浙江省嘉兴市2014年中考专题复习试题:第17讲 二次函数的图象与性质(二)
- 格式:doc
- 大小:1.26 MB
- 文档页数:3
专题:二次函数图像与性质重难点题型考点一 二次函数的图像及性质1.对于抛物线y =-12(x +1)2+3,下列结论:①抛物线的开口向下; ②对称轴为直线x =1;③顶点坐标为(-1,3); ④x >1时,y 随x 的增大而减小. 其中正确结论的个数为( C ) A .1个 B .2个 C .3个 D .4个2.在函数y =ax 2-2ax -7上有A (-4,y 1),B (2,y 2),C (3,y 3)三点,若抛物线有最大值,则y 1,y 2和y 3的大小关系为( A ) A .y 1<y 3<y 2 B .y 3<y 2<y 1 C .y 2<y 1<y 3 D .y 1<y 2<y 3 3.若函数y =x 2-2x +b 的图象与坐标轴有三个交点,则b 的取值范围是( A )A .b <1且b ≠0B .b >1C .0<b <1D .b <14.二次函数y =kx 2-6x +3的图象与x 轴有两个交点,则k 的取值范围是 k <3且k ≠0 . 5.当-2≤x ≤1时,二次函数y =-(x -m )2+m 2+1有最大值4,求实数m 的值.解:当m >1时,∴当x =1时,y 取得最大值, 即-(1-m )2+m 2+1=4,解得m =2;当-2≤m ≤1时,∵-2≤x ≤1,∴当x =m 时,y 取得最大值,即m 2+1=4,解得m =-3或3(不合题意,舍去); 当m <-2时,∵-2≤x ≤1,∴当x =-2时,y 取得最大值,即-(-2-m )2+m 2+1=4,解得m =-74(不合题意,舍去).综上,实数m 的值为2或-3.考点二 二次函数的表达式的确定1.已知一个二次函数,当x =1时,y 有最大值8,其图象的形状、开口方向与抛物线y =-2x 2相同,则这个二次函数的表达式是( D )A .y =-2x 2-x +3B .y =-2x 2+4C .y =-2x 2+4x +8D .y =-2x 2+4x +62.已知矩形ABCD 的两条对称轴为坐标轴和点A (2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达式为y =x 2,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为( A ) A .y =x 2+8x +14 B .y =x 2-8x +14 C .y =x 2+4x +3 D .y =x 2-4x +33.将抛物线y =x 2-2x -1向上平移,使它经过点A (0,3),那么所得新抛物线对应的函数表达式是 y =x 2-2x +3 .4.已知点P (-1,5)在抛物线y =-x 2+bx +c 的对称轴上,且与该抛物线的顶点的距离是4,则该抛物线的表达式为 y =-x 2-2x 或y =-x 2-2x +8 .5.已知抛物线l :y =ax 2+bx +c (abc ≠0)的顶点为M ,与y 轴的交点为N ,我们称以N 为顶点,对称轴是y 轴且过点M 的抛物线为抛物线l 的衍生抛物线,直线MN 为抛物线l 的衍生直线.(1)抛物线y =x 2-2x -3的衍生抛物线是 y =-x 2-3 ,衍生直线是 y =-x -3 ;(2)若一条抛物线的衍生抛物线和衍生直线分别是y =-2x 2+1和y =-2x +1,求这条抛物线的表达式.解:由题可知,衍生抛物线和衍生直线的两交点分别为原抛物线与衍生抛物线的顶点,将y =-2x 2+1和y =-2x +1联立,得⎩⎨⎧y =-2x 2+1,y =-2x +1,解得⎩⎨⎧x =0,y =1或⎩⎨⎧x =1,y =-1.∵衍生抛物线y =-2x 2+1的顶点为(0,1), ∴原抛物线的顶点为(1,-1).设原抛物线的表达式为y =t (x -1)2-1,∵抛物线过(0,1),∴1=t (0-1)2-1,解得t =2,∴原抛物线的表达式为y =2(x -1)2-1=2x 2-4x +1.考点三 二次函数的图像应用1.已知二次函数y =x 2-4x +2,关于该函数在-1≤x ≤3的取值范围内,下列说法正确的是( D )A .有最大值0,有最小值-2B .有最大值0,有最小值-1C .有最大值7,有最小值-1D .有最大值7,有最小值-2 2.在同一平面直角坐标系中,函数y =mx +m 和y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能是( D )3.已知a ,b 是非零实数,|a |>|b |,在同一坐标系中,函数y 1=ax 2+bx 与一次函数y 2=ax +b 的大致图象不可能是( D )4.如图1,一次函数y 1=x 与二次函数y 2=ax 2+bx +c的图象相交于P ,Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能( A )图1 图25.如图2,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y =a (x -m )2+n 的顶点在线段AB 上运动,与x 轴交于C ,D 两点(点C 在点D 的左侧),点C 的横坐标最小值为-3,则点D 的横坐标最大值为 8 .考点四 二次函数与方程、不等式的关系1.抛物线y=ax 2+bx+c 的图象如图3,下列结论正确是( C ) A .abc>0 B .2a+b>0 C .3a+c<0 D .ax 2+bx+c -3=0有两个不相等的实数根 2.二次函数y =ax 2+bx +c (a ≠0)的图象如图4,下列结论: ①b 2>4ac , ②abc <0, ③2a +b -c >0, ④a +b +c <0. 其中正确的是( A ) A .①④ B .②④ C .②③ D .①②③④图3 图4 图53.二次函数y =ax 2+bx +c (a ≠0)的图象如图5,下列四个结论: ①4ac ﹣b 2<0;②4a +c <2b ;③3b +2c <0;④m (am +b )+b ≤a , 其中正确结论的个数是( B )A .4个B .3个C .2个D .1个4.若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( A ) A .m <a <b <n B .a <m <n <b C .a <m <b <n D .m <a <n <b 5.一次函数y =kx +4与二次函数y =ax 2+c 的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点. (1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图象相交于B ,C 两点,O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值. 解:(1)∵点(1,2)在一次函数y =kx +4的图象上, ∴2=k +4,即k =-2.∵一次函数y =kx +4与二次函数y =ax 2+c 图象的另一个交点是该二次函数图象的顶点,∴(0,c )在一次函数y =kx +4的图象上,即c =4, ∵点(1,2)也在二次函数y =ax 2+c 的图象上, ∴2=a +c ,∴a =-2.(2)∵点A 的坐标为(0,m )(0<m <4),过点A 且垂直于y 轴的直线与二次函数y =-2x 2+4的图象交于点B ,C ,∴可设点B 的坐标为(x 0,m ),由对称性得点C 的坐标为(-x 0,m ),∴BC =2|x 0|.∴BC 2=4x 20.∵点B 在二次函数y =-2x 2+4的图象上,∴-2x 20+4=m ,即x 20=2-m 2,∴BC 2=4x 20=8-2m . ∵OA =m ,∴W =OA 2+BC 2=m 2-2m +8=(m -1)2+7(0<m <4). ∴m =1时,W 有最小值,最小值为7.※课后练习1.在同一平面直角坐标系中,一次函数y=kx -2和二次函数y=kx 2+2x -4(k 是常数且k ≠0)的图象可能是 ( A )2.在同一平面直角坐标系内,二次函数y=ax 2+(a+c )x+c 与一次函数y=ax+c 的大致图象,正确的是 ( C )A .B .C .D . 3.已知m >0,关于x 的一元二次方程(x +1)(x -2)-m =0的解为x 1,x 2(x 1<x 2),则下列结论正确的是( A ) A .x 1<-1<2<x 2 B .-1<x 1<2<x 2 C .-1<x 1<x 2<2 D .x 1<-1<x 2<24.函数y =ax 2+bx +c 图象如图1,下列结论正确的有( B ) ①abc <0 ② b 2-4ac >0 ③ 2a >b ④ (a +c )2<b 2 A .1个 B .2个 C .3个 D .4个图1 图2 5.二次函数y =ax2+bx +c 的部分图象如图2所示,有以下结论:①3a -b =0;②b 2-4ac >0;③5a -2b +c >0;④4b +3c >0. 其中错误的结论( A ) A .1个 B .2个 C .3个 D .4个 6.已知二次函数的图象经过点P (2,2),顶点为O (0,0),将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为_ y =12x 2-4x +8__.7.同一坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n )x +n 关于y 轴对称,则m =5 ,n =-6 .8.当0≤x ≤3时,直线y =a 与抛物线y =(x -1)2-3有交点,则a 的取值范围是__-3≤a ≤1____.9.已知二次函数y =x 2-2x +3,当0≤x ≤m 时,y 最大值为3,最小值为2,则m 的取值范围是 1≤m ≤2 .10.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如下表:x ﹣1 0 1 3y ﹣1 3 5 3下列结论: ①ac <0; ②当x >1时,y 的值随x 值的增大而减小.③3是方程ax 2+(b ﹣1)x +c =0的一个根; ④当﹣1<x <3时,ax 2+(b ﹣1)x +c >0. 其中正确的结论有 ①③④ .11.已知抛物线y=-12x 2+mx 过点( 8,0 ).(1)求m 的值;(2)如图,在抛物线内作矩形ABCD , 使点C ,D 落在抛物线上,点A ,B 落 在x 轴上,设矩形ABCD 的周长为L , 求L 的最大值.解:(1)由条件可得-12×82+8m=0,解得m=4.(2)∵m=4,∴抛物线的表达式为y=-12x 2+4x .∵抛物线和矩形都是轴对称图形,∴点A 与点B ,点C 与点D 都关于抛物线的对称轴x=4对称,设点A (n ,0),则点D (n ,-12n 2+4n ),点B (8-n ,0),AB=8-2n .∴L=2(-12n 2+4n )+2(8-2n )=-n 2+4n+16=-(n -2)2+20,∴L 的最大值为20.12.已知二次函数y =34(x -m )2+m ,当2m -3≤x ≤2m 时,y的最小值是1.求m 的值. 解:若2m <m 即m <0,则在x =2m 时,y 取得最小值1,即有y =34(2m -m )2+m =1.解得m 1=-2,m 2=23(不合题意,舍去);若2m -3≤m ≤2m ,即0≤m ≤3时,则x=m时,y的最小值是1,此时m=1;若2m-3>m,即m>3时,则x=2m-3时y取得最小值1,此时32+m=1,4(2m-3-m)此方程无实数根;综上所述,m的值为1或-2.。
二次函2ax y =的图象【教学目标】1.会用描点法画出二次函数()02≠=a ax y 的图象,知道抛物线的有关概念; 2.了解抛物线()02≠=a ax y 的顶点、对称轴的概念; 3.理解二次函数()02≠=a ax y 的最值;4.了解二次函数()02≠=a ax y ,函数值y 随自变量x 变化的变化规律.【重点、难点】重点:会用描点法画出二次函数()02≠=a ax y 的图象.难点:由抛物线的图象直观得到二次函数()02≠=a ax y 的有关性质.【知识要点】1.二次函数2x y =的图象.用描点法画出二次函数2x y =的图象,如图, 它是一条关于y 轴对称的曲线,这样的曲线叫做抛物线.2.二次函数2x y =的有关性质.因为抛物线2x y =关于y 轴对称,所以y 轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线2x y =的顶点是图象的最低点,因为抛物线2x y =有最低点,所以函数2x y =有最小值,它的最小值就是最低点的纵坐标. 3.二次函数2ax y =的图象画法.用描点画二次函数2ax y =的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值,这样的对应值选取越密集,描出的图象越准确。
4.二次函数2ax y =的性质.2(2).抛物线2ax y =的对称轴是y 轴,顶点是原点,当0>a 时,抛物线开口向上,在对称轴左侧部分,y 随x 的增大而减小;在对称轴右侧部分,y 随x 的增大而增大.当0<a 时,抛物线开口向下,在对称轴左侧部分,y 随x 的增大而增大;在对称轴右侧部分,y 随x 的增大而减小;a 的大小决定抛物线2ax y =的开口大小,a 越大,抛物线开口越小;a 越小,抛物线开口越大.【典型例题】例1 画图.在同一坐标系内,画出下列函数的图象(1)y=2x 2 (2)y=-2x 2例2 填空1.函数y=31x 2的图象开口 ,顶点坐标为 ,对称轴为 ,当x=时,y 有最 值。
二次函数的图象和性质一、选择题1、(2013·湖州市中考模拟试卷7)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )答案:C2、(2013·湖州市中考模拟试卷8)抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .()213y x =++ B .()213y x =+- C .()213y x =-- D .()213y x =-+答案:D3、(2013·湖州市中考模拟试卷10)已知抛物线2y ax bx c =++(a <0)过)0,2(-A 、)0,0(O 、),3(1y B -、),3(2y C 四点,则1y 与2y 的大小关系是( )A .1y >2yB .1y 2y = C .1y <2y D .不能确定答案:A4、(2013年河南西华县王营中学一摸)将抛物线22-=x y 向左平移3个单位长度,再向上平移2个单位长度,所得的抛物线的解析式为( ) A .()23+=x y B .()23-=x y C .()122++=x y D .()122+-=x y答案:A5、(2013安徽芜湖一模)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0). 对于下列命题:①b ﹣2a =0;②abc >0;③a ﹣2b +4c <0; ④8a +c >0.其中正确结论的是__________. 答案:②③④6、(2013吉林镇赉县一模)某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线x x y 42+-=(单A.4米B.3米C.2米D.1米 答案:A7、(2013吉林镇赉县一模)如图,⊙O 的半径为2,C 1是函数221xy =的图象,C 2是函数221xy -=的图象,C 3是函数x y 3=的图象,则阴影部分的面积是 平方单位(结果保留π). 答案:π358、(2013江苏东台实中)抛物线4412-+-=x x y 的对称轴是( ). A 、2-=x B 、2=x C 、4-=x D 、4=x 答案:B9、(2013江苏东台实中)函数42-=x y 的图像与y 轴的交点坐标是( ).A 、(2,0)B 、(-2,0)C 、(0,4)D 、(0,-4) 答案:D10、(2013江苏东台实中)二次函数c bx ax y ++=2的图象如图所示,则下列结论中正确的是:( )A a >0 b <0 c >0B a <0 b <0 c >0C a <0 b >0 c <0D a <0 b >0 c >0 答案:D11、(2013江苏东台实中)已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )答案:B12、(2013江苏东台实中)将抛物线y =2x 经过怎样的平移可得到抛物线y =2(x +3) -4.( )A 、先向左平移3个单位,再向上平移4个单位B 、先向左平移3个单位,再向下平移4个单位C 、先向右平移3个单位,再向上平移4个单位D 、先向右平移3个单位,再向下平移4个单位 答案:B13、(2013江苏东台实中)已知函数201220132+-=x x y 与x 轴交点是)0,(),0,(n m ,则)20122014)(20122014(22+-+-n n m m 的值是( )A 、2012B 、2011C 、2014D 、、2013 答案:A14、(2013江苏射阴特庸中学)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根 答案:D15、(2013江苏扬州弘扬中学二模)如图是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围( ) A .x ≥0 B .0≤x ≤1 C .-2≤x ≤1 D .x ≤1答案:C 16、(2013江苏射阴特庸中学)已知二次函数的图象(-0.7≤x ≤2)如右图所示.关于该函数在所给自变量x 的取值范围内,下列说法正确的是( ) A .有最小值1,有最大值2 B .有最小值-1,有最大值1 C .有最小值-1,有最大值2 D .有最小值-1,无最大值 答案:C17、(2013江苏扬州弘扬中学二模)点A (2,y 1)、B (3,y 2)是二次函数y =x 2-2x +1的图象上两点,则y 1与y 2的大小关系为y 1_____ y 2( 填“>”、“<”、“=”). 答案:<18、(2013山东省德州一模)现掷A 、B 两枚均匀的小立方体(每个面上分别标有数字1,2,11题图3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x y,),那么各掷一次所确定的点P落在已知抛物线24y x x=-+上的概率为()A. 118B.112C.19D.16答案:B19、(2013山东省德州一模)已知抛物线cbxaxy++=2的图象如图所示,则下列结论:①abc>0;②2=++cba;③a<21;④b>1.其中正确的结论是()A. ①②B. ②③C. ③④D. ②④答案:D20、(2013山西中考模拟六) 若二次函222y ax bx a=++-(a b,为常数)的图象如下,则a的值为()A.2- B. C.1答案:D二、填空题1、(2013吉林镇赉县一模)抛物线()9122-++=kxky开口向下,且经过原点,则k= .答案:-32、(2013江苏东台实中)抛物线5)2(42+--=xy的对称轴是____,顶点坐标是____.答案:2=x;(2,5)3、(2013江苏东台实中)已知抛物线与x轴两交点分别是(-1,0),(3,0)另有一点(0,-3)也在图象上,则该抛物线的关系式________________ .答案:322--=xxy4、(2013江苏射阴特庸中学)如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个(第16题)b 的值,使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间.你所确定的b 的值是(写出一个值即可).答案:-1,0,……只要满足-2<b<2就行,答案不唯一。
《二次函数的图象和性质》教学设计执教者学情分析一、学生的年龄特点和认知特点初三年级的学生性格比较开朗活泼,对新鲜事物比较敏感,有自己的个人判断,因此,在教学过程中创设问题情景,留给他们动手实践、观察思考、自主探究、合作交流、归纳猜想的时间和空间.让他们经历获取知识的过程.二、学生已具备的基本知识与技能学生在八年级已经初步积累了函数知识和利用函数解决问题的经验.初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识.学生具有也一定的数学分析、理解能力.学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力.因此,在本课中,应多让学生动手实践、自主探究、合作交流,从而更好的体会到二次函数的特征.效果分析这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。
通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到二次函数图像的性质。
真正的形成往往来源于真实的自主探究。
只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。
在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。
首先,要设计适合学生探究的素材。
教材对二次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。
当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。
但是能让学生理解和接受的知识才是最好的。
如果牵强的引出来,不一定是好事。
其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。
探究教学是追求教学过程的探究和探究过程的自然和本真。
只有这样探究才是有价值的,真知才会有生长性。
要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。
结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。
2014年中考数学一轮复习讲义:二次函数的图象与性质【考纲要求】1.理解二次函数的有关概念.2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质.3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题.4.熟练掌握二次函数解析式的求法.【命题趋势】二次函数图象与性质是中考的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,中考命题常考查二次函数的概念、图象和性质等基础知识.【知识梳理】知识点一:二次函数的定义一般地,如果是常数,,那么叫做的二次函数.注意问题:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小。
知识点二:二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:①;②;③;④,其中;⑤.(以上式子a≠0)几种特殊的二次函数的图象特征如下:(轴)当(轴)(,)2.抛物线的三要素: 开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同. (2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线y=ax 2+bx+c(a,b,c 是常数,a≠0)中,a,b,c 的作用: (1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即 、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置. 当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .4.用待定系数法求二次函数的解析式: (1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:(a≠0).(由此得根与系数的关系:)。
二次函数的图象和性质一、选择题1、(湖州市中考模拟试卷7)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )答案:C2、(湖州市中考模拟试卷8)抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .()213y x =++ B .()213y x =+- C .()213y x =-- D .()213y x =-+ 答案:D3、(湖州市中考模拟试卷10)已知抛物线2y ax bx c =++(a <0)过)0,2(-A 、)0,0(O 、),3(1y B -、),3(2y C 四点,则1y 与2y 的大小关系是( )A .1y >2yB .1y 2y =C .1y <2yD .不能确定 答案:A4、(河南西华县王营中学一摸)将抛物线22-=x y 向左平移3个单位长度,再向上平移2个单位长度,所得的抛物线的解析式为( )A .()23+=x yB .()23-=x yC .()122++=x yD .()122+-=x y 答案:A5、(安徽芜湖一模)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0). 对于下列命题:①b ﹣2a =0;②abc >0;③a ﹣2b +4c <0; ④8a +c >0.其中正确结论的是__________.答案:②③④6、(吉林镇赉县一模)某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线x x y 42+-=(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米 答案:A7、(吉林镇赉县一模)如图,⊙O 的半径为2,C 1是函数221x y =的图象,C 2是函数221x y -=的图象,C 3是函数x y 3=的图象,则阴影部分的面积是 平方单位(结果保留π). 答案:π35 8、(江苏东台实中)抛物线4412-+-=x x y 的对称轴是( ). A 、2-=x B 、2=x C 、4-=x D 、4=x 答案:B9、(江苏东台实中)函数42-=x y 的图像与y 轴的交点坐标是( ).A 、(2,0)B 、(-2,0)C 、(0,4)D 、(0,-4) 答案:D10、(江苏东台实中)二次函数c bx ax y ++=2的图象如图所示,则下列结论中正确的是 A 、a >0 b <0 c >0 B 、a <0 b <0 c >0 C 、a <0 b >0 c <0 D 、a <0 b >0 c >0 答案:D11、(江苏东台实中)已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )答案:B12、(江苏东台实中)将抛物线y =2x 经过怎样的平移可得到抛物线y =2(x +3) -4.( ) A 、先向左平移3个单位,再向上平移4个单位 B 、先向左平移3个单位,再向下平移4个单位 C 、先向右平移3个单位,再向上平移4个单位 D 、先向右平移3个单位,再向下平移4个单位 答案:B13、(江苏东台实中)已知函数201220132+-=x x y 与x 轴交点是)0,(),0,(n m ,则)20122014)(20122014(22+-+-n n m m 的值是( )A 、2012B 、2011C 、2014D 、、 答案:A14、(江苏射阴特庸中学)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是()A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根 答案:D15、(江苏扬州弘扬中学二模)如图是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象, 观察图象写出y 2≥y 1时,x 的取值范围( ) A .x ≥0 B .0≤x ≤1 C .-2≤x ≤1 D .x ≤1 答案:C16、(江苏射阴特庸中学)已知二次函数的图象(-0.7≤x ≤2)如右图所示.关于该函数在所给自变量x 的取值范围内,下列说法正确的是( ) A .有最小值1,有最大值2 B .有最小值-1,有最大值1 C .有最小值-1,有最大值2 D .有最小值-1,无最大值 答案:C17、(江苏扬州弘扬中学二模)点A (2,y 1)、B (3,y 2)是二次函数y =x 2-2x +1的图象上两点,则y 1与y 2的大小关系为y 1_____ y 2( 填“>”、“<”、“=”).11题图x答案:<18、(山东省德州一模)现掷A 、B 两枚均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x y ,),那么各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为( ) A.118 B.112 C.19 D.16答案:B19、(山东省德州一模)已知抛物线c bx ax y ++=2的图象如图所示,则下列结论:①abc >0;② 2=++c b a ; ③a <21④b >1.其中正确的结论是 ( )A. ①②B. ②③C. ③④D. 答案:D20、 (山西中考模拟六) 若二次函数222y ax bx a =++-(a b ,为常数)的图象如下,则a 的值为( ) A .2-B .C .1D答案:D 二、填空题1、(吉林镇赉县一模)抛物线()9122-++=k x k y 开口向下,且经过原点,则k = .答案:-32、(江苏东台实中)抛物线5)2(42+--=x y 的对称轴是____,顶点坐标是____. 答案:2=x ;(2,5)3、(江苏东台实中)已知抛物线与x 轴两交点分别是(-1,0),(3,0)另有一点(0,-3)也在图象上,则该抛物线的关系式________________ . 答案:322--=x x y4、(江苏射阴特庸中学)如图,已知抛物线y =x 2+bx +c经过点(0,-3),请你确定一个b的值,使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间.你所确定的b 的值是 (写出一个值即可).(第16题)答案:-1,0,……只要满足-2<b <2就行,答案不唯一。
嘉兴市初中数学二次函数真题汇编附解析一、选择题1.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .aB .bC .cD .d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.2.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时,(4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.3.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点;②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <Q1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a <-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误 0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】 本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.4.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④【答案】A【解析】【分析】 ①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误;③对称轴:直线12b x a=-=-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误;④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.【详解】解:①∵抛物线与x 轴由两个交点,∴240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,∴0abc >,故②错误;③∵对称轴:直线12b x a=-=-, ∴2b a =,∴24a b c a c +-=-,∵0a <,40a <, 0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.5.已知抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B ,将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则c 的值为( )A .BC .32D .52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形的性质,列出关于c 的方程,即可求解.【详解】∵抛物线2:4W y x x c =-+,其顶点为A ,与y 轴交于点B , ∴A(2,c-4),B(0,c),∵将抛物线W 绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键.6.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()21 1226,2y t t t t =⋅-=-+y 是t 的二次函数故符合y与t的函数图象是B.故选:B.【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.7.将抛物线y=x2﹣4x+1向左平移至顶点落在y轴上,如图所示,则两条抛物线.直线y=﹣3和x轴围成的图形的面积S(图中阴影部分)是()A.5 B.6 C.7 D.8【答案】B【解析】【分析】B,C分别是顶点,A是抛物线与x轴的一个交点,连接OC,AB,阴影部分的面积就是平行四边形ABCO的面积.【详解】抛物线y=x2﹣4x+1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y轴上,此时顶点B(0,-3),点A是抛物线与x轴的一个交点,连接OC,AB,如图,阴影部分的面积就是ABCO的面积,S=2×3=6;故选:B.【点睛】本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.8.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A .12≤m <1B .12<m ≤1C .1<m ≤2D .1<m <2 【答案】B【解析】【分析】 画出图象,利用图象可得m 的取值范围【详解】 ∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(m =1时) 答案图2( m =时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12. 此时抛物线解析式为y =12x 2﹣2x . 当x =1时,得13121122y =⨯-⨯=-<-.∴点(1,﹣1)符合题意.当x =3时,得13923122y =⨯-⨯=-<-.∴点(3,﹣1)符合题意. 综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m =12不符合题. ∴m >12. 综合①②可得:当12<m ≤1时,该函数的图象与x 轴所围成的区域(含边界)内有七个整点,故选:B .【点睛】 考查二次函数图象与系数的关系,抛物线与x 轴的交点,画出图象,数形结合是解题的关键.9.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.10.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】【分析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =.故选C .考点:抛物线与x 轴的交点.11.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a>0,∴m +n <2a ; ∴D 正确,故选:C .【点睛】 本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.12.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】 由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断.【详解】解:∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线12b x a=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∴abc <0,所以①错误;∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(3,0),∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下,∴当x 1<时,y 随x 的增大而增大 ∵103132-<-< 点13,2y ⎛⎫- ⎪⎝⎭ 到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭ 对称轴的距离近, ∴y 1>y 2,所以④正确.故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.13.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( ) A . B .C .D .【答案】B【解析】【分析】由题意可求m <﹣2,即可求解.【详解】∵抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,∴△=4﹣4(﹣m ﹣1)<0∴m <﹣2∴函数y =的图象在第二、第四象限,故选B .【点睛】本题考查了反比例函数的图象,二次函数性质,求m 的取值范围是本题的关键.14.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D .【点睛】 本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.15.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( )A .4B .3C .2D .1 【答案】B【解析】【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④.【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半,∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c ,∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+= 解得:72c =或4c = ∵4c <, ∴72c =,故④错误, ∴正确的有①②③,故选:B .【点睛】 本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.16.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.17.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6【答案】B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h <2时,有-(2-h )2=-1,解得:h 1=1,h 2=3(舍去);当2≤h≤5时,y=-(x-h )2的最大值为0,不符合题意;当h >5时,有-(5-h )2=-1,解得:h 3=4(舍去),h 4=6.综上所述:h 的值为1或6.故选B.点睛:本题考查了二次函数的最值以及二次函数的性质,分h<2、2≤h≤5和h>5三种情况求出h值是解题的关键.18.在函数2yx=,3y x=+,2y x=的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2yx=符合条件.故选:B.【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.19.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3aT,故点P、Q的速度比为3:3,故设点P、Q的速度分别为:3v、3v,由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=33,则HQ=CH﹣CQ=33﹣23=3,PQ=22PH HQ+=39+=23,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.20.已知二次函数y=a(x﹣h)2+k的图象如图所示,直线y=ax+hk的图象经第几象限()A.一、二、三B.一、二、四C.一、三、四D.二、三、四【答案】D【解析】【分析】根据二次函数的图象和性质可得a<0,h<0,k>0,以此判断一次函数的图象所经过的象限即可.【详解】解:由函数图象可知,y=a(x﹣h)2+k中的a<0,h<0,k>0,∴直线y=ax+hk中的a<0,hk<0,∴直线y=ax+hk经过第二、三、四象限,故选:D.【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键.。
2014年中考全国数学试题二次函数的图象和性质专题一、选择题1. (2012重庆市4分)已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为21-=x 。
下列结论中,正确的是【 】 A .0abc > B .0a b += C .20b c >+ D .42a c b +<2. (2012浙江衢州3分)已知二次函数y=﹣x 2﹣7x+,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是【 】A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 13. (2012浙江义乌3分)如图,已知抛物线y 1=﹣2x 2+2,直线y 2=2x+2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M=y 1=y 2.例如:当x=1时,y 1=0,y 2=4,y 1<y 2,此时M=0.下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小;③使得M 大于2的x 值不存在; ④使得M=1的x 值是或.其中正确的是【 】A .①②B .①④C .②③D .③④4. (2012江苏常州2分)已知二次函数()()2y=a x 2+c a 0>-,当自变量x 分别取2,3,0时,对应的值分别为123y y y ,,,则123y y y ,,的大小关系正确的是【 】A. 321y y y <<B. 123y y y <<C. 213y y y <<D. 312y y y <<5. (2012江苏镇江3分)关于x 的二次函数()()y=x+1x m -,其图象的对称轴在y 轴的右侧,则实数m 的取值范围是【 】A. m<1-B. 1<m<0-C. 0<m<1D. m>15. (2012湖北天门、仙桃、潜江、江汉油田3分)已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b ﹣2a=0;②abc <0;③a ﹣2b+4c <0;④8a+c >0.其中正确的有【 】A .3个B .2个C .1个D .0个6. (2012湖北宜昌3分)已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是【 】A .第四象限B .第三象限C .第二象限D .第一象限7. (2012湖南郴州3分)抛物线2y x 12=-+()的顶点坐标是【 】 A .(-1,2) B .(-1,-2) C .(1,-2) D .(1,2)8. (2012湖南衡阳3分)如图为二次函数y=ax 2+bx+c (a≠0)的图象,则下列说法:①a >0 ②2a+b=0 ③a+b+c >0 ④当﹣1<x <3时,y >0其中正确的个数为【 】A .1B .2C .3D .49. (2012湖南株洲3分)如图,已知抛物线与x 轴的一个交点A (1,0),对称轴是x=﹣1,则该抛物线与x 轴的另一交点坐标是【 】A .(﹣3,0)B .(﹣2,0)C .x=﹣3D .x=﹣210. (2012四川乐山3分)二次函数y=ax 2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t 值的变化范围是【 】A .0<t <1B .0<t <2C .1<t <2D .﹣1<t <111. (2012四川广元3分) 若二次函数22y ax bx a 2=++-(a ,b 为常数)的图象如图,则a 的值为【 】A. 1B. 2C. 2-D. -212. (2012四川德阳3分)设二次函数2y x bx c =++,当x 1≤时,总有y 0≥,当1x 3≤≤时,总有y 0≤,那么c 的取值范围是【 】A.c 3=B.c 3≥C.1c 3≤≤D.c 3≤13. (2012四川巴中3分) 对于二次函数y 2(x 1)(x 3)=+-,下列说法正确的是【 】A. 图象的开口向下B. 当x>1时,y 随x 的增大而减小C. 当x<1时,y 随x 的增大而减小D. 图象的对称轴是直线x=-114. (2012辽宁鞍山3分)如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点B 坐标(﹣1,0),下面的四个结论:①OA=3;②a+b+c <0;③ac >0;④b 2﹣4ac >0.其中正确的结论是【 】A .①④B .①③C .②④D .①②15. (2012山东滨州3分)抛物线234y x x =--+ 与坐标轴的交点个数是【 】 A .3 B .2 C .1 D .016. (2012山东济南3分)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是【 】A .y 的最大值小于0B .当x=0时,y 的值大于1C .当x=-1时,y 的值大于1D .当x=-3时,y 的值小于017. (2012山东日照4分)二次函数y=ax 2+bx +c(a≠0)的图象如图所示,给出下列结论:① b 2-4ac>0;② 2a +b<0;③ 4a -2b +c=0;④ a ︰b ︰c= -1︰2︰3.其中正确的是【 】(A) ①② (B) ②③ (C) ③④ (D)①④18. (2012山东泰安3分)二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为【 】 A .3- B .3 C .6- D .919. (2012山东泰安3分)设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上的三点,则1y ,2y ,3y 的大小关系为【 】A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>20. (2012山东威海3分)已知二次函数()2y=ax +bx+c a 0≠的图象如图所示,下列结论错误的是【 】A.abc >0B.3a >2bC.m (am +b )≤a -bD.4a -2b +c <021. (2012山东烟台3分)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有【 】A .1个B .2个C .3个D .4个22. (2012山东枣庄3分)抛物线2y ax bx 3=+-经过点(2,4),则代数式8a 4b 1++的值为【 】A .3B .9C .15D .15-23. (2012河北省3分)如图,抛物线y 1=a (x +2)2-3与y 2=12(x -3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:①无论x 取何值,y 2的值总是正数;②a=1;③当x=0时,y 2-y 1=4;④2AB=3AC ;其中正确结论是【 】A .①②B .②③C .③④D .①④24. (2012甘肃白银3分)二次函数2y ax bx c =++的图象如图所示,则函数值y 0<时x 的取值范围是【 】A .x 1<-B .x >3C .-1<x <3D .x 1<-或x >325. (2012甘肃兰州4分)抛物线y =-2x 2+1的对称轴是【 】A .直线1x=2 B .直线1x=2- C .y 轴 D .直线x =2 26. (2012甘肃兰州4分)已知二次函数y =a(x +1)2-b(a≠0)有最小值,则a ,b 的大小关系为【 】A .a >bB .a <bC .a =bD .不能确定27. (2012青海西宁3分)如图,二次函数y =ax 2+bx +c 的图象过点(-1,1)、(2,-1).下列关于这个二次函数的叙述正确的是【 】A .当x =0时,y 的值大于1B .当x =3时,y 的值小于0C .当x =1时,y 的值大于1D .y 的最大值小于028. (2012黑龙江黑河、齐齐哈尔、大兴安岭、鸡西3分)已知二次函数y=ax 2+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0 ②b 2-4ac<0 ⑤c<4b ④a +b>0,则其中正确结论的个数是【 】 A .1个 B .2个 C .3个 D .4个29. (2012黑龙江牡丹江3分)抛物线2y ax bx c =++与x 轴的交点坐标是(-l ,0)和(3,0),则这条抛物线的对称轴是【 】.A .直线x=-1 8.直线x=0 C .直线x=1 D .直线x= 3二、填空题1. (2012广东深圳3分)二次函数622+-=x x y 的最小值是 .2. (2012江苏苏州3分)已知点A (x 1,y 1)、B (x 2,y 2)在二次函数y=(x -1)2+1的图象上,若x 1>x 2>1,则y 1 y 2.3. (2012江苏无锡2分)若抛物线y=ax 2+bx+c 的顶点是A (2,1),且经过点B (1,0),则抛物线的函数关系式为 .4. (2012湖北咸宁3分)对于二次函数2y x 2mx 3=--,有下列说法:①它的图象与x 轴有两个公共点;②如果当x ≤1时y 随x 的增大而减小,则m 1=;③如果将它的图象向左平移3个单位后过原点,则m 1=-;④如果当x 4=时的函数值与x 2008=时的函数值相等,则当x 2012=时的函数值为3-.其中正确的说法是 .(把你认为正确说法的序号都填上)5. (2012湖北孝感3分)二次函数y =ax 2+bx +c(a≠0)的图象的对称轴是直线x =1,其图象的一部分如图所示.下列说法正确的是 (填正确结论的序号).①abc <0;②a -b +c <0;③3a +c <0;④当-1<x <3时,y >0.6. (2012辽宁营口3分)二次函数n x x y +-=62的部分图像如图所示,若关于x 的一元二次方程062=+-n x x 的一个解为11=x ,则另一个解2x = .7. (2012山东枣庄4分)二次函数2y x 2x 3=--的图象如图所示.当y <0时,自变量x 的取值范围是 .8. (2012新疆区5分)当x= 时,二次函数y=x 2+2x ﹣2有最小值.9. (2012吉林长春3分)如图,在平面直角坐标系中,点A 是抛物线()2y=a x 3+k -与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 .10. (2012黑龙江牡丹江3分)若抛物线2y ax bx c =++经过点(-1,10),则a b c -+= .11. (2012黑龙江大庆3分)已知二次函数y=-x 2-2x +3的图象上有两点A(-7,1y ),B(-8,2y ),则1y 2y .(用>、<、=填空).三、解答题1. (2012北京市7分)已知二次函数23y (t 1)x 2(t 2)x 2=++++在x 0=和x 2=时的函数值相等。
课时训练(十四)二次函数的图象与性质(二)|夯实基础|1.抛物线y=2x2-2x+1与坐标轴的交点个数是()A.0B.1C.2D.32.若二次函数y=x2+mx的对称轴是直线x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6B.x1=1,x2=7C.x1=1,x2=-7D.x1=-1,x2=73.[ 019·淄博]将二次函数y=x2-4x+a的图象向左平移一个单位,再向上平移一个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是 ()A.a>3B.a<3C.a>5D.a<54.如图K14-1,已知二次函数y1=x2-x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若0<y1<y2,则x的取值范围是()图K14-1A.0<x<2B.0<x<3C.2<x<3D.x<0或x>35.[ 019·鄂州]二次函数y=ax2+bx+c的图象如图K14-2所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()图K14-2A.1个B.2个C.3个D.4个6.[ 019·泸州]已知二次函数y=(x-a-1)(x-a+1)-3a+7(其中x是自变量)的图象与x轴没有公共点,且当x<-1时,y随x的增大而减小,则实数a的取值范围是()A.a<2B.a>-1C.-1<a≤D.-1≤a<27.[ 019·湖州]已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()图K14-38.[ 019·广元]如图K14-4,抛物线y=ax2+bx+c(a≠0)过点(-1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是.图K14-49.[ 019·雅安]已知函数y=-0)- ≤0)的图象如图K14-5所示,若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为.图K14-510.[ 019·达州]如图K14-6,抛物线y=-x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=-x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(-2,y1),点N1,y2,点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得的抛物线解析式为y=-(x+1)2+m;④点A关于直线x=1的对称点为C,点D,E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为+.其中正确判断的序号是.图K14-611.[ 019·荆门]抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(-1,0),B(m,0),C(-2,n)(1<m<3,n<0),下列结论:①abc>0;②3a+c<0;③a(m-1)+2b>0;④a=-1时,存在点P使△PAB为直角三角形.其中正确结论的序号为.12.[ 018·黄冈]已知直线l:y=kx+1与抛物线y=x2-4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线的两交点为A,B,O为原点,当k=-2时,求△OAB的面积.13.如图K14-7,抛物线l:y=-1(x-t)(x-t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA·MP=12.(1)求k的值;(2)当t=1时,求AB的长,并求直线MP与抛物线l的对称轴之间的距离;(3)把抛物线l在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标.图K14-714.[ 019·杭州]设二次函数y=(x-x1)(x-x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=1时,y=-1.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示)..(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<11|拓展提升|15.[ 018·杭州]四位同学在研究函数y=x2+bx+c(b,c为常数)时,甲发现当x=1时,函数有最小值;乙发现-1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是 ()A.甲B.乙C.丙D.丁16.如图K14-8所示,将二次函数y=x2-m(其中m>0)的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,形成新的图象记为y1,另有一次函数y=x+b的图象记为y2,则以下说法:(1)当m=1,且y1与y2恰好有三个交点时,b有唯一值为1;(2)当b=2,且y1与y2恰有两个交点时,m>4或0<m<;(3)当m=b时,y1与y2至少有两个交点,且其中一个为(0,m);(4)当m=-b时,y1与y2一定有交点.其中正确说法的序号为.图K14-817.如图K14-9①,抛物线y=-x2+mx+n交x轴于点A(-2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图②,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN长度的最大值.图K14-918.[ 019·仙桃]在平面直角坐标系中,已知抛物线C:y=ax2+2x-1(a≠0)和直线l:y=kx+b,点A(-3,-3),B(1,-1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=-1,二次函数y=ax2+2x-1的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.【参考答案】1.C2.D3.D4.C5.C[解析]①∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴右侧,∴->0,∴b<0.∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,故①错误;②当x=-1时,y>0,∴a-b+c>0,∵-=1,∴b=-2a,把b=-2a代入a-b+c>0中得3a+c>0,故②正确;③当x=1时,y<0,∴a+b+c<0,∴a+c<-b.∵a-b+c>0,∴a+c>b,∴|a+c|<|b|,∴(a+c)2<(-b)2,即(a+c)2-b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+mb+c,即a+b≤m(am+b),所以④正确.故选C.6.D[解析]y=(x-a-1)(x-a+1)-3a+7=x2-2ax+a2-3a+6,∵抛物线与x轴没有公共点,∴Δ=(-2a)2-4(a2-3a+6)<0,解得a<2.∵抛物线的对称轴为直线x=--=a,抛物线开口向上,而当x<-1时,y随x的增大而减小, ∴a≥-1,∴实数a的取值范围是-1≤a<2.7.D[解析]由得1110故直线与抛物线的两个交点坐标分别为(1,a+b)和-,0.对于D选项,从直线过第一、二、四象限可知:a<0,b>0.又∵|a|>|b|,∴a+b<0.从而(1,a+b)在第四象限,因此D选项不正确,故选D.8.-6<M<6[解析]∵y=ax2+bx+c过点(-1,0),(0,2),∴c=2,a-b=-2,∴b=a+2.∵顶点在第一象限,a<0,∴->0,b>0,a+2>0,a>-2,∴-2<a<0,M=4a+2b+c=4a+2(a+2)+2=6a+6,∴-6<M<6.9.0<m<1[解析]由y=x+m与y=-x2+2x得x+m=-x2+2x,整理得x2-x+m=0,当有两个交点时,b2-4ac=(-1)2-4m>0,解得m<1,当直线y=x+m经过原点时与函数y=-0)-0的图象有两个不同的交点,再向上平移,有三个交点,∴m>0,∴m的取值范围为0<m<1.10.①③④[解析]由题意得,m+2=-x2+2x+m+1,化简得x2-2x+1=0,∵b2-4ac=0,∴抛物线y=-x2+2x+m+1与直线y=m+2有且只有一个交点,①正确;由图可得:y1<y3<y2,故②错误;y=-x2+2x+m+1=-(x-1)2+m+2,将该抛物线向左平移2个单位,再向下平移2个单位,所得的抛物线解析式为y=-(x+1)2+m,故③正确;当m=1时,抛物线解析式为y=-x2+2x+2,∴A(0,2),C(2,2),B(1,3).作点B关于y轴的对称点B'(-1,3),作点C 关于x轴的对称点C'(2,-2).连结B'C',与x轴、y轴分别交于点D,E.则BE+ED+CD+BC=B'E+ED+C'D+BC=B'C'+BC.此时,四边形BCDE的周长最小.为+,故④正确.11.②③[解析]将A(-1,0),B(m,0),C(-2,n)代入解析式y=ax2+bx+c,∴对称轴x=-1=-,∴-=m-1,a(m-1)=-b.∵1<m<3,∴ab<0.∵n<0,∴a<0,∴b>0.∵a-b+c=0,∴c=b-a>0,∴abc<0,①错误;②易知当x=3时,y<0,∴9a+3b+c=9a+3(a+c)+c=12a+4c=4(3a+c)<0,②正确;③a(m-1)+2b=-b+2b=b>0,③正确;④a=-1时,y=-x2+bx+c=-x2+bx+b+1,∴P,b+1+,若△PAB为直角三角形,则△PAB为等腰直角三角形,∴b+1+=+1,∴b=-2,∵b>0,∴不存在点P使△PAB为直角三角形.④错误.故答案为②③.12.解:(1)证明:联立两个函数表达式,得x2-4x=kx+1,即x2-(4+k)x-1=0,其中Δ=(4+k)2+4>0,所以该一元二次方程有两个不相等的实数根,即直线l与抛物线总有两个交点.(2)如图,连结AO,BO,联立两个函数表达式,得x2-4x=-2x+1,解得x1=1-,x2=1+.设直线l与y轴交于点C,在一次函数y=-2x+1中,令x=0,得y=1,所以C(0,1),OC=1.所以S△ABO=S△AOC+S△BOC=1·OC·|x A|+1·OC·|x B|=1·OC·|x A-x B|=1×1×2=.13.解:(1)设点P(x,y),则MP=y,由OA的中点为M知OA=2x,代入OA·MP=12,得2x·y=12,即xy=6,∴k=xy=6.(2)当t=1时,令y=0,得0=-1(x-1)(x+3).∴x1=1,x2=-3.由点B在点A的左边,得B(-3,0),A(1,0),∴AB=4.∵抛物线l的对称轴为直线x=-1,而点M的坐标为1 0,∴直线MP与抛物线l的对称轴之间的距离为.(3)∵A(t,0),B(t-4,0),∴抛物线l的对称轴为直线x=t-2,直线MP为直线x=.当t- ≤,即t≤ 时,顶点(t-2,2)就是G的最高点;就是G的最高点.当t-2>,即t>4时,抛物线l与直线MP的交点-1814.解:(1)乙求得的结果不正确,理由如下:∵当x=0时,y=0;当x=1时,y=0,∴二次函数图象经过点(0,0),(1,0),∴x1=0,x2=1,∴y=x(x-1)=x2-x,当x=1时,y=-1,∴乙求得的结果不正确.(2)对称轴为直线x=1.当x=1时,y=-1-),∴函数的最小值为-1-).(3)证明:∵二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1-x1-x2+x1x2,∴mn=x1x2(1-x1)(1-x2)=(x1-1)(x2-)=-x1-12+1-x2-12+1.∵0<x1<x2<1,并结合函数y=x(1-x)的图象,.∴0<-x1-12+1≤1,0<-x2-12+1≤1,且-x1-12+1与-x2-12+1不能同时取1,∴0<mn<11 15.B[解析]甲:-=1,b=-2;乙∶1-b+c=0;丙:-=3,4c-b2=12;丁:4+2b+c=4.若甲错:10- 1 由乙、丁得1代入丙,不成立,不合题意;若乙错:- 1 由甲、丁得代入丙,成立,符合题意;若丙错:10由甲、丁得代入乙,不成立,不符合题意; 若丁错:10- 1由甲、乙得代入丙,不成立,不合题意. 16.(2)(3)[解析]根据题意,y1=-或) --)(1)中,当m=1时,由于y1与y2恰好有三个交点,故有两种可能:一是直线y=x+b过点(-1,0)且与抛物线y=-x2+1相交,解得b=1;二是直线y=x+b与抛物线y=-x2+1有且仅有1个交点,且与抛物线y=x2-1有两个交点,解得b=,故(1)不正确.(2)中,要使y1与y2恰有两个交点,有两种情况:一是直线y=x+2与y=-x2+m没有交点,令x2+x+2-m=0,由12-4(2-m)<0,得m<,则0<m<;二是直线y=x+2与x轴的交点横坐标x满足-<x<,即-<-2<,解得m>4,故(2)正确.(3)中,由得两个交点(0,m),(-1,m-1),故(3)正确.(4)中,直线y=x-m恒过点(0,-m),将x=代入y=x-m,得y=-m,显然不一定大于或等于0,即y1与y2不一定有交点,故不正确.17.解:(1)将A(-2,0),C(0,2)的坐标代入抛物线的解析式y=-x2+mx+n,得--0解得1∴抛物线的解析式为y=-x2-x+2.(2)由(1)知,该抛物线的解析式为y=-x2-x+2,易得B(1,0),依据S△AOM=2S△BOC列方程可得:1·AO×|y M|=2×1×OB×OC,∴1×2×|-a2-a+2|=2,∴a2+a=0或a2+a-4=0,解得a=0或-1或-1 1 ,∴符合条件的点M 的坐标为:(0,2)或(-1,2)或-1 1,-2或-1- 1,-2.(3)设直线AC 的解析式为y=kx+b ,将A (-2,0),C (0,2)代入,得 - 0解得 1∴直线AC 的解析式为y=x+2,设N (x ,x+2)(- ≤x ≤0) 则D (x ,-x 2-x+2),ND=(-x 2-x+2)-(x+2)=-x 2-2x=-(x+1)2+1, ∵-1<0,∴x=-1时,ND 有最大值1.18.[解析](1)先求出直线的解析式,然后由二次函数解析式与一次函数解析式得到一元二次方程,利用根的判别式Δ≥0 求出a 的取值范围;(2)对自变量的取值范围在对称轴的左、右两侧进行分类,结合增减性求出m 的值;(3)抛物线经过(0,-1)这一定点,将抛物线分开口向上和开口向下两种情况求出a 的取值范围. 解:(1)将A (-3,-3),B (1,-1)的坐标代入 y=kx+b 中,得:- 1 解得 1∴直线l 的解析式为:y=1x-. ∵抛物线C 与直线l 有交点, ∴ax 2+2x-1=1 x-有实数根, 整理得2ax 2+3x+1=0, ∴Δ=9-8a ≥0 ∴a ≤98,∴a 的取值范围是a ≤98且a ≠0.(2)当a=-1时,抛物线为:y=-x 2+2x-1=-(x-1)2,对称轴为直线x=1, 当m ≤x ≤m+2<1时,y 随x 的增大而增大, 当x=m+2时,函数y 有最大值-4, ∴m=1(舍去)或-3.当1<m ≤x ≤m+2时,y 随x 的增大而减小, 当x=m 时,函数y 有最大值-4, ∴m=-1(舍去)或3. 综上所述m= 3. (3)9≤a<98或a ≤-2.[解析]当a<0时,对称轴为直线x=-1,-1>0,11 将B (1,-1)代入y=ax 2+2x-1,得a=-2,∴当a ≤-2时,抛物线C 与线段AB 有两个不同的交点; 当a>0时,对称轴为直线x=-1 ,-1 <0,将A (-3,-3)代入y=ax 2+2x-1,得a= 9,∴当 9≤a<98时,抛物线C 与线段AB 有两个不同的交点. 综上所述,抛物线C 与线段AB 有两个不同的交点时, 9≤a<98或a ≤-2.。
卜人入州八九几市潮王学校初三数学二次函数的图象和性质知识精讲【同步教育信息】一.本周教学内容:二次函数的图象和性质二.重点、难点:重点:二次函数的图象与性质难点:是灵敏应用图象的性质二次函数y=ax 2+bx+c(a )0≠的图象是一条抛物线,它的顶点为〔a b 2-,a b ac 442-〕 图象对称于直线x=ab 2- 1.其中,对称轴x=ab 2-是平行于或者重合于y 轴的一条直线。
2.抛物线y=ax 2+bx+c(a )0≠的开口方向与开口大小均由二次项系数a 确定,当a 大于0时,开口向上,且图象向上无限伸展。
当a 小于0时,开口向下,且图象向下无限伸展。
一般地,当a 越大,那么开口越小,反之开口越大。
3.抛物线的平移是指:坐标轴不变,图象挪动。
平移可沿着x 轴或者者y 轴进展,一般对于抛物线y=a(x+m)2+k(a )0≠由抛物线y=ax 2平移得到。
①当m 大于0时,向左平移m 个单位。
当m 小于0时,向右平移m 个单位。
②当k 大于0时,向上平移k 个单位。
当k 小于0时,向下平移k 个单位。
以上规律可统称为:“左加右减,上加下减。
〞4.假设抛物线y=ax 2+bx+c(a )0≠与x 轴交于A 〔x 1,0〕,B 〔x 2,0〕,那么AB=21x x -=a ∆可称为抛物线在x 轴上截得的弦长。
【典型例题】例1:抛物线与X 轴交于A(-2,0),B(4,0)且顶点到X 轴的间隔为3,求它的解析式。
解:设y=a(x+2)(x-4)(a ≠0)又图象对称于直线x=242+-=1 ∴顶点为(1,3)或者(1,-3)当为(1,3)时,a=-31.∴y=-31x 2+32x+38 当为(1,-3)时,a=31.∴y=31x 2-32x-38 例2:将抛物线y=x 2-2x+4向左平移3个单位后,再向下平移4个单位,求平移后抛物线的解析式。
问题:怎么平移抛物线y=2x 2,使它通过点〔1,3〕和〔4,9〕?解:∵y=(x-1)2+3,顶点为(1,3)∴(1,3)左移3u →(-2,3)下移4u →(-2,-1)∴平移后抛物线为y=(x+2)2-1=x 2+4x+3问题:设平移后y=2(x+m)2+k∴代入点(1,3)和(4,9)∴m=-2,k=1∴y=2(x-2)2+1∴图象是先向右平移2个单位,再向上平移1个单位得到的.例3:二次函数y=-x 2+(k-2)x+3k+3的图象如图〔1〕当k ≠-4时,求证:图象与x 轴必有两个交点〔2〕求k 的取值范围〔3〕在〔2〕的情况下,且OA •OB=6,求点C〔4〕求A.B 两点间的间隔〔5〕求S ∆ABC解:〔1〕∆=(k-2)2+12(k+1)=(k+4)2∵k ≠-4∴∆>0∴图象必与x 轴交于两点〔2〕由图知,-22--k <0,且3(k+1)>0, ∴-1<k<2〔3〕设x 1,x 2为方程-x 2+(k-2)x+3k+3=0的两根,且.0,021><x x 那么OA=-x 1,OB=x 2,但OA·OB=6∴x 1x 2=-6∴-3(k+1)=-6∴k=1∴y=-x 2-x+6∴点C(0,6)〔4〕∵AB=a ∆=4+k ,又由〔3〕知k=1,∴AB=5〔5〕S ∆ABC=21AB ·OC=15 【模拟试题】〔答题时间是:20分钟〕1.抛物线y=x 2+(5-m)x-5m 与x 轴相交的一个点是A(8,0),那么它的顶点坐标是?2.把一条抛物线向右平移2个单位,再加上平移3个单位后得到的抛物线的解析式为y=32X 2,那么原抛物线的解析式是?3.二次函数Y=AX 2+Bx+C 的图象如图,那么它的解析式为,ABC 的周长为,四边形APCB 的面积等于。
1、二次函数的定义定义:y=ax2 +bx +c (a 、b 、c是常数, a ≠0)定义重点:①a≠0②最高次数为 2 ③代数式必定是整式练习:1、y=-x2,y=2x2-2/x,y=100-5x2,y=3x2-2x3+5,此中是二次函数的有____个。
m2m2.当m_______时,函数y=(m+1)χ-2χ+1是二次函数?2、二次函数的图像及性质y抛物线极点坐标xy=ax2+bx+c(a>0)4acb2a,4ay0 xy=ax2+bx+c(a<0)b4acb22a,4ab直线x 直线xb对称轴地点张口方向增减性最值2a由a,b和c的符号确立a>0,张口向上在对称轴的左边,y跟着x的增大而减小.在对称轴的右边,y跟着x的增大而增大.当x b 时,y最小值为4acb22 a4a2a由a,b和c的符号确立a<0,张口向下在对称轴的左边,y跟着x的增大而增大.在对称轴的右边,y跟着x的增大而减小.当x b时,y最大值为4acb22a4a例2:已知二次函数y1232x21)求抛物线张口方向,对称轴和极点M 的坐标。
2)设抛物线与y 轴交于C 点,与x 轴交于A 、B 两点,求C ,A ,B 的坐标。
3)x 为什么值时,y 随的增大而减少,x 为什么值时,y 有最大(小)值,这个最大(小)值是多少? 4)x 为什么值时,y<0?x 为什么值时,y>0?3、求抛物线分析式的三种方法1、一般式:已知抛物线上的三点,往常设分析式为________________y=ax2+bx+c(a≠0)2,极点式:已知抛物线极点坐标(h,k ),往常设抛物线分析式为_______________求出表达式后化为一般形式.y=a(x-h)2+k(a≠0)3,交点式:已知抛物线与x轴的两个交点(x1,0)、(x2,0),往常设分析式为_____________求出表达式后化为一般形式.y=a(x-x1)(x-x2)(a≠0)练习:依据以下条件,求二次函数的分析式。
课时跟踪训练16:二次函数的图象与性质(一)A 组 基础达标一、选择题1.(2012·兰州)已知二次函数y =a (x +1)2-b (a ≠0)有最小值1,则a ,b 的大小关系为( A ) A .a >bB .a <bC .a =bD .不确定2.抛物线y =-2x 2+1的对称轴是直线( C ) A .x =12 B .x =-12 C .y 轴D .x =23.已知一元二次方程x 2+bx -3=0的一根为-3,在二次函数y =x 2+bx -3的图象上有三点⎝ ⎛⎭⎪⎫-45,y 1、⎝ ⎛⎭⎪⎫-54,y 2、⎝ ⎛⎭⎪⎫16,y 3,y 1、y 2、y 3的大小关系是 ( A )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 24.二次函数y =x 2-8x +15的图象与x 轴相交于M ,N 两点,点P 在该函数的图象上运动,能使△PMN 的面积等于12的点P 共有( D )A .1个B .2个C .3个D .4个 二、填空题5.(2013·泰安)对于抛物线y =-(x +1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x =1;③顶点坐标为(-1,3);④x >1时,y 随x 的增大而减小,其中正确的结论是__①③④__(填序号).6.(2011·玉林)已知拋物线y =-13x 2+2,当1≤x ≤5时,y 的最大值是__53__.7.(2011·黄冈、鄂州)已知函数y =⎩⎨⎧(x -1)2-1 (x ≤3),(x -5)2-1 (x >3),若使y =k 成立的x 值恰好有三个,则k =__3__.解析:因为两个一元二次方程只有三个解,两方程必定有一个公共解,∴(x -1)2-1=(x -5)2-1,x 2-2x +1-1=x 2-10x +25-1,8x =24,x =3,将x =3代入y =(x -1)2-1得y =k =(3-1)2-1=3.8.(2011·义乌)如图16-1所示,一次函数y =-2x 的图象与二次函数y =-x 2+3x 图象的对称轴交于点B . (1)写出点B 的坐标__⎝ ⎛⎭⎪⎫32,-3__;(2)已知点P 是二次函数y =-x 2+3x 图象在y 轴右侧部分上的一个动点,将直线y =-2x 沿y 轴向上平移,分别交x 轴、y 轴于C 、D 两点.若以CD 为直角边的△PCD 与△OCD 相似,则点P 的坐标为__(2,2),⎝ ⎛⎭⎪⎫12,54,⎛⎭⎪⎫114,1116或⎝ ⎛⎪⎫135,265____. 三、解答题9.(2013·温州)如图16-2所示,抛物线y =a (x -1)2+4与x 轴交于点A ,B ,与y 轴交于点C ,过点C 作CD ∥x 轴交抛物线的对称轴于点D ,连接BD ,已知点A 的坐标为(-1,0).图16-2(1)求该抛物线的解析式;解:(1)将A (-1,0)代入y =a (x -1)2+4中,得:0=4a +4,解得:a =-1,则抛物线解析式为y =-(x -1)2+4; (2)求梯形COBD 的面积.解:对于抛物线解析式,令x =0,得到y =3,即OC =3,∵抛物线解析式为y =-(x -1)2+4的对称轴为直线x =1,∴CD =1,∵A (-1,0),∴B (3,0),即OB =3,则S 梯形OCDA =(1+3)×32=6.10.(2013·宁夏)如图16-3所示,抛物线与x 轴交于A 、B两点,图16-1图16-3与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线x=-1 2.(1)求抛物线的解析式;答案:y=-12x2-12x+3.(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.解:①CM=BM时,M点坐标(0,0).②BC=BM时,M点坐标(32-3,0).B组能力提升11.(2013·资阳)如图16-4所示,抛物线y=ax2+bx+c(a≠0)过点(1,0)图16-4和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是(A) A.-4<P<0B.-4<P<-2C.-2<P<0D.-1<P<012.在平面直角坐标系中,如果横纵坐标都是整数的点称为整点,将二次函数y=-x2+6x-274的图象与x轴所围成的封闭图形(包括边界)中整点的个数是(C)A.5 B.6 C.7 D.813.(2011·枣庄)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法中正确的是__①③④__.(填写序号)①抛物线与x 轴的一个交点为(3,0);②函数y =ax 2+bx +c 的最大值为6;③抛物线的对称轴是x =12;④在对称轴左侧,y 随x 增大而增大.14.已知当x =-32和x =2时,二次函数y =ax 2+bx +c (a >0)的值相等,若M ⎝ ⎛⎭⎪⎫-12,y 1,N ⎝ ⎛⎭⎪⎫-14,y 2,P ⎝ ⎛⎭⎪⎫12,y 3三点都在此函数的图象上,则y 1,y 2,y 3的大小关系为__y 1>y 2>y 3__.15.如图16-5所示,二次函数y =-x 2+2x +m 的图象与x 轴的一个交点为A (3,0),另一个交点为B ,且与y 轴交于点C.图16-5(1)求m 的值; 答案:m =3. (2)求点B 的坐标; 答案:B (-1,0).(3)该二次函数图象上有一点D (x ,y )(其中x >0,y >0),使S △ABD =S △ABC ,求点D 的坐标.解:如图16-6所示,连接BD 、AD ,过点D 作DE ⊥AB ,图16-6∵当x =0时,y =3,∴C (0,3),若S △ABD =S △ABC ,∵D (x ,y )(其中x >0,y >0), 则可得OC =DE =3,∴当y =3时,-x 2+2x +3=3,解得x =0或x =2,∴点D 的坐标为(2,3).16.(2013· 德州)如图16-7所示,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA =1,tan ∠BAO =3,将此三角形绕原点O 逆时针旋转90°,得到△DOC ,抛物线y =ax 2+bx +c 经过点A 、B 、C .图16-7(1)求抛物线的解析式; 答案:y =-x 2-2x +3.(2)若点P 是第二象限内抛物线上的动点,其横坐标为t ,①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时P 的坐标;②是否存在一点P ,使△PCD 得面积最大?若存在,求出△PCD 的面积的最大值;若不存在,请说明理由. 解:①P (-1,4)或(-2,3).②求得直线CD 的解析式为y =13x +1,设PM 与CD 的交点为N ,则点N 的坐标为⎝ ⎛⎭⎪⎫t ,13t +1,∴NM =13t +1.∴PN =PM -NM =-t 2-2t +3-⎝ ⎛⎭⎪⎫13t +1=-t 2-73t +2.∵S △PCD =S △PCN +S △PDN ,∴S △PCD =12PM ·CM +12PN ·OM =12PN (CM +OM )=12PN ·OC =12×3⎝ ⎛⎭⎪⎫-t 2-73t +2=-32⎝ ⎛⎭⎪⎫t +762+12124, ∴当t =-76时,S △PCD 的最大值为12124.。
二次函数一、基本知识点:<1>、二次函数的概念:形如)0(2≠++=a c bx ax y 的函数.<2>、抛物线)0(2≠++=a c bx ax y 的顶点坐标是 (a b ac a b 44,22--);对称轴是直线ab x 2-=. <3>、当a >0时抛物线的开口向上;当a <0时抛物线的开口向下.a 越大,抛物线的开口越小;a 越小,抛物线的开口越大.a 相同的抛物线,通过平移(或旋转、轴对称)一定能够重合. <4>、抛物线y=ax*2+bx+c 的a ,b ,c 符号的确定a 的符号:由抛物线的开口方向确定。
开口向上a>0;开口向下a<0。
b 的符号:a 、b 同号时抛物线的对称轴在y 轴的左侧;a 、b 异号时抛物线的对称轴在y 轴的 右侧。
(简称:左同右异)b=0时抛物线的对称轴是y 轴。
C 的符号:由抛物线与y 轴的交点位置确定。
交点在x 轴上方时c>0;交点在x 轴下方时c<0;经过坐标原点时c=0。
<5>、二次函数解析式的三种形式:(1)已知抛物线上的三点,设一般式:)0(2≠++=a c bx ax y (2)已知抛物线顶点坐标(h, k ),设顶点式:k h x a y +-=2)((3)已知抛物线与x 轴的两个交点(X1,0)、 (X2,0)交点式:))((21x x x x a y --=,抛物线与x轴的交点坐标是(0,1x )和(0,2x ).<6>、抛物线的平移规律:从2ax y =到k h x a y +-=2)(,抓住顶点从(0,0)到(h ,k ). <7>、(1)当ac b 42->0时,一元二次方程)0(02≠=++a c bx ax 有两个实数根21,x x ,抛物线)0(2≠++=a c bx ax y 与x 轴的交点坐标是A (0,1x )和B (0,2x )。
课时跟踪训练17:二次函数的图象与性质(二)
A组基础达标
一、选择题
二、填空题
三、解答题
9.(2013·宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).
(1)求抛物线的解析式和顶点坐标;
解:∵抛物线与x轴交于点A(1,0),B(3,0),
可设抛物线解析式为y=a(x-1)(x-3),
把C(0,-3)代入得:3a=-3,解得:a=-1,
故抛物线解析式为y=-(x-1)(x-3),
即y=-x2+4x-3,
∵y=-x2+4x-3=-(x-2)2+1,
∴顶点坐标(2,1).
(2)如图17-5所示,请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平
移后抛物线的解析式.
图17-5
解:先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=-x2,平移后抛物线的顶点为(0,0)落在直线y=-x上.
10.(2013·广东)已知二次函数y=x2-2mx+m2-1.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
解:二次函数的解析式为:y=x2-2x或y=x2+2x;
(2)如图17-6所示,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;
图17-6
答案:C(0,3),D(2,-1)
(3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.
解:当P 、C 、D 共线时,PC +PD 最短,过点D 作DE ⊥y 轴于点E ,∵PO ∥DE ,∴PO DE =CO CE ,∴PO 2
=34,解得:PO =32
, ∴PC +PD 最短时,P 点的坐标为P ⎝⎛⎭⎫32,0.
B 组 能力提升
11.(2013·江西)若二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴有两个交点,坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,则下列判断正确的是
( D ) A .a >0
B .b 2-4ac ≥0
C .x 1<x 0<x 2
D .a (x 0-x 1)(x 0-x 2)<0
12.二次函数y =ax 2+bx +c 的图象如图17-7所示,给出下列结论:①2a +b >0;②b >a >c ;③若-1
<m <n <1,则m +n <-b a
;④3||a +||c <2||b .其中正确的结论是__①③④__.
图17-7
13.(2013·兰州)如图17-8所示,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面
直角坐标系,点B 的坐标为(2,0),若抛物线y =12
x 2+k 与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是__-2<k <12
__.
图17-8
14.如图17-9是抛物线与直线y =x +3分别交于x 轴和y 轴上同一点,交点分别是点A 和点C ,且抛物线的对称轴为直线x =-2.
图17-9
(1)求出抛物线与x 轴的两个交点A 、B 的坐标;
答案: A (-3,0)、B (-1,0)
(2)试确定抛物线的解析式;
答案:y =x 2+4x +3.
(3)观察图象,请直接写出二次函数值小于一次函数值的自变量x 的取值范围.
解:设抛物线的解析式为y =ax 2+bx +c (其中a 不等0),因此抛物线的对称轴方程为x =-b 2a
(1式),因为点A 、C 是直线y =x +3分别与x 轴和y 轴的交点,所以当x =0时、y =3;当y =0时、x =-3,即A 、C 坐标分别为:A (-3,0)、C (0,-3)又因为点A 、C 是抛物线上的点,将A 、C 两点坐标分别代入抛物线方程得到:9a -3b +c =0(2式),c =3(3式),联立1,2,3式解出a =1,b =-4,c =3,将值代入方程得到抛物线方程为y =x 2-4x +3,知道了抛物线的方程后,令y =0,解方程x 2-4x +3=0得到两个解即为A 、B 两点的坐标.第三个问题的意思是:只要抛物线的图形在直线的下方部分即是x 的取值,从图中直接可以看出就是A 、C 两点的横坐标之间的区间,由于前面已经知道了该两点的坐标值,因此直接写出答案:-3<x <0.
15.如图17-10所示,抛物线y =ax 2-5x +4a 与x 轴相交于点A 、B ,且过点C (5,4).
图17-10
(1)求a 的值和该抛物线顶点P 的坐标;
答案:a =1,P ⎝⎛⎭⎫52
,-94. (2)该抛物线与y 轴的交点为D ,则S 四边形ABCD 为__16__;
(3)将此抛物线沿x 轴向左平移3个单位,再向上平移2个单位,请写出平移后图象所对应的函数关系式.
答案:y =x 2+x .。