。
增加的面积为3.14×(5²- 4²) = 28.26 平方米题目7:一个长方体的棱长总和是120 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少立方厘米?答案:120÷4 = 30 厘米,3 + 2 + 1 = 6,长为15 厘米,宽为10 厘米,高为5 厘米,体积为750 立方厘米题目8:甲乙两车同时从A、B 两地相对开出,4 小时后相遇。
小升初名校冲刺方案奥数知识大集结1 、一个杯子最大的容量是500毫升,甲将杯子装满水,喝了部分后又加入了杯子容量的水,之后甲又将杯子里一半的水用来浇花。
这时,杯子里还剩下200毫升水。
则甲喝了()毫升水。
A.100B.150C.200D.2502 、某部队组织新兵从甲地到乙地进行长途拉练。
去的时候第一天走25公里,以后每天都比前一天多走5公里,结果最后一天只走25公里便到达了目的地。
回程时,第一天走35公里,以后还是每天比前一天多走5公里,结果最后一天只走30公里便回到出发地。
则甲乙两地相距()公里。
A.175B.200C.225D.2503 、某书店按阶梯价格出售一批书,原价每本15元,10本以下部分按原价计算,第11本至第20本按原价九折计算,第21本至第30本部分按原价八折计算,折扣以此类推,但最低只能为五折。
则用1000元最多可以买()本书。
A.66B.95C.103D.1114、某单位前台有两个窗口,办理业务的人员要先到1号窗口审核资料,审核通过的才可以到2号窗口缴费。
已知平均一份资料的审核时间为1.5分钟,且审核通过率仅有,而一份资料的缴费时间仅为50秒。
假设前台共有10名工作人员,且各窗口的人员数量固定,则1号窗口应安排()人,才能使得前台运作效率最高。
A.9B.8C.7D.65 、一小偷藏匿于某商场,三名保安甲、乙、丙分头行动搜查商场的100家商铺。
已知甲检查过80家,乙检查过70家,丙检查过60家,则三人都检查过的商铺至少有()家。
A.5B.10C.20D.306 、小王的旅行箱密码为3位数,且三个数字全是非0的偶数,而且这个三位数恰好是小王今年年龄的平方数。
则小王今年()岁。
A.17B.20C.22D.347 、如下图所示,在一个边长为8米的正方形与一个直径为8米的半圆形组成的花坛中,阴影部分栽种了新引进的郁金香,则郁金香的栽种面积为()平方米。
A.4+4πB.4+8πC.8+8πD.16+8π8 、参加奥运开幕式表演的某方阵正在彩排,如果减少一行和一列,人数减少319人。
小升初名校冲刺方案奥数知识大集结1 、货车A由甲城开往乙城,货车B由乙城开往甲城,它们同时出发并以各自恒定的速度行驶,在途中第一次相遇时,它们离甲城为35千米。
相遇后两车继续以原来的速度行驶至目的地城市后立即折返,途中再一次相遇,这时它们离乙城为25千米。
则甲乙两城相距()千米。
A.80B.85C.90D.952 、甲乙两人在玩一个沙盘游戏,比赛的规则是:在一个分为50个单位的区域上,每人轮流去划定这些区域作为自己的领地,每次可以划定1到5个单位,谁作为最后划定区域的人则为胜利者,如果由甲划定,那么甲一开始要划定()个单位,才能保证自己获胜。
A.1B.2C.3D.43 、上一个虎年老王和小赵的年龄和为54岁,上上个虎年老王年龄是小赵年龄的6倍多,如两人年龄均按出生的阴历年份计算且出生的当个阴历年为0岁,则老王出生于:A.鼠年B.虎年C.龙年D.马年4 、某城市准备在公园里建一个矩形的花园,长比宽多40米,同时在花园周围建一条等宽的环路。
路的外周长为280米,路的面积为1300平方米,则路的宽度为多少米?A.3B.4C.5D.65 、某工厂4个车间的工人都出生在1985到1988年间,如果统计任意2个车间的人数和,分别得到54、63、75、78、90、99这6个不同的结果。
则人数最多的车间至少有多少工人出生于同一年?A.14B.15C.16D.176 、某公司面试员工,其中五分之二的应聘者获得了职位,最终录取者的平均分比录取线高7分,落选者的平均分比录取线低13分,所有应聘者的平均分为58分,则该公司的招聘录取线是多少分?A.60B.63C.65D.697 、有一批汽车零件由A和B负责加工,A每天比B少做3个零件。
如果A和B两人合作需要18天才能完成,现在让A先做12天,然后B再做17天,还剩这批零件的没有完成,这批零件共有多少个?A.300B.250C.240D.2708 、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。
小升初奥数高频考点历年真题总汇(一)1 、某杂志为每篇投稿文章安排两位审稿人,若都不同意录用则弃用;若都同意则录用;若两人意见不同,则安排第三位审稿人,并根据其意见录用或弃用,如每位审稿人录用某篇文章的概率都是60%,则该文章最终被录用的概率是:A.36%B.50.4%C.60%D.64.8%2 、生产一件甲产品消耗4份原料A、2份原料B、3份原料C,可获得1.1万元利润;生产一件乙产品3份原料A、5份原料B,可获得1.3万元利润。
现有40份原料A、38份原料B、15份原料C用于生产,问最多可获得多少万元利润?A.10.2B.12.0C.12.2D.12.83 、某企业在软件园区的分公司有甲、乙2个开发团队。
现从乙团队调走25人,此时甲、乙团队人数比为4∶3。
然后又从甲团队调走42人,此时甲、乙团队人数之比2∶5。
问两次调动之前,甲、乙团队人数比为:A.3∶4B.6∶7C.1∶2D.2∶54 、某高校向学生颁发甲、乙两项奖学金共10万元。
已知每份甲等、乙等奖学金的金额分别为3000元和1000元,每人只能最多获得一项奖学金,获得乙等奖学金的人数在获得甲等奖学金人数的2倍到3倍之间。
问最多可能有多少人获得奖学金?A.62B.64C.66D.685 、一个位于O点的雷达探测半径为25千米。
某日该雷达探测到一辆车沿直线驶过探测区,行驶过程中途经距离雷达20千米外的P点。
如该车在雷达探测区内行驶的距离为X千米,为X的最大值和最小值相差多少?A.15B.16C.20D.256 、蔬菜摊贩某日花费x元购进蔬菜,上午、下午、傍晚分别按进货单价的150%、130%、120%卖掉占总进货价值50%、20%、25%的蔬菜,并将剩下未卖的蔬菜送给养殖场。
如摊位成本为0.06x,则该摊贩当日盈利为:A.0.2xB.0.25xC.0.3xD.0.35x7 、甲、乙两条生产线同时接到羽毛球拍、网球拍两种球拍的生产任务。
已知甲要生产的球拍总数和乙相同。
苏教版小升初奥数题100道附答案(完整版)1. 计算:2+4+6+8+…+100答案:2550思路:这是一个等差数列求和,首项是2,末项是100,公差是2,项数是50,根据等差数列求和公式可得(2+100)×50÷2=2550。
2. 某数加上5,乘以5,减去5,除以5,结果还是5,这个数是多少?答案:1思路:从后往前推,除以5 之前是5×5=25,减去5 之前是25+5=30,乘以5 之前是30÷5=6,加上5 之前是6-5=1。
3. 鸡兔同笼,有20 个头,54 条腿,鸡兔各有多少只?答案:鸡13 只,兔7 只思路:设鸡有x 只,兔有y 只,可列出方程组x+y=20,2x+4y=54,解得x=13,y=7。
4. 一个数除以3 余2,除以5 余3,除以7 余2,这个数最小是多少?答案:23思路:除以 3 余 2 和除以7 余 2 的最小数是23,且23 除以 5 余3,所以这个数最小是23。
5. 小明从一楼到三楼用了6 分钟,照这样计算,他从一楼到六楼要用多少分钟?答案:15思路:从一楼到三楼走了2 层楼梯用了6 分钟,每层用时6÷2=3 分钟,从一楼到六楼走5 层楼梯,要用3×5=15 分钟。
6. 一块长方形草地,长100 米,宽80 米,在草地周围每隔10 米种一棵树,一共要种多少棵树?答案:36思路:长方形周长为(100+80)×2=360 米,每隔10 米种一棵树,所以树的数量为360÷10=36 棵。
7. 一个正方体棱长总和是48 厘米,它的表面积是多少平方厘米?答案:96思路:正方体有12 条棱,每条棱长度相等,所以棱长为48÷12=4 厘米,表面积为6×4×4=96 平方厘米。
8. 一桶油连桶重10 千克,倒出一半油后,连桶重5.5 千克,桶重多少千克?答案:1思路:一半油重10-5.5=4.5 千克,油重4.5×2=9 千克,桶重10-9=1 千克。
小升初突击训练系列试卷一一、计算题:(每题5分,共10分)1、(111×66-185×8)÷37=______.2、1997+4+1993+1992…-2+1=_______.二、填空题:(每题5分,共25分)1、某地区水电站规定,如果每月用电不超过24度,则每度收9分;如果超过24度,则多出度数按每度2角收费.若某月甲比乙多交了角(甲、乙都是整数),则甲交了______角______分2、乒乓球单打决赛在甲、乙、丙、丁四位选手中进行,赛前,有些人预测比赛结果,A说:甲第4;B说:乙不是第2,也不是第4;C说:丙的名次在乙的前面;D说:丁将得第1.比赛结果表明,四个人中只有一人预测错了.那么,甲、乙、丙、丁四位选手的名次分别为:_______.3、41位数55…5□99…9(其中5和9各有20个)能被7整除,那么中间方格内的数字是_____.4、如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.5.字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C组成的三个三位数相加的和为777,其竖式如右,那么三位数ABC是______.三、解答题:(1~7题每题5分,8,9,10题每题10分,共65分)1.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上看见慢车驶过的时间是11秒,那么坐在慢车上看见快车驶过的时间是多少秒?2.一堆苹果,2个2个地数剩1个,3个3个地数剩2个,4个4个地数剩3个,5个5个地数剩4个,6个6个地数剩5个,求这堆苹果至少有多少个?3.甲、乙、丙三人去完成植树任务,已知甲植一棵树的时间,乙可以然后丙休息了8天,乙休息了3天,甲没休息,最后一起完成任务.问:从开始植树算起,共用了多少天才完成任务?5.原计划有420块砖让若干学生搬运,每人运砖一样多,后来增加一个学生,这样每个学生就比原计划少搬2块.那么原来有学生多少人?6.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?7、小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?8、甲、乙、丙三个小孩分别带了若干块糖,甲带的最多,乙带的较少,丙带的最少.后来进行了重新分配,第一次分配,甲分给乙、丙,各给乙、丙所有数少4块,结果乙有糖块最多;第二次分配,乙给甲、丙,各给甲、丙所有数少4块,结果丙有糖块最多;第三次分配,丙给甲、乙,各给甲、乙所有数少4块,经三次重新分配后,甲、乙、丙三个小孩各有糖块44块,问:最初甲、乙、丙三个小孩各带糖多少块?9、外表相同的18个小球中,有9克和10克的两种重量,从18个球中取出两个球放在天平左边以作比较,另外16个球分成8对,依次放在天平的右边与这两个球比较重量,发现有5对比那两个球重,有2对比那两个球轻,有一对与那两个球重量相等,这18个球的总重量是多少?10、A s shown below, the area of the parallelogram ABCD is 54 cm2, E, F trisect CA and BA, the area of the shadow is _________.小升初突击训练系列试卷二一、计算题:(每题5分,共10分)1、114×+36÷45+×2、二、填空题:(每题5分,共25分)1、和式2007200620052004321A 2008200720062005432=-+-++-+与1进行比较,则A ___1。
小升初数学择校考(自主招生考)附加题(奥数)考前集训专题1、 =⨯-⨯202020202019201920202019201920202、 估计下面四个算式的计算结果,最大的是( )A. )201911(2019+⨯B. )201911(2019-⨯ C. )201911(2019+÷ D.)201911(2019-÷ 3、有15个同学合影留念,每人要一张照片,最初三张照片和一张底片共收成本费2.70元,以后加印一张照片收费0.40元。
平均每人应付 元。
4、数字M 介于11~19之间,那么8,12和M 这三个数的平均数可能是( )。
A .15或11B .14或12C .12或15D .11或125、求在8点几分时,时针与分针重合在一起?6、某校把2019名学生按0001到2019的顺序编号,在新年联欢会上,编号为5的倍数或6的倍数的同学将得到一张贺卡,且每人最多得一张,大会共需多少张贺卡?7、某市水文站8月1日~8月6日,每日下午2时发布的汛情公告如下:8月1日:水位32米;8月2日:水位32.9米;8月3日:水位32.4米;8月4日:水位32.6米;8月5日:水位32.2米;8月6日水位:31.8米。
(警戒水位为32米,历史最高水位为32.6米)⑴根据上面的数据,完成下面的折线统计图。
某市8月1日~8月6日汛情统计图⑵从图中你得到了哪些信息?8、六个小朋友围成一圈,每人心里想好一个数,并把这个数告诉左、右相邻的两个人,然后每个人把左、右两个相邻人告诉自己的数的平均数亮出来。
如图所示,问:亮出11的人原来心中想的数是多少?9、为保护水资源,某市规定:每人每月用水量不超过2吨,每吨水费1.1元;超过2吨部分,每吨水费2元。
赵伟家五口人,四月份交水费23元。
他家四月份用水多少吨?10、贝贝家每天都喝3袋牛奶,7月份按零售价买了5天牛奶共花了16.5元,八月份按批发价预订了全月每天的牛奶,共付了88.35元。
小升初常考的奥数题100道附答案(完整版)1. 有红、黄、白三种颜色的球,红球和黄球一共有21 个,黄球和白球一共有20 个,红球和白球一共有19 个。
三种球各有多少个?答案:三种球的总数:(21 + 20 + 19)÷2 = 30(个)白球:30 - 21 = 9(个)红球:30 - 20 = 10(个)黄球:30 - 19 = 11(个)2. 在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:被减数= 减数+ 差被减数+ 减数+ 差= 120所以被减数= 60差:60÷(3 + 1) = 153. 某班学生去划船,如果增加一条船,那么每条船正好坐6 人;如果减少一条船,那么每条船就要坐9 人。
问:学生有多少人?答案:设原来有x 条船。
6(x + 1) = 9(x - 1)x = 5学生人数:6×(5 + 1) = 36(人)4. 老师把一些苹果分给小朋友。
如果每人分一个,还剩下8 个苹果;如果每人分2 个,那么还少2 个苹果。
一共有多少个小朋友?答案:设小朋友有x 个。
x + 8 = 2x - 2x = 105. 甲、乙两数的和是180,甲数的1/4 等于乙数的1/5,甲、乙两数各是多少?答案:甲:乙= 4 : 5甲:180×4/(4 + 5) = 80乙:180 - 80 = 1006. 一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形。
原来长方形的面积是多少平方厘米?答案:设正方形边长为x 厘米。
(x - 2)(x - 5) + 60 = x²x = 10原长方形长8 厘米,宽 5 厘米,面积40 平方厘米。
7. 一筐苹果分给甲、乙、丙三人,甲分得全部苹果的1/5 加5 个苹果,乙分得全部苹果的1/4 加7 个苹果,丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8。
小升初奥数冲刺1.平均数问题 (3)2.差倍问题 (5)3.归一问题 (7)4.归总问题 (8)5.植树问题 (9)6.年龄问题 (13)7.鸡兔问题 (17)8.行程问题 (19)1)直线上的相遇与追及 (21)2)火车过人、过桥与错车问题 (22)3)多个对象间的行程问题 (24)4)环形问题与时钟问题 (25)9.流水行船行程问题 (26)10.盈亏问题 (30)11.工程问题 (35)12.百分数与纳税问题 (39)13.时钟问题—钟面追及问题、快慢表问题 (44)1)钟面追及问题 (44)2)快慢表问题 (44)14.图形问题 (49)15.牛吃草问题 (60)16.浓度与配比 (68)17.约数与倍数 (79)18.质数与合数 (80)19.抽屉原理 (82)1.平均数问题1、李明在期中考试中语文、外语和自然的平均分是74分,数学成绩公布后,四门成绩的平均分提高了3分。
李明数学数学考多少分?【解答】74×3=222分74+3=77分77×4=308分308-222=86分2、这学期,王平前四个单元测验的平均成绩是85分,他想使前五个单元的平均成绩上升到87分,第五个单元必须考多少分?【解答】85×4=340分87×5=435分435-340=95分3、李明在期中考试中语文、外语和自然的平均分是95分,数学成绩公布后四门成绩的平均分减少了2分。
你知道李明的数学得了几分吗?【解答】95×3=285分95-2=93分93×4=372分372-285=87分4、甲地到乙地的全程是120千米。
小红骑车从甲地到乙地每小时行30千米,从乙地返回甲地每小时行20千米。
求小红往返甲乙两地的平均速度。
【解答】120÷30=4小时120÷20=6小时120+120=240千米4+6=10小时240÷10=24千米此题需要注意,求平均速度,一定要用总路程除以总时间。
5、双休日,张强登山锻炼身体。
早上开始登山,每分钟行15米;下午沿原路返回每分钟行10米。
你知道张强登山锻炼身体的平均速度吗?【解答】此题中无具体路程,可设路程为11÷15=1/15 1÷10=1/101+1=22÷(1/15+1/10)=12米6、有6个数的平均数是12,如果把其中的一个数改为3,这时六个数的平均数是10,这个被改动的数原来是多少?【解答】12×6=7210×6=6072-60=1212+3=15改动的数原来是15。
7、有甲、乙、丙三个数,甲数和乙数的平均数是42,甲数和丙数的平均数是46,乙数和丙数的平均数是47,求甲、乙、丙这三个数各是多少?【解答】42×2=8446×2=9247×2=9484+92+94=270270÷2=135135-84=51此为丙135-92=43此为乙135-94=41此为甲。
8、有六个数排成一列,它们的平均数是29,前四个数的平均数是25,后四个数的平均数是32,第四个数是多少?【解答】29×6=17425×4=10032×4=128100+128=228228-174=569、有50个数,其平均数为38,如果划去其中两个数,这划去的两个数的和是124。
求剩下数的平均数。
【解答】(38×50-124)÷48=3710、一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求这个班有多少男生?【解答】此题要抓住总分相等的条件。
男生总分加女生总分等于全班总分。
设有男生x人,则全班有21+x人。
91.2×(21+x)=21×92+90.5×x解方程得到x=2411、把甲级和乙级糖混在一起,平均每千克卖7元,已知甲级糖有4千克,平均每千克8元,乙级糖有2千克,平均每千克多少元?【解答】此题要抓住总价值相等。
甲级糖总价+乙级糖总价=混合后糖的总价设乙级糖平均每千克x元。
4×8+2×x=7×(4+2)x=512、上题可以改成把甲级和乙级糖混在一起,已知甲级糖有4千克,平均每千克8元,乙级糖有2千克,平均每千克5元,混合后的糖果应定价多少元?【解答】(4×8+2×5)÷(4+2)=7元2.差倍问题例1 有两堆棋子,第一堆有87个,第二堆有69个.那么从第一堆拿多少个棋子到第二堆,就能使第二堆棋子数是第一堆的3倍.解:两堆棋子共有87+69=156(个).为了使第二堆棋子数是第一堆的3倍,就要把156个棋子分成1+3=4(份),即每份有棋子156 ÷(1+3)=39(个).第一堆应留下棋子39个,其余棋子都应拿到第二堆去.因此从第一堆拿到第二堆的棋子数是87-39=48(个).答:应从第一堆拿48个棋子到第二堆去.例2 有两层书架,共有书173本.从第一层拿走38本书后,第二层的书比第一层的2倍还多6本.问第二层有多少本书?解:我们画出下列示意图:我们把第一层(拿走38本后)余下的书算作1“份”,那么第二层的书是2份还多6本.再去掉这6本,即173-38-6=129(本)恰好是3份,每一份是129÷3=43(本).因此,第二层的书共有43×2 + 6=92(本).答:书架的第二层有92本书.说明:我们先设立“1份”,使计算有了很方便的计算单位.这是解应用题常用的方法,特别对倍数问题极为有效.把份数表示在示意图上,更是一目了然.例3 某小学有学生975人.全校男生人数是六年级学生人数的4倍少23人,全校女生人数是六年级学生人数的3倍多11人.问全校有男、女生各多少人?解:设六年级学生人数是“1份”.男生是4份-23人.女生是3份+11人.全校是7份-(23-11)人.每份是(975+12)÷7=141(人).男生人数=141×4-23=541(人).女生人数=975-541=434(人).答:有男生541人、女生434人.例2与例3是一个类型的问题,但稍有差别.请读者想一想,“差别”在哪里?设整数的份数,使计算简单方便.小学算术中小数、分数尽可能整数化,使思考、计算都较简捷.因此,“尽可能整数化”将会贯穿在以后的章节中.3.归一问题练习1、2台拖拉机4时耕地24公顷,照这样速度,5台拖拉机6时可耕地多少公顷?练习2.4台织布机5时可以织布2600米,24台织布机几小时才能织布24960米?练习3.一种幻灯机,5秒钟可以放映80张片子。
问:48秒钟可以放映多少张片子?练习4.3台抽水机8时灌溉水田48公顷,照这样的速度,5台同样的抽水机6时可以灌溉水田多小公顷?练习5.自行车厂5个工人7小时能安装自行车140辆,现在要在15小时内安装480辆自行车就需要增加多少个工人?练习6.面粉厂用3台磨面机4小时磨面粉1680吨,现在增加1台磨面机,每台磨面机每小时多磨面20吨,那么要磨3200吨面,需要多少小时?练习7.5辆卡车4次运货80吨,2辆汽车7次运货42吨,现在用一辆卡车和一辆汽车同时运15次,可运货多少吨?练习8.某工地需要1720吨水泥,4辆载重相同的汽车运了5次正好运了一半,余下的再增加6辆载重相同的汽车来运,还需几次运完?4.归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。
所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。
【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。
例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。
原来做791套衣服的布,现在可以做多少套?答:现在可以做904套。
例2 小华每天读24页书,12天读完了《红岩》一书。
小明每天读36页书,几天可以读完《红岩》?答:小明8天可以读完《红岩》。
例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。
后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?答:这批蔬菜可以吃25天。
5.植树问题例1. 有一个窗框长1米60厘米,准备安装7根铁栏杆,栏杆的距离是多少厘米?分析与解答:观察下图不难发现,7根铁栏杆把窗框平均分成8段,我们只要把1米60厘米平均分成8份就可以了。
植树问题(1)先求有多少个间隔?7+1=8(个)(2)再求栏杆间的距离1米60厘米=160厘米160÷8=20(厘米)答:栏杆的距离是20厘米。
例2. 时钟5点钟敲5下,8秒钟敲完,那么10点钟敲10下,需要多少秒?分析与解答:时钟5点钟敲5下,其中有4个间隔,4个间隔用8秒钟的时间,就可以求出每一个间隔所用的时间。
然后再想,10点钟敲10下,有9个间隔,就可以求出所需要的时间了。
(1)先求5下有几个间隔5-1=4(个)(2)再求每一个间隔的时间8÷4=2(秒)(3)再求10下有几个间隔10-1=9(个)(4)最后求需几秒钟2×9=18(秒)综合算式:8÷(5-1)×(10-1)=18(秒)答:需要18秒钟。
例3. 在一个正方形池塘四周栽树,四个顶点各栽一棵,这样每边都栽有25棵,如果每相邻两棵之间相距2米,这个正方形池塘的周长有多少米?分析与解答:这道题有两种解答方法,一种是先求一共有多少棵树,再求周长;另一种是先求正方形的边长,再求周长。
解法一:(1)先求一共有多少棵树25×4-4=96(棵)或:(25-1)×4=96(棵)(2)再求池塘的周长2×96=192(米)解法二:(1)先求池塘的边长2×(25-1)=48(米)(2)再求池塘的周长48×4=192(米)答:池塘的周长有192米。
例4. 长3米的钢管,从一端开始,先30厘米锯一段,再20厘米锯一段,这样长短交替锯成小段,可锯成30厘米长的有多少段?20厘米长的有多少段?若每锯一段用8分钟,锯完一段休息2分钟,全部锯完需用多少分钟?分析与解答:先把3米换算成300厘米,先可以求出把300厘米的长的木棍锯成50厘米的一段,再把每一个50厘米锯成2段,需要6次,共锯11次,休息10次。
3米=300厘米20+30=50(厘米)300÷50=6段6×2-1=11(次)(锯11次,休息10次)11×8+10×2=108(分钟)答:锯成30厘米的共6段,锯成20厘米的6段,锯完共需108分钟。