Positive solutions of singular boundary value problem of negative exponent Emden--Fowler eq
- 格式:pdf
- 大小:74.34 KB
- 文档页数:11
t distribution 学生t分布t number t数t statistic t统计量t test t检验t1topological space t1拓扑空间t2topological space t2拓扑空间t3topological space 分离空间t4topological space 正则拓扑空间t5 topological space 正规空间t6topological space 遗传正规空间table 表table of random numbers 随机数表table of sines 正弦表table of square roots 平方根表table of values 值表tabular 表的tabular value 表值tabulate 制表tabulation 造表tabulator 制表机tacnode 互切点tag 标签tame 驯顺嵌入tame distribution 缓增广义函数tamely imbedded 驯顺嵌入tangency 接触tangent 正切tangent bundle 切丛tangent cone 切线锥面tangent curve 正切曲线tangent function 正切tangent line 切线tangent of an angle 角的正切tangent plane 切平面tangent plane method 切面法tangent surface 切曲面tangent vector 切向量tangent vector field 切向量场tangent vector space 切向量空间tangential approximation 切线逼近tangential component 切线分量tangential curve 正切曲线tangential equation 切线方程tangential stress 切向应力tangents method 切线法tape 纸带tape inscription 纸带记录tariff 税tautology 重言taylor circle 泰勒圆taylor expansion 泰勒展开taylor formula 泰勒公式taylor series 泰勒级数technics 技术technique 技术telegraph equation 电报方程teleparallelism 绝对平行性temperature 温度tempered distribution 缓增广义函数tend 倾向tendency 瞧tension 张力tensor 张量tensor algebra 张量代数tensor analysis 张量分析tensor bundle 张量丛tensor calculus 张量演算法tensor density 张量密度tensor differential equation 张量微分方程tensor field 张量场tensor form 张量形式tensor form of the first kind 第一张量形式tensor function 张量函数tensor of torsion 挠率张量tensor product 张量乘积tensor product functor 张量乘积函子tensor representation 张量表示tensor space 张量空间tensor subspace 张量子空间tensor surface 张量曲面tensorial multiplication 张量乘法term 项term of higher degree 高次项term of higher order 高次项term of series 级数的项terminability 有限性terminable 有限的terminal decision 最后判决terminal edge 终结边terminal point 终点terminal unit 级端设备terminal vertex 悬挂点terminate 终止terminating chain 可终止的链terminating continued fraction 有尽连分数terminating decimal 有尽小数termination 终止terminology 专门名词termwise 逐项的termwise addition 逐项加法termwise differentiation 逐项微分termwise integration 逐项积分ternary 三元的ternary connective 三元联结ternary form 三元形式ternary notation 三进制记数法ternary number system 三进制数系ternary operation 三项运算ternary relation 三项关系ternary representation og numbers 三进制记数法tertiary obstruction 第三障碍tesseral harmonic 田形函数tesseral legendre function 田形函数test 检验test for additivity 加性检验test for uniform convergence 一致收敛检验test function 测试函数test of dispersion 色散检验test of goodness of fit 拟合优度检验test of hypothesis 假设检验test of independence 独立性检验test of linearity 线性检验test of normality 正规性检验test point 测试点test routine 检验程序test statistic 检验统计量tetracyclic coordinates 四圆坐标tetrad 四元组tetragon 四角形tetragonal 正方的tetrahedral 四面角tetrahedral angle 四面角tetrahedral co ordinates 四面坐标tetrahedral group 四面体群tetrahedral surface 四面曲面tetrahedroid 四面体tetrahedron 四面形tetrahedron equation 四面体方程theorem 定理theorem for damping 阻尼定理theorem of alternative 择一定理theorem of identity for power series 幂级数的一致定理theorem of implicit functions 隐函数定理theorem of mean value 平均值定理theorem of principal axes 轴定理theorem of residues 残数定理theorem of riemann roch type 黎曼洛赫型定理theorem on embedding 嵌入定理theorems for limits 极限定理theoretical curve 理论曲线theoretical model 理论模型theory of automata 自动机理论theory of cardinals 基数论theory of complex multiplication 复数乘法论theory of complexity of computations 计算的复杂性理论theory of correlation 相关论theory of differential equations 微分方程论theory of dimensions 维数论theory of elementary divisors 初等因子理论theory of elementary particles 基本粒子论theory of equations 方程论theory of errors 误差论theory of estimation 估计论theory of functions 函数论theory of games 对策论theory of hyperbolic functions 双曲函数论theory of judgment 判断论theory of numbers 数论theory of ordinals 序数论theory of perturbations 摄动理论theory of probability 概率论theory of proportions 比例论theory of relativity 相对论theory of reliability 可靠性理论theory of representations 表示论theory of sets 集论theory of sheaves 层理论theory of singularities 奇点理论theory of testing 检验论theory of time series 时间序列论theory of transversals 横断线论theory of types 类型论thermal 热的thermodynamic 热力学的thermodynamics 热力学theta function 函数theta series 级数thick 厚的thickness 厚度thin 薄的thin set 薄集third boundary condition 第三边界条件third boundary value problem 第三边界值问题third fundamental form 第三基本形式third isomorphism theorem 第三同构定理third proportional 比例第三项third root 立方根thom class 汤姆类thom complex 汤姆复形three body problem 三体问题three dimensional 三维的three dimensional space 三维空间three dimensional torus 三维环面three eighths rule 八分之三法three faced 三面的three figur 三位的three place 三位的three point problem 三点问题three series theorem 三级数定理three sheeted 三叶的three sided 三面的three sigma rule 三规则three termed 三项的three valued 三值的three valued logic 三值逻辑three valued logic calculus 三值逻辑学threshold logic 阈逻辑time interval 时程time lag 时滞time series analysis 时序分析timesharing 分时toeplitz matrix 托普利兹矩阵tolerance 容许tolerance distribution 容许分布tolerance estimation 容许估计tolerance factor 容许因子tolerance level 耐受水平tolerance limit 容许界限tolerance region 容许区域top digit 最高位数字topological 拓扑的topological abelian group 拓扑阿贝耳群topological algebra 拓扑代数topological cell 拓扑胞腔topological circle 拓扑圆topological completeness 拓扑完备性topological complex 拓扑复形topological convergence 拓扑收敛topological dimension 拓扑维topological direct sum 拓扑直和topological dynamics 拓扑动力学topological embedding 拓扑嵌入topological field 拓扑域topological group 拓扑群topological homeomorphism 拓扑同胚topological index 拓扑指数topological invariant 拓扑不变量topological limit 拓扑极限topological linear space 拓扑线性空间topological manifold 拓扑廖topological mapping 拓扑同胚topological pair 拓扑偶topological polyhedron 曲多面体topological product 拓扑积topological residue class ring 拓扑剩余类环topological ring 拓扑环topological simplex 拓扑单形topological skew field 拓扑非交换域topological space 拓扑空间topological sphere 拓扑球面topological structure 拓扑结构topological sum 拓扑和topological type 拓扑型topologically complete set 拓扑完备集topologically complete space 拓扑完备空间topologically equivalent space 拓扑等价空间topologically nilpotent element 拓扑幂零元topologically ringed space 拓扑环式空间topologically solvable group 拓扑可解群topologico differential invariant 拓扑微分不变式topologize 拓扑化topology 拓扑topology of bounded convergence 有界收敛拓扑topology of compact convergence 紧收敛拓扑topology of uniform convergence 一致收敛拓扑toroid 超环面toroidal coordinates 圆环坐标toroidal function 圆环函数torque 转矩torsion 挠率torsion coefficient 挠系数torsion form 挠率形式torsion free group 非挠群torsion group 挠群torsion module 挠模torsion of a curve 曲线的挠率torsion product 挠积torsion subgroup 挠子群torsion tensor 挠率张量torsion vector 挠向量torsionfree connection 非挠联络torsionfree module 无挠模torsionfree ring 无挠环torus 环面torus function 圆环函数torus group 环面群torusknot 环面纽结total 总和total correlation 全相关total curvature 全曲率total degree 全次数total differential 全微分total differential equation 全微分方程total error 全误差total graph 全图total image 全象total inspection 全检查total instability 全不稳定性total inverse image 全逆象total matrix algebra 全阵环total matrix ring 全阵环total order 全序total predicate 全谓词total probability 总概率total probability formula 总概率公式total regression 总回归total relation 通用关系total space 全空间total stability 全稳定性total step iteration 整步迭代法total step method 整步迭代法total stiefel whitney class 全斯蒂费尔惠特尼类total subset 全子集total sum 总和total variation 全变差totally bounded set 准紧集totally bounded space 准紧空间totally differentiable 完全可微分的totally differentiable function 完全可微函数totally disconnected 完全不连通的totally disconnected graph 完全不连通图totally disconnected groupoid 完全不连通广群totally disconnected set 完全不连通集totally disconnected space 完全不连通空间totally geodesic 全测地的totally nonnegative matrix 全非负矩阵totally ordered group 全有序群totally ordered set 线性有序集totally positive 全正的totally positive matrix 全正矩阵totally quasi ordered set 完全拟有序集totally real field 全实域totally reflexive relation 完全自反关系totally regular matrix method 完全正则矩阵法totally singular subspace 全奇异子空间totally symmetric loop 完全对称圈totally symmetric quasigroup 完全对称拟群touch 相切tournament 竞赛图trace 迹trace form 迹型trace function 迹函数trace of dyadic 并向量的迹trace of matrix 矩阵的迹trace of tensor 张量的迹tracing point 追迹点track 轨迹tractrix 曳物线trajectory 轨道transcendence 超越性transcendence basis 超越基transcendence degree 超越次数transcendency 超越性transcendental element 超越元素transcendental equation 超越方程transcendental function 超越函数transcendental integral function 超越整函数transcendental number 超越数transcendental singularity 超越奇点transcendental surface 超越曲面transfer 转移transfer function 转移函数transfinite 超限的transfinite diameter 超限直径transfinite induction 超限归纳法transfinite number 超限序数transfinite ordinal 超限序数transform 变换transformation 变换transformation equation 变换方程transformation factor 变换因子transformation formulas of the coordinates 坐标的变换公式transformation function 变换函数transformation group 变换群transformation of air mass 气团变性transformation of coordinates 坐标的变换transformation of parameter 参数变换transformation of state 状态变换transformation of the variable 变量的更换transformation rules 变换规则transformation theory 变换论transformation to principal axes 轴变换transgression 超渡transient response 瞬态响应transient stability 瞬态稳定性transient state 瞬态transient time 过渡时间transition function 转移函数transition graph 转换图transition matrix 转移矩阵transition probability 转移函数transitive closure 传递闭包transitive graph 传递图transitive group of motions 可迁运动群transitive law 可迁律transitive permutation group 可迁置换群transitive relation 传递关系transitive set 可递集transitivity 可递性transitivity laws 可迁律translatable design 可旋转试验设计translate 转移translation 平移translation curve 平移曲线translation group 平移群translation invariant 平移不变的translation invariant metric 平移不变度量translation number 殆周期translation of axes 坐标轴的平移translation operator 平移算子translation surface 平移曲面translation symmetry 平移对称translation theorem 平移定理transmission channel 传输通道transmission ratio 传输比transport problem 运输问题transportation algorithm 运输算法transportation matrix 运输矩阵transportation network 运输网络transportation problem 运输问题transpose 转置transposed inverse matrix 转置逆矩阵transposed kernel 转置核transposed map 转置映射transposed matrix 转置阵transposition 对换transversal 横截矩阵胚transversal curve 横截曲线transversal field 模截场transversal lines 截线transversality 横截性transversality condition 横截条件transverse axis 横截轴transverse surface 横截曲面trapezium 不规则四边形trapezoid 不规则四边形trapezoid formula 梯形公式trapezoid method 梯形公式traveling salesman problem 转播塞尔斯曼问题tree 树trefoil 三叶形trefoil knot 三叶形纽结trend 瞧trend line 瞧直线triad 三元组trial 试验triangle 三角形triangle axiom 三角形公理triangle condition 三角形公理triangle inequality 三角形公理triangulable 可三角剖分的triangular decomposition 三角分解triangular form 三角型triangular matrix 三角形矩阵triangular number 三角数triangular prism 三棱柱triangular pyramid 四面形triangular surface 三角曲面triangulate 分成三角形triangulation 三角剖分triaxial 三轴的triaxial ellipsoid 三维椭面trichotomy 三分法trident of newton 牛顿三叉线tridiagonal matrix 三对角线矩阵tridimensional 三维的trigammafunction 三函数trigonometric 三角的trigonometric approximation polynomial 三角近似多项式trigonometric equation 三角方程trigonometric function 三角函数trigonometric moment problem 三角矩问题trigonometric polynomial 三角多项式trigonometric series 三角级数trigonometrical interpolation 三角内插法trigonometry 三角学trihedral 三面形的trihedral angle 三面角trihedron 三面体trilateral 三边的trilinear 三线的trilinear coordinates 三线坐标trilinear form 三线性形式trinomial 三项式;三项式的trinomial equation 三项方程triplanar point 三切面重点 ?triple 三元组triple curve 三重曲线triple integral 三重积分triple point 三重点triple product 纯量三重积triple product of vectors 向量三重积triple root 三重根triple series 三重级数triple tangent 三重切线triply orthogonal system 三重正交系triply tangent 三重切线的trirectangular spherical triangle 三直角球面三角形trisecant 三度割线trisect 把...三等分trisection 三等分trisection of an angle 角的三等分trisectrix 三等分角线trivalent map 三价地图trivector 三向量trivial 平凡的trivial character 单位特贞trivial cohomology functor 平凡上同弹子trivial extension 平凡扩张trivial fibre bundle 平凡纤维丛trivial graph 平凡图trivial homogeneous ideal 平凡齐次理想trivial knot 平凡纽结trivial solution 平凡解trivial subset 平凡子集trivial topology 密着拓扑trivial valuation 平凡赋值triviality 平凡性trivialization 平凡化trochoid 摆线trochoidal 余摆线的trochoidal curve 摆线true error 真误差true formula 真公式true proposition 真命题true sign 直符号true value 真值truncated cone 截锥truncated cylinder 截柱truncated distribution 截尾分布truncated pyramid 截棱锥truncated sample 截样本truncated sequence 截序列truncation 舍位truncation error 舍位误差truncation point 舍位点truth 真值truth function 真值函项truth matrix 真值表truth set 真值集合truth symbol 真符号truth table 真值表truthvalue 真值tube 管tubular knot 管状纽结tubular neighborhood 管状邻域tubular surface 管状曲面turbulence 湍流turbulent 湍聊turing computability 图灵机可计算性turing computable 图灵机可计算的turing machine 图录机turn 转向turning point 转向点twice 再次twice differentiable function 二次可微函数twin primes 素数对twisted curve 空间曲线twisted torus 挠环面two address 二地址的two address code 二地址代码two address instruction 二地址指令two body problem 二体问题two decision problem 二判定问题two digit 二位的two dimensional 二维的two dimensional laplace transformation 二重拉普拉斯变换two dimensional normal distribution 二元正态分布two dimensional quadric 二维二次曲面two dimensional vector space 二维向量空间two fold transitive group 双重可迁群two person game 两人对策two person zero sum game 二人零和对策two phase sampling 二相抽样法two place 二位的two point distribution 二点分布two point form 两点式two sample method 二样本法two sample problem 二样本问题two sample test 双样本检验two sheet 双叶的two sided condition 双边条件two sided decomposition 双边分解two sided divisor 双边因子two sided ideal 双边理想two sided inverse 双边逆元two sided module 双边模two sided neighborhood 双侧邻域two sided surface 双侧曲面two sided test 双侧检定two stage sampling 两阶段抽样法two termed expression 二项式two valued logic 二值逻辑two valued measure 二值测度two variable matrix 双变量矩阵two way array 二向分类two way classification 二向分类twopoint boundary value problem 两点边值问题type 型type problem 类型问题typenumber 型数typical mean 典型平均。
Unit 2NegotiationsLead-inTask 1Suggested AnswersTask 2Key1. 订货2. 发盘3. 还盘4. 询价5. 购货合同6. 销售确认书Reading AStarting PointTask 1Translation主要的个人及团队谈判风格在过去几十年里,商品交易会一直被公认为是最有效的营销手段之一。
但近几年情况发生了变化:出于安全和成本的考虑,不少商家都在缩减参展次数,转而将目光投向互联网。
谈判员及其谈判团队必须选择一种能最大限度服务于其谈判目标的谈判风格,在确保对手不会放弃此次谈判的前提下,从对手那儿获取最大的让步。
然而,同一种谈判风格并不适用于所有场合,而每一次谈判也并不是所有风格都适用。
谈判员必须要懂得变通,能够根据情况的变化调整谈判风格。
对自身进行真实而全面的评估,有利于谈判人员选择最适用的谈判风格。
主要的个人谈判风格包括:进攻型、顺从型、被动型、胁迫型、技巧型、财务型、顽固型、实务型及傲慢型。
以被动型为例。
在谈判桌上,被动型的谈判人员并非如他们表面所展示的那样。
这种风格往往被发展中的、合同律法尚未完善的经济体所运用。
被动型谈判员往往会使对方误以为双方已达成共识,故而使对方将一切底牌亮到谈判桌上。
而被动的一方并不亮牌,只是频频点头,使对方认为双方已达成共识。
但点头仅仅表示他们听明白了。
一旦一切底牌亮出,先前被动的一方便开始挑选对自己有利的条款,而就那些他们未能接受的条款开始展开主动积极、甚至是攻势凶猛的谈判。
顽固型是谈判员偏好的另一种风格。
某些谈判员会利用固执掩盖他们真正的动机,分散对手的注意力。
另一种方式是在某些原本被视为无谈判余地的点上进行让步。
这种做法有利于谈判员以回报为理由,从对手那边获取更多重大的让步。
主要的团队谈判风格包括:舆论统一型、牛仔型、逐个击破型和软硬兼施型。
尽管“牛仔”一词带有强烈的个人主义色彩,貌似不大适用于商务领域,在国际商务谈判中,牛仔型的谈判风格就意味着由“路线总指挥”(通常都是由首席谈判员来担任)整合反对意见,并使对方按首席谈判员指定的方向前进。
一类非线性微分方程耦合系统无穷边值问题解的存在性张海燕;李耀红【摘要】在Banach空间中,利用Mönch不动点定理,结合一个新的比较结果,研究一类一阶非线性微分方程耦合系统无穷边值问题,其非线性项和边值条件均具有耦合性。
获得该问题解的存在性定理,并给出一个应用实例。
%By applyingthe Mönch fixed theorem and using a new comparison result,we study existence of so⁃lutions of infinte boundary value problems for a class of nonlinear coupled differential equations systems in Banach spaces,where the system is coupled not only in the differential system but also through the boundary conditions. A new existence theorem is established.As an application,we give an example to demonstrate our result.【期刊名称】《淮北师范大学学报(自然科学版)》【年(卷),期】2015(000)002【总页数】5页(P1-5)【关键词】Banach空间;边值问题;不动点定理;比较结果【作者】张海燕;李耀红【作者单位】宿州学院数学与统计学院,安徽宿州 234000;宿州学院数学与统计学院,安徽宿州 234000【正文语种】中文【中图分类】O177.91令(E,‖·‖)是Banach空间,考虑E中一阶非线性微分方程耦合系统无穷边值问题:这里J=[0 ,+∞),f,g ∈C[J × E ×E,E],α,β > 1.近年来,微分方程耦合系统受到广泛关注,获得许多有价值的结果.如在无穷区间上,文[1-4]获得了微分方程耦合系统解的存在性或多解性;在分数阶情形下,文[5-8]也获得许多微分方程耦合系统的可解性结论.但上述文献中微分方程系统的耦合性主要是指非线性项中变量的耦合,对边值条件的耦合性研究相对较少.注意到耦合边值条件在反扩散问题、热学问题、流体力学等应用科学领域有着广泛的应用.本文将利用Mönch不动点定理,结合一个新的比较结果,研究非线性微分方程耦合系统无穷边值问题(1),其非线性项和边值条件均具有耦合性.1 预备知识和引理记C[J,E]={u:J→E|u(t)连续},C1[J,E]={u:J→E|u(t)连续且一阶可微}.令BC[J,E]={u∈C[J,E]| X=BC[J,E]×BC[J,E], 则易知 BC[J,E]和 X 分别在范数和‖(u,v)‖X=‖ u‖B+‖ v‖B 下为一Banach空间.定义算子T:X→X 如下其中若(u,v)∈X且满足(1),则称(u,v)为边值问题(1)的解.对Banach空间中的有界集C,用α(C)衷示Ku⁃ratowski非紧性测度[9].另记Br={(u,v)∈ X |‖ (u,v‖X≤ r}(r > 0).为方便下文,给出几个需要用到的引理.引理1 若f,g ∈C[J×E×E,E],则(u,v)∈BC[J,E]⋂C1[J,E]×BC[J,E]⋂C1[J,E]是耦合系统(1)的解有且仅当(u,v)是T(u,v)=(u,v)在X中的不动点.证明若(u,v)是耦合系统(1)的解,则直接对耦合系统(1)前两式两边直接从0到t积分,可知令t➝∞,则有将边值条件u(∞)=αv(0),v(∞)=βu(0)代入式(6),直接解方程组计算可知将式(7)(8)代入式(5),易知 u(t)=T1(u,v),v(t)=T2(u,v),即 (u,v)是T(u,v)=(u,v)的不动点.反之,若(u,v)是T(u,v)=(u,v)的不动点,则对等式两边求导,容易验证(u,v)满足系统(1).命题得证.引理2[2]若m(t),γ(t)∈C[J,J],m(t)是有界函数,,且有其中M1≥0,M2,M3 >0,则引理 3[9]若 H 是 C[J0,E](J0=[0,b]⊂J)中的可数可测集,对任给x∈H,存在ρ(t)∈L[J0,J],使得‖ x(t)‖≤ρ(t),t ∈J0,则有α(H(t))∈L[J0,J],且引理4[10]若 B={un}⊂C[J,E](n=1,2,…),存在ρ(t)∈L[J,J],使得‖u ‖n(t)≤ρ(t)(t ∈J,n=1,2,…),则有α(B(t))在J上可积,并且引理5[10]设下文(A1)成立,H是E中的有界集,则,其中αE(TiH)表示TiH(i=1,2)在E中的非紧性测度.注1 由(2)式及引理5易知,αE(TH)≤αE(T1H)+αE(T2H).引理6[11](Mönch定理)设E是Banach空间,Ω ⊂E 是有界开集,θ∈Ω,A:E →E 是一个连续算子,且满足下列条件:(1)x ≠ λAx,∀λ ∈[0,1],x ∈ ∂Ω ;(2)由 H ⊂可数及 H ⊂({θ}⋃A(H))可推出H为相对紧集.则A在Q中至少有一个不动点.引理7[12]设D和F是E中的有界集,则α(D×F)=max{α(D),α(F)},其中α和α 分别为E×E和E中的Kuratowski非紧性测度.2 主要定理为方便,先给出下列假设:(A1)f,g ∈C[J×E×E,E],且存在ai(t),bi(t)∈L[J,J](i=1,2,3),使得其中(A2)对∀t ∈J和H1,H2 ⊂Br,存在ci(t),di(t)∈ L[J,J](i=1,2),使得这里定理1 若条件(A1)-(A2)成立,则耦合系统(1)在BC[J,E]⋂C1[J,E]×BC[J,E]⋂C1[J,E]中至少有一个解.证明由引理l知,只需证明算子T在X中至少有一个不动点.首先证明是X中的有界集.事实上,对任给的(u,v)∈Ω0,则相应地存在0≤λ0≤1,使得当t ∈J=[0,+∞)时,由式(3)(4)(9)及假设(A1)得令则m(t)∈C[J,E]且有界,于是结合式(10)(11)得故由引理2知因此,故Ω0 是 X 中的有界集.令 R >M,取则Ω 是X中的有界开集,且(θ,θ)∈Ω .由R的取法可知,对任何(u,v)∈∂Ω,(u,v)≠λT(u,v),∀λ ∈[0,1].即引理6的条件(1)满足.下面验证引理6 的条件(2)满足.设 H ⊂为可数集且由非紧性测度的性质,结合引理3-4,引理7及假设(A2),可知这里ρ(s)=c1(s)+c2(s),w(s)=d1(s)+d2(s).由H的定义及引理5有于是由引理l知,α(H(t))=0,t ∈J.即H 是Ω 中的相对紧集,于是引理6的条件(2)满足.又注意 f,g 的连续性,显然T是连续算子.故由引理6知,算子T 在Ω 内至少有一个不动点.从而耦合系统无穷边值问题(1)至少有一个解.证毕.例1 考虑一阶非线性微分方程耦合系统无穷边值问题:则耦合系统无穷边值问题(12)至少有一个解.证明令E={x=(x1,x2,…,xn,…)|xn ∈J,xn →0},对x ∈E,令显然耦合系统(12)可转化为X中的系统其中而显然f,g ∈C[J×E×E,E].则可令显然,故条件(A1)满足.利用锥理论中常规方法容易知,存在,使得对任何t ∈J,有界集 H1,H2⊂E,α(f(t),H1,H2))<c1(t)α(H1)+c2(t)α(H2),α(g(t,H1,H2))<d1(t)α(H1)+d2(t)α(H2),故条件(A2)满足.由定理1即知结论成立.参考文献:[1]CHEN Xu,ZHANG Xingqiu.Existence of positive solutions for singular impulsive differential equations with integral boundary conditions on an infinite interval in Banach spaces[J].Electron J Qual Theory Differ Eq,2011(29):1-18.[2]张海燕,张祖峰.Banach 空间中一阶非线性微分方程组无穷边值问题解的存在性[J].华中师范大学学报(自然科学版),2011,45(4):529-533. [3]汤小松,王志伟,罗节英.Banach空间中一阶脉冲微分方程组的无穷边值问题解的存在性唯一性[J].四川师范大学学报(自然科学版),2012,35(6):802-808.[4]李耀红,张祖峰.无穷区间上一阶非线性脉冲微分方程组边值问题的多个正解[J].华中师范大学学报(自然科学版),2014,48(2):171-175.[5]LI Yaohong,WEI Zhongli.Positive solutions for a coupled systems of mixed higher-order nonlinear singular fraction⁃al differential equations [J].Fixed Point Theory,2014,15(1):167-178.[6]申腾飞,宋文耀.一类分数阶微分方程系统边值问题正解的存在性[J].常熟理工学院学报,2012,26(4):28-34.[7]程玲玲,刘文斌.带有p-Laplace 算子分数阶微分方程耦合系统边值问题解的存在性[J].湖北大学学报(自然科学版),2013(1):48-51.[8]曹竞文,胡卫敏.两点分数阶微分方程耦合系统边值问题的解[J].江汉大学学报(自然科学版),2014,42(3):23-26.[9]GUO Dajun,LAKSHMIKANTHAM V,LIU Xinzhi.Nonlinear integral equations in abstract spaces[M].Dordrecht:Kluwer Academic Publisher,1996.[10]刘振斌,刘立山.Banach 空间中一阶非线性微分方程组无穷边值问题解的存在性[J].数学学报,2007,50(1):97-104.[11]DEIMLING Klaus.Nonlinear functional analysis[M].Berlin:Spring-Verlag,1985.[12]GUO Dajun,LAKSHMIKANTHAM V.Coupled fixed points of nonlinear operators with applications[J].Nonlinear Analy⁃sis:TMA,1987,11(5):623-632.。
一类Hadamard分数阶微分方程边值问题解的存在唯一性张海燕;李耀红【摘要】利用Leray-Schauder选择原理及Banach压缩映射原理,本文在一定的非线性增长和压缩条件下研究了一类具有Hadamard积分边值条件的Hadamard 分数阶微分方程边值问题,获得了问题解的存在唯一性的充分条件,并给出了两个例子.【期刊名称】《四川大学学报(自然科学版)》【年(卷),期】2018(055)004【总页数】5页(P683-687)【关键词】Hadamard分数阶导数;分数阶微分方程;边值条件;存在唯一性【作者】张海燕;李耀红【作者单位】宿州学院数学与统计学院,宿州234000;宿州学院数学与统计学院,宿州234000【正文语种】中文【中图分类】O177.911 引言近年来,分数阶微分理论在黏弹性材料力学、工程问题建模、系统控制、分形几何和分形动力学等应用领域建模中得到广泛应用.由于分数阶模型描述的过程信息比整数阶微分方程更精确,分数阶微积分理论近来受到了广泛关注[1-3].虽然出现了许多分数阶微分方程边值问题解的存在性的结果[4-10],但是绝大部分研究工作都是基于Riemann-Liouville或Caputo分数阶微分方程边值问题,对Hadamard分数阶微分方程边值问题的研究则相对较少.其原因也许是Hadamard分数阶定义及计算较复杂,且与其他类型的分数阶微分之间的关联还未完全明确,因而很多现有的非线性分析计算方法不能通过简单平移进行使用.总之,对Hadamard分数阶微分方程进行深入研究很有必要.最近,文献[11]在无穷区间研究了一类Hadamard分数阶微分方程的正解,文献[12]对一类耦合的Hadamard分数阶微分方程组解的存在性进行了研究.受上述文献及其参考文献启发,本文考虑如下Hadamard分数阶微分方程边值问题(1)解的存在唯一性充分条件,这里为为Hadamard分数阶导数,为γ阶Hadamard分数阶积分,f:[1,e]×R2→R是一个连续函数.和文献[11,12]比较,方程(1)中的非线性项中含有Hadamard分数阶导数,同时具有更一般的非线性增长条件,因而在应用上更方便.2 预备知识定义2.1[1] 函数g:[1,+∞)→R的α阶Hadamard分数阶积分定义为定义2.2[1] 函数g:[1,+∞)→R的α阶Hadamard分数阶导数定义为其中n=[α]+1.引理2.3[1] 若α>0,u∈C[1,e]∩L[1,e],则有c2(lnt)α-2-…-cn(lnt)α-n,其中ci∈R,i=1,2,…,n,n如定义2.2所述.引理2.4 如果y(t)∈C([1,e],R)且1<α≤2,则分数阶微分方程(2)有唯一解(3)其中证明由引理2.3可知,Hadamard分数阶微分方程(2)的一般解为(4)利用边值条件u(1)=0,则有c2=0.又由条件知[y(t)+c1(lnt)α-1](η)=则c1=K[y(η)-y(e)].将c1,c2代入(4)式即得(3)式.引理得证.引理2.5(Leray-Schauder选择原理[13]) 设E是实Banach空间,D是E中有界凸集,T:D→D是一个全连续算子,则T在D中必具有不动点.引理2.6(Banach压缩映射原理[13]) 设D是Banach空间E的闭子集,F:D→D 是一个严格的压缩映射,即对任意x,y∈D,|Fx-Fy|≤k|x-y|成立,其中0<k<1,则F在E中有唯一不动点.3 主要结果记X={u|u∈C([1,e],R)且u∈C([1,e],R)},则X在范数下是一个Banach空间.结合引理2.4,定义算子T:X→X如下:Tu(t)=显然,Hadamard分数阶微分方程边值问题(1)有解当且仅当算子T在X中有不动点.为方便,记定理3.1 若f:[1,e]×R2→R是一个连续函数,且存在实常数μi>0(i=0,1,2)使得|f(t,x,y)|<μ0+μ1|x|σ1+μ2|y|σ2,1<t<e,0<σi<1,i=1,2(5)成立,则Hadamard分数阶微分方程边值问题(1)在X中至少存在一个解.证明首先构造一个有界凸闭集.令Ωl={u(t)|u(t)∈X,‖u‖X≤l,t∈[1,e]},这里的显然Ωl是Banach空间X中的有界凸闭集.接着,由Hadamard分数阶导数定义及(5)式,对任意u∈Ωl有|Tu(t)|≤μ1lσ1+μ2lσ2)≤μ1lσ1+μ2lσ2)=M(μ0+μ1lσ1+μ2lσ2) (6)同时,由定义2.2有μ1lσ1+μ2lσ2)=(7)因此‖Tu‖ X=故算子T:Ωl→Ωl.最后,我们分三步证明T是Ωl上的一个全连续算子.第一步,由于算子T:Ωl→Ωl且f是一个连续函数,因此算子T在Ωl上连续. 第二步,∀u∈Ωl,|f(t,u(t),u(t))|≤L=(μ0+μ1lσ1+μ2lσ2).于是,类似于(6)式和(7)式有即TΩl⊂Ωl.故算子T在Ωl上是一致有界的.第三步,∀u∈Ωl,|f(t,u(t),u(t))|≤L=(μ0+μ1lσ1+μ2lσ2).故由第二步知T:Ωl→Ωl.接着,令t1,t2∈[1,e](t1<t2).于是|(Tu)(t2)-(Tu)(t1)|≤KL|(lnt2)α-1-(lnt1)α-1|×另一方面,类似地有|Tu(t2)-Tu(t1)|≤因此,当t2→t1时,有|(Tu)(t2)-(Tu)(t1)|→0,|Tu(t2)-Tu(t1)|→0,即‖(Tu)(t2)-(Tu)(t1)‖X→0,从而T在Ωl上是等度连续的.结合以上三步的结果,由Arzela-Ascoli's定理知算子T在Ωl上是全连续的.综上所述,由引理2.5可知,算子T在Ωl中至少存在一个不动点,即Hadamard分数阶微分方程边值问题(1)在X中至少存在一个解.证毕.注1 当σi=1或σi>1(i=1,2)时,用类似方法在一定条件下也可得到定理3.1的结论.定理3.2 若f:[1,e]×R2→R是一个连续函数且满足下面Lipschitz条件:|f(t,x2,y2)-f(t,x1,y1)|<λ(|x2-x1|+|y2-y1|),1<t<e,λ>0,xi,yi∈R,i=1,2(8)且Nλ<1,则Hadamard分数阶微分方程边值问题(1)在X中存在唯一解.证明令其中取Ωr={u(t)|u(t)∈X,‖u‖X≤r,t∈[1,e]}.则TΩr⊂Ωr.事实上,由u∈Ωr可知|f(t,u(t),u(t))|≤|f(t,u(t),u(t))-f(t,0,0)|+|f(t,0,0)|≤λ(|u(t)|+|u(t)|)|+r′≤λ‖u(t)‖X+r′≤λr+r′.于是由(6)式和(7)式有‖Tu‖≤M(λr+r′),因而N(λr+r′)≤r,即TΩr⊂Ωr.接着我们证明算子T是压缩映射.对ui∈Ωr,i=1,2,t∈[1,e],有|Tu2(t)-Tu1(t)|≤|f(s,u2(s),u2(s))-Mλ(|u2(s)-u1(s)|+|u2(s)-u1(s)|)≤Mλ‖u2-u1‖X,及|Tu2(t)-Tu1(t)|≤因此,‖Tu2-Tu1‖X≤Nλ‖u2-u1‖X.注意到Nλ<1,则T是一个压缩映射.因而由引理2.6知算子T在Ωr中有唯一不动点,即Hadamard分数阶微分方程边值问题(1)在X中存在唯一解.证毕.例3.3 考虑Hadamard分数阶微分方程积分边值问题(9)这里于是取显然,定理3.1条件满足.因此由定理3.1知Hadamard分数阶微分方程边值问题(9)在X中至少存在一个解.例3.4 考虑Hadamard分数阶微分方程积分边值问题(10)这里则于是|f(t,x2,y2)-f(t,x1,y1)|<取λ=1/30,则Nλ<1.显然,定理3.2条件满足.因此由定理3.2知Hadamard分数阶微分方程边值问题(10)在X中存在唯一解.参考文献:【相关文献】[1] Kilbas A A,Srivastava H M,Trujillo J J.Theory and applications of fractional differential equations[M].Amsterdam: Else vier, 2006.[2] Zhou Y,Wang J R,Zhang L.Basic theory of fractional differential equations[M].Singapore: World Scientific Pre ss, 2016.[3] 陈文,孙洪广,李西成,等.力学与工程问题的分数阶导数建模[M].北京: 科学出版社, 2012.[4] Cui Y J.Uniqueness of solution for boundary value problems for fractional differential equations[J].Appl Math Lett, 2016, 51: 48.[5] Zhang X Q.Positive solutions for a class of singular fractional differential equation wi th infinite-point boundary value conditions[J].Appl Math Lett,2015, 39: 22.[6] Zhang H Y,Li Y H,Lu W.Existence and uniqueness of solutions for a coupled system of nonlinear fractional d ifferential equations with fractional integral boundary conditions [J].J Nonlinear Sci Appl,2016, 9: 2434.[7] Wang G T.Explicit iteration and unbounded solutions for fractional integral boundary value problem on an infinite interval [J].Appl Math Lett, 2015, 47: 1.[8] Hamani S,Henderson J.Boundary value problems for fractional differential inclusions with nonlocal c onditions [J].Mediterr J Math, 2016, 13: 967.[9] 张海燕,李耀红.一类高分数阶微分方程积分边值问题的正解[J].四川大学学报:自然科学版,2016,53: 512.[10] 张立新,杨玉洁,贾敬文.一类Caputo分数阶微分方程积分边值问题的正解[J].四川大学学报:自然科学版, 2017, 54: 1169.[11] Qiao Y,Zhou Z F.Positive solutions for a class of Hadamard fractional differential equations on the Infinite interval [J].Math Appl, 2017, 30: 589.[12] Ahmad B,Ntouyas S.A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations [J].Fract Calc Appl Anal, 2014, 17: 348.[13] Deimling,K.Nonlinear functional analysis[M].Berlin: Springer, 1985.。
一类分数阶微分方程初值问题的奇摄动吴钦宽【期刊名称】《《高校应用数学学报A辑》》【年(卷),期】2011(026)001【总页数】5页(P41-45)【关键词】奇异摄动; 非线性; 分数阶微分方程【作者】吴钦宽【作者单位】南京工程学院数学研究所江苏南京 211167【正文语种】中文【中图分类】O175.14近年来,有关非线性分数阶微分方程的研究已经在国内外引起人们极大的兴趣[1-5].之所以这样,一是基于分数算子自身理论的发展,二是分数算子在各个领域中的应用,如物理、机械、化学、工程等.非线性奇异摄动问题在国际学术界是一个十分关注的研究对象[6],近年来许多学者做了大量的工作[7-16].莫嘉琪[17]首先用奇异摄动理论研究了一类自治的稳态奇摄动α阶微分方程Cauchy问题,得到了相应自治分数阶微分方程Cauchy问题一致有效的渐近解.本文考虑更一般形式的奇异摄动分数阶微分方程的加权初值问题,运用奇摄动理论和方法构造了分数阶微分方程的渐近解,并用微分不等式理论对它的渐近性态作了一致有效的估计.函数u(t)的α阶Riemann-Liouville的分数阶导数Dαu(t)的定义[18]为其中Γ为Gamma函数,0<α<1.本文考虑一般形式的奇异摄动分数阶微分方程的加权初值问题假设:[H1]退化方程f(u,0)=0存在一个根u=u0;[H2]f(u,ε),A(ε)是关于其变量在其变化区域内为足够光滑的函数;[H3]f(u,ε)≤0,fu≤−c<0,其中c为正常数.现构造原问题的外解U,设将(3)代人(1),按ε的幂展开f(u,ε),合并ε的同次幂项,并分别令其系数为零,可得将上述依次得到的ui(t)代人(3),便得到了原问题的外部解.显然由(3)得到的外部解未必满足初始条件(2),为此,我们还需要构造初始层校正项V.设问题(1),(2)的解将(4),(5)代人(1),(2),按ε的幂展开f(U+V,ε)和A(ε),合并ε的同次幂项,并分别令其系数为零,可得由(6)-(9)可依次地得到V0,V1,…,且由假设[H3]知,Vi,i=0,1,…,具有性质[19]其中ki+1≤ki,i=0,1,…,为某正常数.由(3),(4),上面确定的Ui,Vi,i=0,1,…,代人(4),便得到了原问题(1),(2)解的形式渐近估计式下面来证明上述关系式为关于ε的一致有效的渐近展开式.定理在假设[H1]–[H3]下,分数阶奇摄动方程初值问题(1),(2)有一个解u(t,ε),具有如下关于ε的一致有效的渐近展开式:故选取γ≥δ1,就可得到选取γ≥,(16)成立.同理可证(15)成立.故α和β分别为问题(1),(2)的下解和上解.由定理1知,问题(1),(2)有一解u(t,ε),满足α(t,ε)≤u(t,ε)≤β(t,ε).再由(13),(14),关系式(12)成立.定理证毕.例考虑奇摄动分数阶Logistic方程的初值问题[20]容易验证(17),(18)满足[H1]–[H3],因此初值问题(17),(18)的解u(t)有如下近似:【相关文献】[1]Benchohra M,Henderson J,Ntouyas S K,et al.Existence results for fractional order functional differential equations with infinite delay[J].J Math Anal Appl,2008,338(2):1340-1350.[2]Bai Zhanbing,Qiu Tingting.Existence of positive solution for singular fractional differential equation[J].Appl Math Comput,2009,215(7):2761-2767.[3]Li Chengfu,Luo Xiaonan,Zhou Yong.Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations[J].Comput MathAppl,2010,59(3): 1363-1375.[4]张淑琴.分数阶奇异微分方程初值问题正解的存在性[J].数学学报,2007,54(4):813-822.[5]贾九红.分数微分粘弹性流体振荡管道流的求解与分析[J].上海交通大学学报,2008,42(6):1013-1016.[6]de Jager E M,Jiang Furu.The Theory of Singular Perturbation[M].Amsterdam:North-Holland Publishing Co,1996.[7]Chakravarthy P P,Phaneendra K,Reddy Y N.A seventh order numerical method for singular perturbation problems[J].Appl Math Comput,2007,186(1):860-871.[8]Branco J R,Ferreira J A.A singular perturbation of the heat equation with memory[J].J Comput Appl Math,2008,218(2):376-394.[9]Lubuma J M,Patidar K C.Towards the implementation of the singular function method for singular perturbation problems[J].Appl Math Comput,2009,209(1):68-74.[10]Mo Jiaqi.Singularly perturbed differential-difference reaction diffusion equations with time delay[J].J Shanghai Jiaotong Univ(Sci),2009,14(5):629-631.[11]吴钦宽,林平健,孙福树,等.奇摄动Volterra型积分微分方程非线性边值问题[J].自然科学进展,2005,15(3):375-379.[12]吴钦宽.一类非线性方程激波解的Sinc-Galerkin方法[J].物理学报,2006,55(4):1561-1564.[13]吴钦宽.奇摄动积分微分方程非线性边值问题[J].兰州大学学报,2007,43(4):127-130.[14]吴钦宽.伴有边界摄动的Volterra型积分微分方程组的奇摄动[J].高校应用数学学报,2007,22(2):210-216.[15]吴钦宽.一类燃烧模型的同伦分析解法[J].物理学报,2008,57(5):2654-2657.[16]吴钦宽.伴有边界摄动非线性积分微分方程系统的奇摄动[J].吉林大学学报,2009,47(5): 881-886.[17]莫嘉琪.非线性分数阶微分方程的奇摄动[J].应用数学学报,2006,29(6):1085-1090.[18]Podlubny I.Fractional Differential Equations[M].San Diego:Academic Press,1999.[19]Delbosco D,Rodin L.Existence and uniqueness for nonlinear fractional differential equation [J].J Math Anal Appl,1996,204(2):609-625.[20]林学渊,谢峰.一类非线性分数阶微分方程的奇异摄动[J].东华大学学报,2009,35(2):238-240.。
Nonlinear Analysis64(2006)1528–1542/locate/na Positive solutions for singular non-linear third-order periodic boundary value problemsJifeng Chu a,∗,Zhongcheng Zhou ba Department of Applied Mathematics,College of Science,Hohai University,Nanjing210098,PR Chinab School of Mathematics and Finance,Southwest Normal University,Chongqing400715,PR ChinaReceived26May2005;accepted5July2005AbstractIn this paper,we are concerned with the problem of the existence of positive solutions for non-linear third-order periodic boundary value problemu + 3u=f(t,u),0 t 2 ,u(i)(0)=u(i)(2 ),i=0,1,2.Here, ∈(0,1√3)is a positive constant and our non-linearity f(t,u)may be singular at u=0.The proof relies on a non-linear alternative of Leray–Schauder type and on Krasnoselskiifixed point theorem on compression and expansion of cones.᭧2005Elsevier Ltd.All rights reserved.MSC:34B15Keywords:Periodic boundary value problem;Positive solutions;Singular;Leray–Schauder alternative;Fixed point theorem in cones∗Corresponding author.E-mail address:jifengchu@(J.Chu).0362-546X/$-see front matter᭧2005Elsevier Ltd.All rights reserved.doi:10.1016/j.na.2005.07.005J.Chu,Z.Zhou/Nonlinear Analysis64(2006)1528–15421529 1.IntroductionIn this paper,we establish the existence of positive solutions for the third-order periodic boundary value problemu + 3u=f(t,u),0 t 2 ,u(i)(0)=u(i)(2 ),i=0,1,2,(1.1)where ∈(0,1√3)is a positive constant and the type of the non-linear term f(t,u)we aremainly interested in the case that f(t,u)has a singularity near u=0.In recent years,the non-linear periodic boundary value problems have been widely studied by many authors.For details,see[3–10,12–15,17–20]and the references therein.For the boundary value problem(1.1),we recall the following two results.In[10],by using Schauder fixed point theorem,together with perturbation technique,it is established the existence of at least one positive solution under the following conditions:(A1)f(t,u)is a non-negative function defined on[0,2 ]×(0,+∞)and f(t,u)is inte-grable on[0,2 ]for eachfixed u∈(0,+∞);(A2)f(t,u)is non-increasing in u>0for almost all t∈[0,2 ]andlim u→0+f(t,u)=+∞,limu→+∞f(t,u)=0hold uniformly for t∈[0,2 ].(A3)For eachfixed constant >0,the inequality 2f(s, )d s<+∞holds.In[17],the condition of monotonicity on f(t,u)in(A2)is removed and the existence of multiple positive solutions under suitable conditions on f(t,u)is obtained by using thefixed point index theory.Instead of Schauderfixed point theorem used in[10]andfixed point index theory in[17],our main tool in this paper is a non-linear alternative of Leray–Schauder type and afixedpoint theorem in cones due to Krasnoselskii.We remark that it is sufficient to prove that T:K∩(¯ 2\ 1)→K is continuous and completely continuous in Theorem2.2(Section 2).This point is essential and advantageous for singular problems.The method used inthis paper was applied successfully by Agarwal and O’Regan in[1,2]for the existence ofsingular Dirichlet,Conjugate,Focal and(n,p)problems and in[7,8]for the multiplicityof positive periodic solutions to superlinear repulsive singular equations.In this paper,wediscuss both positone case and semi-positone case.The remaining part of the paper is organized as follows.In Section2,some preliminaryresults will be given,including a famousfixed point theorem in cones due to Krasnoselskii.In Section3,we are devoted to the positone case,i.e.,f(t,u)is positive.In this case,weestablish the existence of at least two positive solutions.In Section4,the semi-positonecase,i.e.,f(t,u) −L for some L>0,is studied.In this case,we obtain the existence ofat least one positive solution.Some illustrating examples will be given.1530J.Chu,Z.Zhou/Nonlinear Analysis64(2006)1528–15422.PreliminariesIn this section,we present some preliminary results which will be needed in Sections3 and4.First,as in[17],we transform our problem into an integral equation.For any function u∈C[0,2 ],we define the operator(J u)(t)=2g(t,x)u(x)d x,(2.1)whereg(t,x)=⎧⎪⎨⎪⎩e− (t−x)1−e−2,0 x t 2 ,e− (2 +t−x)1−e−2,0 t x 2 .(2.2)By a direct calculation,we can easily obtain20g(t,x)d x=1.Now,we consider the problemu − u + 2u=f(t,J u),u(i)(0)=u(i)(2 ),i=0,1.(2.3) If u is a positive solution of problem(2.3),i.e.,u(t)>0for t∈[0,2 ],it is easy to verify that y(t)=(J u)(t)is a positive solution of problem(1.1).Therefore,we will concentrate our study on problem(2.3).Lemma2.1(Sun and Liu[17]).The boundary value problem(2.3)is equivalent to integral equationu(t)=2G(t,s)f(s,(J u)(s))d s,(2.4)whereG(t,s)=⎧⎪⎨⎪⎩2e( /2)(t−s)[sin√32(2 −t+s)+e− sin√32(t−s)]√3 (e +e− −2cos√3 ),0 s t 2 , 2e( /2)(2 +t−s)[sin√32(s−t)+e− sin√32(2 −s+t)]√3 (e +e− −2cos√3 ),0 t s 2 .(2.5)Moreover,for G(t,s),we have the estimates0<m=2sin(√3 )√3 (e +1)2G(t,s) 2√3 sin(√3 )=M∀s,t∈[0,2 ].(2.6)The technique we present is based on Krasnoselskii’sfixed point theorem in a cone, which we state here for the convenience of the reader.J.Chu,Z.Zhou/Nonlinear Analysis64(2006)1528–15421531 Theorem2.2(Krasnosel’skii[11]).Let X be a Banach space and K(⊂X)be a cone. Assume that 1, 2are open subsets of X with0∈ 1,¯ 1⊂ 2,and letT:K∩(¯ 2\ 1)→Kbe a continuous and compact operator such that either(i) T u u ,u∈K∩j 1and T u u ,u∈K∩j 2;or(ii) T u u ,u∈K∩j 1and T u u ,u∈K∩j 2.Then T has afixed point in K∩(¯ 2\ 1).In applications below,we take X=C[0,2 ]with the supremum norm · and defineK=u∈X:u(t) 0for all t∈[0,2 ]and min0 t 2u(t) u,(2.7)where =m/M.One may readily verify that K is a cone in X.Now,suppose that f:[0,2 ]×R→[0,∞) is a continuous function.Define an operator T:X→X by(T u)(t)=2G(t,s)f(s,(J u)(s))d s(2.8) for u∈X and t∈[0,2 ].Lemma2.3.T is well defined and maps X into K.Moreover,T is continuous and completely continuous.Proof.It is easy to see that T is continuous and completely continuous since f:[0,2 ]×R→[0,∞)is a continuous function.Thus,we only need to show that T(X)⊂K.Let u∈X,then we havemin 0 t 2 (T u)(t)=min0 t 22G(t,s)F(s,(J u)(s))d s m2F(s,(J u)(s))d smax0 t 22G(t,s)F(s,(J u)(s))d s= T u ,i.e.,T u∈K.This implies that T(X)⊂K and the proof is completed.3.Positone caseIn this section,we establish the existence and multiplicity of positive solutions to(1.1) in the positone case.Recall that(1.1)is positone if f(t,u)>0for all t∈[0,2 ]and all u>0.In this paper,the notation 0means that (t) 0for all t∈[0,2 ]and (t)>0 for t in a subset of positive measure.1532J.Chu,Z.Zhou/Nonlinear Analysis64(2006)1528–1542Theorem3.1.Suppose f(t,u)satisfies the following conditions:(F1)For each constant H>0,there exists a function H 0such that f(t,u) H(t) for all(t,u)∈[0,2 ]×(0,H].(F2)There exist continuous,non-negative functions g(u)and h(u)on(0,∞)such that f(t,u) g(u)+h(u)for all(t,u)∈[0,2 ]×(0,∞),and g(u)>0is non-increasing and h(u)/g(u)is non-decreasing in u∈(0,∞). (F3)There exists a positive number r such thatrg( r/ )(1+h(r/ )/g(r/ ))>1 2,where =m/M,m and M are given as in Section2.Then boundary value problem(1.1)has at least one positive solution with0< u <r/ . Proof.We only need to show problem(2.3)has at least one positive solution with0< u <r. If this is true,then(J u)(t)is a positive solution of(1.1)with0< J u <r/ since0< J u =max0 t 2 2g(t,x)u(x)d x u2g(t,x)d x=1u <r.To do so,we will use the Leray–Schauder alternative principle,together with a truncation technique.Let N0={n0,n0+1,...},where n0∈{1,2,...}is chosen such that1 2gr1+h(r/ )g(r/ )+1n0<r.(3.1)See(F3).Fix n∈N0,the idea isfirst to show that the“modified”problemu − u + 2u=f n(t,J u)+ 2n,0 t 2 ,u(i)(0)=u(i)(2 ),i=0,1(3.2) has a solution u n∈C2[0,2 ]with0< u n r,wheref n(t,x)=f(t,1/n ),x 1/n ,f(t,x),x 1/n .(3.3)For ∈(0,1),consider the family of problemsu − u + 2u= f n(t,J u)+ 2n,0 t 2 ,u(i)(0)=u(i)(2 ),i=0,1.(3.4)J.Chu,Z.Zhou/Nonlinear Analysis64(2006)1528–15421533 Let u be a solution of problem(3.4),then it follows from Lemma2.1thatu(t)=20G(t,s)f n(s,(J u)(s))+2nd s= 2G(t,s)f n(s,(J u)(s))d s+1n,(3.5)where G(t,s)is the Green function given by(2.5).First,it is claimed that any solution u of problem(3.5)verifiesu =max0 t 2|u(t)|=r(3.6)independently of .Otherwise,assume that u is a solution of(3.5)for some ∈(0,1)such that u =r. Note that f n(t,(J u)(s)) 0.By Lemma2.3,for all t∈[0,2 ],u(t) 1/n andu(t)−1n=2G(t,s)f n(s,(J u)(s))d s m2f n(s,(J u)(s))d smMmax0 t 22G(t,s)f n(s,(J u)(s))d s=u−1n.Thus,u(t)u−1n+1nu −1n+1n> r.Therefore,we have from condition(F2),for all t∈[0,2 ],u(t)=20G(t,s)f n(s,(J u)(s))d s+1n= 2G(t,s)f(s,(J u)(s))d s+1n2G(t,s)f(s,(J u)(s))d s+12G(t,s)g((J u)(s))1+h((J u)(s))g((J u)(s))d s+1ngr1+hrgr2G(t,s)d s+1n0=1gr1+hrgr+1(3.7)since r/ (J u)(t) r/ . Therefore,r= u 12gr1+hrgr+1n0.This is a contradiction to the choice of n0and the claim is proved.1534J.Chu,Z.Zhou /Nonlinear Analysis 64(2006)1528–1542Define the operator T :X →X by(T u)(t)= 2 0G(t,s)f n (s,(J u)(s))d s +1n ,(3.8)then (3.5)is equivalent to the fixed point problem u =(1− )1n+ T u .(3.9)It is easy to see that T :X →X is continuous and completely continuous.Define the set U ={u ∈C [0,2 ]: u <r }.Since (3.6)holds,the non-linear alternative of Leray–Schauder [16]guarantees that T has a fixed point,denoted by u n ,in U ,i.e.,problem (3.2)has a solution u n with u n <r .Since u n satisfies u n =T (u n ),u n (t) 1/n for all t ∈[0,2 ]and u n is actually a positive solution of problem (3.2).Next,we claim that these solutions u n have a uniform positive lower bound,i.e.,there exists a constant >0,independent of n ∈N 0,such thatmin t ∈[0,2 ]u n (t) (3.10)for all n ∈N 0.To see this,we know from (F 1)that there exists a function r 0such that f (t,J u) r (t)for (t,u)∈[0,2 ]×(0,r ].Now,let u r (t)be the unique solution to the problem u − u + 2u = r (t),0 t 2 ,u (i)(0)=u (i)(2 ),i =0,1,(3.11)thenu r (t)= 20G(t,s) r (s)d s m r 1>0,where · 1denotes the usual L 1-norm over [0,2 ].So,we haveu n (t)= 2 0G(t,s)f n (s,(J u n )(s))d s +1/n= 2 0G(t,s)f (s,(J u n )(s))d s +1/n 2 0G(t,s) r (s)d s +1/n =u r (t)+1/n m r 1=: .In order to pass the solutions u n of the truncation problems (3.2)to that of the original problem (2.3),we need the following fact:u n K(3.12)for some constant K >0(independent of n ∈N 0)and for all n ∈N 0.J.Chu,Z.Zhou/Nonlinear Analysis64(2006)1528–15421535 In fact,there exists t0∈[0,2 ]such that u n(t0)=0since u n(0)=u n(2 ).Integrate(3.2) in[0,2 ],it is obtained2 2u n(t)d t=2f n(t,(J u n)(t))+2nd t,(3.13)since u n(0)=u n(2 ). Thenu n =max0 t 2 |u n(t)|=max0 t 2tt0u n(s)d s=max0 t 2tt0[f n(s,(J u n)(s))+ 2/n− 2u n(s)+ u n(s)]d s2[f n(s,(J u n)(s))+ 2/n]d s+ 22u n(s)d s+ |u n(t)−u n(t0)|=2 2 2u n(s)d s+ |u n(t)−u n(t0)|<4 2r+2 r=:K.As u n <r,by(3.12),{u n}n∈N0is a bounded and equi-continuous family on[0,2 ].Bythe Arzela–Ascoli Theorem,{u n}n∈N0has a subsequence,{u nk}k∈N,converging uniformlyon[0,2 ]to a function u∈X.From the fact u n <r and(3.10),u satisfies u(t) rfor all t∈[0,2 ].Moreover,u nksatisfies the integral equationu nk (t)=2G(t,s)f(s,(J u nk)(s))d s+1/n k.Letting k→∞,we arrive atu(t)=2G(t,s)f(s,(J u)(s))d s,where the uniform continuity of f(t,J u)on[0,2 ]×[ ,r]is used.Therefore,u is a positive solution to problem(2.3).Finally,it is not difficult to show that u <r,by noting that if u =r,the argument similar to the proof of thefirst claim(3.6)will yield a contradiction.Corollary3.2.Let the non-linearity in(1.1)bef(t,u)=b(t)u− + c(t)u +e(t),0 t 2 ,(3.14)where >0, 0,b(t),c(t),e(t)∈X are non-negative functions and b(t)>0for all t∈[0,2 ],and >0is a positive parameter.Then(i)if <1,problem(1.1)has at least one positive solution for each >0;and(ii)if 1,problem(1.1)has at least one positive solution for each0< < ∗,where ∗is some positive constant.1536J.Chu,Z.Zhou /Nonlinear Analysis 64(2006)1528–1542Proof.Remark that assumption (F 1)is fulfilled by H (t)=H − min t b(t).To verify (F 2),one may simply takeg(u)=b 0u − ,h(u)= c 0u +e 0,whereb 0=max t b(t)>0,c 0=max t c(t) 0,e 0=max te(t) 0.Now,the existence condition (F 3)becomes< r +1 +2−b 0 + −e 0r c 0r +for some r >0.So,problem (1.1)has at least one positive solution for0< < ∗:=sup r>0r +1 +2−b 0 + −e 0r c 0r + .Note that ∗=∞if <1and ∗<∞if 1.We have the desired results.Next,we will find another positive solution to problem (1.1)by using Theorem 2.2for certain non-linearities.Theorem 3.3.Suppose that (F 1)–(F 3)are satisfied.Furthermore ,assume that(F 4)There exist continuous ,non-negative functions g 1(u)and h 1(u)on (0,∞)such thatf (t,u)g 1(u)+h 1(u)for all (t,x)∈[0,2 ]×(0,∞)and g 1(u)>0is non-increasing and h 1(u)/g 1(u)is non-decreasing in u ∈(0,∞);and(F 5)There exists a positive number R >r such that Rg 1(R/ ) 1+h 1( R/ )g 1( R/ ) 1,where is as in Section 2.Then problem (1.1)has another positive solution ˜u with r/ < ˜u R/ .Proof.Let X =C [0,2 ]and K be the cone in X defined by (2.7).Let1={u ∈X : u <r }, 2={u ∈X : u <R }and define the operator T :K ∩(¯2\ 1)→K by (T u)(t)= 2 0G(t,s)f (s,(J u)(s))d s,0 t 2 .(3.15)J.Chu,Z.Zhou /Nonlinear Analysis 64(2006)1528–15421537Since r u R for u ∈K ∩(¯ 2\ 1),thus 0< r/ (J u)(t) R/ .Since f :[0,2 ]×[ r/ ,R/ ]→[0,∞)is continuous,it follows from Lemma 2.3that the operator T :K ∩(¯ 2\ 1)→K is well defined and is continuous and completely continuous.First,we showT u < u for u ∈K ∩j 1.(3.16)In fact,if u ∈K ∩j 1,then u =r and r u(t) r for 0 t 2 .So we have(T u)(t)= 2 0G(t,s)f (s,(J u)(s))d s2 0G(t,s)g((J u)(s)) 1+h((J u)(s))g((J u)(s)) d s g r 1+h r g r 2 0G(t,s)d s =1 2g r 1+h r g r<r = u .This implies T u < u ,i.e.,(3.16)holds.Next,we show thatT u u for u ∈K ∩j 2.(3.17)To see this,let u ∈K ∩j 2.Then u =R and R u(t) R .As a result,it follows from (F 4)and (F 5)that,for 0 t 2 ,(T u)(t)= 2 0G(t,s)f (s,(J u)(s))d s2 0G(t,s)g 1((J u)(s)) 1+h 1((J u)(s))g 1((J u)(s)) d s 2 0G(t,s)g 1 R 1+h 1( R/ )g 1( R/ ) d s =1 2g 1 R 1+h 1( R/ )g 1( R/ )R = u .Now,(3.16),(3.17)and Theorem 2.2guarantee that T has a fixed point u ∈K ∩(¯ 2\ 1)with r u R .Clearly,˜u =J (u)is a positive solution of (1.1)and actually satisfiesr/ < ˜u R/ .Let us consider again the example (3.14)in Corollary 3.2for the superlinear case,i.e., >1.We assume also that c(t)>0for all t ∈[0,2 ].To verify (F 4),one may simply takeg 1(u)=b 1u − ,h 1(u)= c 1u +e 1,whereb 1=min t b(t)>0,c 1=min t c(t)>0,e 1=min t e(t) 0.Now,the existence condition (F 5)becomesR +1 +2−b 1 + −e 1 R c 1 + R + .(3.18)Since >1,the right-hand side goes to 0as R →+∞.Thus,for any given 0< < ∗,where ∗is as in Corollary 3.2,it is always possible to find such R ?r that (3.18)is satisfied.Thus,problem (1.1)has an additional positive solution ˜u .Corollary 3.4.Assume in (3.14)that >1and b(t)>0,c(t)>0for all t ∈[0,2 ].Then ,for each with 0< < ∗,with ∗given as in Corollary 3.2,the corresponding problem value problem (1.1)has at least two different positive solutions .4.Semi-positone caseIn this section,we establish the existence of at least one positive solutions of (1.1)in the semi-positone case.By the semi-positone case of (1.1),we mean that f (t,u)may change sign and satisfies(G 1)There exists a constant L >0such that F (t,u):=f (t,u)+L 0for all (t,u)∈[0,2 ]×(0,∞).Theorem 4.1.Suppose that f (t,u)satisfies (G 1).In addition ,we assume that the following conditions are satisfied :(G 2)There exist continuous non-negative functions g(u)and h(u)on (0,∞)such thatF (t,u) g(u)+h(u)for all (t,u)∈[0,2 ]×(0,∞)and g(u)>0is non-increasing and h(u)/g(u)is non-decreasing in u ∈(0,∞);(G 3)There exist continuous ,non-negative functions g 1(u)and h 1(u)on (0,∞)such thatF (t,u) g 1(u)+h 1(u)for all (t,u)∈[0,2 ]×(0,∞)and g 1(u)>0is non-increasing and h 1(u)/g 1(u)is non-decreasing in u ∈(0,∞);(G 4)There exists r > / such that r gr − 1+h(r/ − )g(r/ − ) >1 2,where =L/ 3, =m/M is the same as in Section 2.(G 5)There exists a positive number R >r such that R g 1 R − 1+h 1( R/ − )1 1 2.Then problem (1.1)has a solution u ∈C 2[0,2 ]with u(t)>0for t ∈[0,2 ]and r/ < u + <R/ .Proof.We only need to show that problem (2.3)has a positive solution y(t)with r < y + R .To do so,we will show that problemu − u + 2u =F (t,(J u)(t)− ),0 t 2 ,u(0)=u(2 ),u (0)=u (2 )(4.1)has a positive solution u ∈C 2[0,2 ]with (J u)(t)> for t ∈[0,2 ]and r < u R .Let X =C [0,2 ]and K be a cone in X defined by (2.7).Let1={u ∈X : u <r }, 2={u ∈X : u <R }and define the operator T :K ∩(¯2\ 1)→K by (T u)(t)=2 0G(t,s)F (s,(J u)(s)− )d s,0 t 2 ,(4.2)where G(t,s)is the Green function given by (2.5).Since r u R for u ∈K ∩(¯ 2\ 1),thus 0< r/ − (J u)(s)− R/ − .Since F :[0,2 ]×[ r/ − ,R/ − ]→[0,∞)is continuous,it follows from Lemma 2.3that the operator T :K ∩(¯ 2\ 1)→K is well defined and is continuous and completely continuous.First,we showT u < u for u ∈K ∩j 1.(4.3)In fact,if u ∈K ∩j 1,then u =r and (J u)(t) r/ > for 0 t 2 .So we have from conditions (G 2)and (G 4)that,for 0 t 2 ,(T u)(t)= 2 0G(t,s)F (s,(J u)(s)− )d s2 0G(t,s)g((J u)(s)− ) 1+h((J u)(s)− )g((J u)(s)− ) d s 2 0G(t,s)g r − 1+h(r/ − )g(r/ − ) d s =1 2g r − 1+h(r/ − )g(r/ − )<r = usince r/ − (J u)(s)− r/ − .This implies T u < u ,i.e.,(4.3)holds.Next,we showT u u for u ∈K ∩j 2.(4.4)To see this,let u ∈K ∩j 2,then u =R and (J u)(t) R/ > for 0 t 2 .As a result,it follows from (G 3)and (G 5)that,for 0 t 2 ,(T u)(t)= 20G(t,s)F (s,(J u)(s)− )d s2 0G(t,s)g 1((J u)(s)− ) 1+h 1((J u)(s)− )g 1((J u)(s)− ) d s 2 0G(t,s)g 1 R − 1+h 1( R/ − )g 1( R/ − ) d s =1g 1 R − 1+h 1( R/ − )1 R = u .This implies T u u ,i.e.,(4.4)holds.Now,(4.3),(4.4)and Theorem 2.2guarantee that T has a fixed point u ∈K ∩(¯ 2\ 1)with r u R .Note u =r by (4.3).Clearly,this u is a positive solution of (4.1).Let y(t)=u(t)− ,then y(t)is a positive solution of (2.3)and r < y + R sincey (t)− y (t)+ 2y(t)=u (t)− u (t)+ 2(u(t)− )=F (t,(J u)(t)− )− 3=F (t,(J u)(t)− )−L=f (t,(J u)(t)− )=f (t,(Jy)(t))for all t ∈[0,2 ].Corollary 4.2.Let the non-linearity in (1.1)be (3.14),where 1, >1,b(t),c(t):[0,2 ]→(0,∞)are continuous functions ,e(t)∈C [0,2 ]and >0is a positive pa-rameter.Then (1.1)has at least one positive solution for each 0< < ∗,where ∗is some positive constant .Proof.We will apply Theorem 4.1with L =e 0=max 0 t 2 |e(t)|andg(u)=b 0u − ,h(u)= c 0u +2e 0,g 1(u)=b 1u − ,h 1(u)= c 1u .Here,b 1=min t b(t)>0,c 1=min t c(t)>0,b 0=max t b(t)>0,c 0=max tc(t)>0.Then conditions (G 1)–(G 3)are satisfied.The existence condition (G 4)becomes< 2r( r/ − ) −b 0−2e 0(r/ − )c 0(r/ − ) +for some r> / .Let∗=supr> / 2r( r/ − ) −b0−2e0(r/ − )c0(r/ − ) +.Note that ∗<∞since >1.Another existence condition(G5)becomes2R(R/ − ) −b1c1( R/ − ) +.(4.5)Since >1,the right-hand side of(4.5)goes to0as R→+∞.Thus,for any given 0< < ∗,it is always possible tofind such R?r that(4.5)is satisfied.Thus,problem (1.1)has at least one positive solution.5.AcknowledgmentThe authors express their thanks to the referee for his valuable suggestions. References[1]R.P.Agarwal,D.O’Regan,Multiplicity results for singular conjugate,focal and(n,p)problems,J.Differential Equations170(2001)142–156.[2]R.P.Agarwal,D.O’Regan,Existence theory for single and multiple solutions to singular positone boundaryvalue problems,J.Differential Equations175(2001)393–414.[3]P.Amster,P.De Npoli,M.C.Mariani,Periodic solutions of a resonant third-order equation,Nonlinear Anal.60(2005)399–410.[4]A.Cabada,The method of lower and upper solutions for second,third,fourth and higher order boundaryvalue problem,J.Math.Anal.Appl.185(1994)302–320.[5]A.Cabada,J.J.Nieto,Extremal solutions of second order nonlinear periodic boundary value problems,Appl.put.40(1990)135–145.[6]D.Jiang,On the existence of positive solutions to second order periodic BVPs,Acta Math.Sinica(New Ser.)18(1998)31–35.[7]D.Jiang,J.Chu,D.O’Regan,R.P.Agarwal,Multiple positive solutions to superlinear periodic boundaryvalue problems with repulsive singular forces,J.Math.Anal.Appl.286(2003)563–576.[8]D.Jiang,J.Chu,M.Zhang,Multiplicity of positive periodic solutions to superlinear repulsive singularequations,J.Differential Equations211(2005)282–302.[9]D.Jiang,J.J.Nieto,W.Zuo,On monotone method forfirst and second order periodic boundary value problemsand periodic solutions of functional differential equations,J.Math.Anal.Appl.289(2004)691–699. [10]L.Kong,S.Wang,J.Wang,Positive solution of a singular nonlinear third-order periodic boundary valueproblem,put.Appl.Math.132(2001)247–253.[11]M.A.Krasnosel’skii,Positive Solutions of Operator Equations,Noordhoff,Groningen,1964.[12]Y.X.Li,Positive solutions of higher-order periodic boundary value problems,Comput.Math.Appl.48(2004)153–161.[13]B.Mehri,M.A.Niksirat,On the existence of periodic solutions for singular nonautonomous third ordersystems,put.Math.2(2003)148–155.[14]J.J.Nieto,Differential inequalities for functional perturbations offirst-order ordinary differential equations,Appl.Math.Lett.15(2002)173–179.[15]J.J.Nieto,R.Rodriguez-Lopez,Remarks on periodic boundary value problems for functional differentialequations,put.Appl.Math.158(2003)339–353.[16]D.O’Regan,Existence Theory for Nonlinear Ordinary Differential Equations,Kluwer Academic,Dordrecht,1997.[17]J.Sun,Y.Liu,Multiple positive solutions of singular third-order periodic boundary value problem,ActaMath.Sci.25(2005)81–88.[18]J.Wang,W.Gao,On a nonlinear second order periodic boundary value problems with Carathéodory functions,Ann.Polon.Math.62(1995)283–291.[19]J.Wang,D.Jiang,A singular nonlinear second order periodic boundary value problem,J.Tohoku Math.50(1998)203–210.[20]Z.Zhang,Z.Wang,Periodic solutions of the third order functional differential equations,J.Math.Anal.Appl.292(2004)115–134.。
个人简介1956年1月出生,籍贯:吉林省敦化市,1978.03―1982.01 吉林大学数学系本科生1984.09―1986.08 吉林大学数学所硕士研究生1986.09―1988.12 吉林大学数学所博士研究生1982.01―1988.06 吉林大学数学学院助教1988.07―1990.12 吉林大学数学学院讲师1991.01―1992.09 吉林大学数学学院副教授1992.10―现在吉林大学数学学院教授1994.12―现在吉林大学数学学院博士生导师2001.10―现在吉林大学数学学院长江学者特聘教授四、主要学术贡献主要从事偏微分方程理论及其应用方面的研究。
主持和参加了多项教学和科研项目,于国内外学术刊物发表论文几十篇。
现指导博士研究生人6人,硕士研究生9人(已毕业博士研究生6人,硕士研究生12人).1. 教学项目1) 《数学分析》,教育部基地创名牌课程项目,负责人,2003―2005;2) 《数学分析》,吉林大学百门精品课程,负责人,2001―2006;3) 《新时期应用数学人才培养》,吉林大学新世纪教育教学改革工程,负责人,2 003―2006;4) 《数学物理方程》,吉林大学百门精品课程,负责人,2005―2010;2. 科研项目1)《具退化性和奇异性的非线性扩散方程》,国家杰出青年基金项目,负责人,20 02―2005;2) 《具奇异性的非线性扩散方程》,高等学校博士学科点专项科研基金项目,负责人,2004―2006;3) 《图像处理中的偏微分方程方法及其数值方法》,国家自然科学基金重点项目,负责人,2006―2009.3.获奖励情况(1) 2001年获得香港求是科技基金会“杰出青年学者奖”。
(2) 2001年被教育部评为“长江学者奖励计划”特聘教授。
(3) 1999年获国家教育部科学技术进步一等奖。
(4) 2002年被评为教育部高等学校优秀骨干教师。
(5) 2005年被评为吉林省高级专家。
科技期刊中文后参考文献的规范化处理——以《湖南工业大学学报》为例邓彬【摘要】基于《湖南工业大学学报》文后参考文献的著录规则要求,对其来稿中文后参考文献著录存在的常见问题进行了归纳总结.科技期刊稿件的文后参考文献中的问题主要表现在3个方面:著录项目不全、著录项目格式不正确和文献题名出错,同时,针对这些问题提出了相应的规范化处理方法.【期刊名称】《湖南工业大学学报》【年(卷),期】2012(026)006【总页数】4页(P86-89)【关键词】《湖南工业大学学报》;文后参考文献;规范化【作者】邓彬【作者单位】湖南工业大学期刊社,湖南株洲412007【正文语种】中文【中图分类】G254.310 引言参考文献是著者为了反映文稿的科学依据和尊重他人研究成果而向读者提供文中引用有关资料的出处,或为了节约篇幅和叙述方便,而提供在论文中提及而没有展开的有关内容的详尽文本[1]。
参考文献是科学技术报告、学术论文、学位论文的一个重要组成部分,并已纳入科技期刊学术质量评估体系。
因此,参考文献在科技论文中具有重要的地位,其为读者提供了如下信息:1)从参考文献的发表或出版时间,可从侧面判断该论文是否具有先进性和前瞻性。
2)作者对外文文献的引用情况,可反映其对国际的相关知识或技术的掌握情况。
3)参考文献能起索引作用,以便读者检索和查找相关图书资料。
在科技论文写作中,由于种种原因,参考文献的著录还不够规范、统一,还有许多问题值得商榷和推敲。
因此,笔者基于《湖南工业大学学报》文后参考文献的著录规则要求,分析了编辑加工稿件过程中遇到的参考文献著录常见问题及其相应的规范化处理,以期为论文撰写者提供借鉴,同时促进相关参考文献规则与标准的推广和执行,减少编辑花费在文后参考文献著录上的时间和精力,优化编辑工作。
1 文献类型和电子文献载体标志码《湖南工业大学学报》主要依据GB/T 7714 —2005《文后参考文献著录规则》,GB/T 3179 —2009《期刊编排格式》等中的要求著录文后参考文献。
奇异分数阶微分方程边值问题正解的唯一性周文学;刘旭【摘要】By the means of the Green’s function, the boundary value problem of fractional dif-ferential equation can be reduced to the equivalent integral equation. Recently, this method is applied successfully to discuss the existence of the solution to boundary value problem of nonlinear fractional differential equation. This article investigates the uniqueness of positive solutions for a singular nonlinear boundary value problem of differential equations of fractional order. Our analysis relies on the fixed point theorem in partially ordered sets and the reduction of the considered problem to the equivalent of integral equations.%应用Green函数将分数阶微分方程边值问题可转化为等价的积分方程。
近来此方法被应用于讨论非线性分数阶微分方程边值问题解的存在性。
本文讨论奇异非线性分数阶微分方程边值问题正解的唯一性。
应用Green函数将其转化为等价的积分方程,利用偏序集上的不动点定理证明正解的唯一性。
【期刊名称】《工程数学学报》【年(卷),期】2014(000)002【总页数】10页(P300-309)【关键词】边值问题;奇异分数阶微分方程;Riemann-Liouville分数阶导数;唯一性;偏序集【作者】周文学;刘旭【作者单位】兰州交通大学数学系,兰州 730070; 复旦大学数学科学学院,上海200433;兰州交通大学数学系,兰州 730070【正文语种】中文【中图分类】O175.81 IntroductionThis paper is mainly concerned with the uniqueness of a positive solution for the singular nonlinear fractional differential equation boundary value problemwhere 3<α≤4 is a real number,is the standard Riemann-Liouville dif f erentiation,and f:(0,1]×[0,+∞)→ [0,+∞)with(i.e.,f is singular at t=0).In the last few years,fractional dif f erential equations(in short FDEs)have been studied extensively.The motivation for those works stems from both the development of the theory of fractional calculus itself and the applications of such constructions in various sciences such asphysics,mechanics,chemistry,engineering,and so on.For an extensive collection of such results,we refer the readers to the monographs by Kilbas et al[1],Miller and Ross[2],Oldham and Spanier[3],Podlubny[4]and Samko et al[5].Some basic theory for the initial value problems of FDE involving Riemann-Liouville dif f erential operator has been discussed by Lakshmikantham[6-8],Babakhani and Daftardar-Gejji[9-11],and Bai[12],and so on.Also,there aresome papers which deal with the existence and multiplicity of solutions(or positive solution)for nonlinear FDE of BVPs by using techniques of nonlinear analysis(fixed-point theorems,Leray-Shauder theory,topological degree theory,etc.),see[13–21]and the references therein.Delbosco and Rodino[21]considered the existence of a solution for the nonlinear fractional dif f erential equationwhere 0<α<1 andf:[0,a]×R→R,0<a≤ +∞ is a given continuous function in(0,a)×R.They obtained results for solutions by using the Schauder fixed point theorem and the Banach contraction principle.Qiu and Bai[21]considered the existence of a positive solution to boundary-value problems of the nonlinear fractional dif f erential equationwhereis the Caputo fractional derivative,andf:(0,1]×[0,+∞)→[0,+∞)with(i.e.,f is singular at t=0).They obtained the existence of positive solutions by means of Guo-Krasnosel’skii fixed point theorem and nonlinear alternative of Leray-Schauder type in acone.In[21]the uniqueness of the solution is not treated.From the above works,we can see a fact,although the fractional boundary value problems have been investigated by some authors.To the best of our knowledge,there have been few papers which deal with theproblem(1)and(2)for nonlinear singular fractional dif f erential equation.Motivated by all the works above,in this paper we discuss the problem(1)and(2).Using a fixed point theorem in partially ordered sets,we will give the uniqueness of a positive solution for the singular nonlinearfractional dif f erential equation boundary value problem(1)and(2).The paper is organized as follows.In section 2,we give some preliminary results that will be used in the proof of the main results.In section 3,we establish the uniqueness of a positive solution for the singular nonlinear fractional dif f erential equation boundary value problem(1)and(2).In the end,we illustrate a simple use of the main result.2 Preliminaries and lemmasFor the convenience of the reader,we present here the necessary def i nitions from fractional calculus theory.These def i nitions can be found in the recent literature such as[1,4,15].Def i nition 2.1[1,4]The Riemann-Liouville fractional integral of order α>0 of a function f:(0,+∞)→Ris given byprovided that the right side is poi ntwise def i ned on(0,+∞),where Γ is the gamma function.Def i nition 2.2[1,4]The Riemann-Liouville fractional derivative of order α>0 of a continuous function f:(0,+∞)→Ris given byprovided that the right side is pointwise def i ned on(0,+∞).Here n=[α]+1 and[α]denotes the integer part of α.Lemma 2.1[15]Let α >0.If we assume u ∈ C(0,1)∩L(0,1),then the fractional dif f erential equation hasas unique solutions,where N is the smallest integer greater than or equalto α.Lemma 2.2[15]Assume that h∈C(0,1)∩L(0,1)with a fractional derivative of order α >0 that belongs to C(0,1)∩ L(0,1).Thenfor some Ci∈ R,i=1,2,···,N,where N is the smallest integer greater than or equal to α.In the following,we present the Green’s function a boundary value problem of the FDEs.Lemma 2.3 Let h∈C[0,1]and 3<α≤4,then the unique solution ofis given bywhere G(t,s)is the Green’s function given byRemark 2.1 G(t,s)>0 for t,s∈(0,1).The following two lemmas are fundamental in the proofs of our main result.Lemma 2.4[22]Let(E,≤)be a partially ordered set,and suppose that there exists a metric d in E,such that(E,d)is a complete metric space.Assume that E satisf i es(7).Let f:E→E be a nondecreasing mapping such thatwhere φ :[0,+∞)→ [0,+∞)is continuous and nondecreasing function,suc h that φ is positive in(0,+∞),φ(0)=0 andIf there exists x0∈ E withx0≤f(x0),then f has a fixed point.If we consider that(E,≤)satisf i es the following conditionThen we have the following result.Lemma 2.5[22]Adding condition(9)to the hypotheses of Lemma 2.4,we obtain uniqueness of the fixed point of f.3 Main resultsIn this section,we establish the uniqueness of a positive solution for the problem(1)and(2).Theorem 3.1 Let 0<σ<1,3<α≤4,F:(0,1]→[0,+∞)is continuous,andSuppose that tσF(t)is continuous funct ion on[0,1].Then the functionis continuous on[0,1].Proof By the continuity of tσF(t)and It is easy to check that H(0)=0.The proof is divided into three case:Case 3.1 t0=0,∀t∈(0,1].Since tσF(t)is continuous in[0,1],there exists a constant M>0,suchtha t|tσF(t)|≤ M,t∈ [0,1].Hencewhere B(·,·)denotes the beta function.Case 3.2 t0∈(0,1),∀t∈(t0,1].Case 3.3 t0∈(0,1],∀t∈[0,t0).The proof is similar to that of Case 3.2,so weomit it.From the above,for ϵ>0,t,t0 ∈ [0,1],there exists δ>0 such that|t− t0|< δ,w e have|H(t)− H(t0)|< ϵ.Thus,the functionis continuous on[0,1].Let Banach space E=C[0,1]be endowed with the norm ∥u∥=maxt∈[0,1]|u(t)|.Note that this space can be equipped with a partial order given byIt is easy to check that(E,≤)with the classic metri c given bysatisf i es condition(8)of Lemma 2.4.Moreover,for x,y∈E,as the function max{x,y}is continuous in[0,1],(E,≤)satisf i es condition(9).Theorem 3.2 Let 0<σ<1,3<α≤4,f:(0,1]×[0,+∞)→ [0,+∞)iscontinuous,andtσf(t,u)is continuous function on[0,1]× [0,+∞).Assume that there existssuch that for u,v∈[0,+∞)with u≥v and t∈[0,1],where ϕ:[0,+∞)→ [0,+∞)is continuous andnondecreasing,φ(u)=u−ϕ(u)satisf i es:(a): φ:[0,+∞)→[0,+∞)and nondecreasing;(b):φ(0)=0;(c): φ is positive in(0,+∞).Then the problem(1)and(2)has an unique positive solution.Proof Def i ne the cone K⊂E byNote that,as K is a closed subset of E,K is a complete metric space. Suppose that u is a solution of boundary value problem(1)and(2).ThenDef i ne an operator A:K→E as followsBy Theore m 3.1,Au ∈ E.Moreover,in view of Remark 2.1 and as tσf(t,u)≥ 0 for(t,u)∈[0,1]×[0,+∞),by hypothesis,we getSo,A(K)⊂K.Firstly,the operator A is nondecreasing.By hypothesis,for u≥v,thenBesides,for u≥v,by(12),we obtainAs the function ϕ(u)is nondecreasing,then for u ≥ v,we getBy last inequality,we havePut φ(u)=u−ϕ(u).Obviously,φ :[0,+∞)→ [0,+∞)iscontinuous,nondecreasing,positive in(0,+∞),φ(0)=0.Thus,for u≥v,we getFinally,take into account that for the zero function,0≤A0,by Lemma 2.4,our problem(1)and(2)has at least one nonnegative solution.Moreover,this solution is unique,since(K,≤)satisf i es condition(9)and Lemma 2.5.This completes the proof.In the sequel,we present an example which illustrates Theorem 3.2.4 An exampleExample 4.1 Consider the fractional dif f erential equation(this example is inspired in[21])In this case,Note that f is continuous in(0,1]×[0,+∞)andMoreover,for u≥v and t∈[0,1],we haveBecause g(x)=ln(x+2)is nondecreasing on[0,+∞),andNote thatSince all the conditions of Theorem 3.2 are satisf i ed,theproblem(16)and(17)has an unique positive solution.References:[1]Kilbas A A,et al.Theory and Applications of Fractional Dif f erential Equations[M].Amsterdam:Elsevier Science,2006[2]Miller K S,et al.An Introduction to the Fractional Calculus and Dif f erential Equations[M].New York:John Wiley&Sons,1993[3]Oldham K B,et al.The Fractional Calculus[M].London:Academic Press,1974[4]Podlubny I.Fractional Dif f erential Equation[M].San Diego:Academic Press,1999[5]Samko S G,et al.Fractional Integrals and Derivatives,Theory and Applications[M].Yverdon:Gordon and Breach,1993[6]Lakshmikantham V,et al.Basic theory of fractional dif f erential equations[J].Nonlinear Analysis:TheoryMethods&Applications,2008,69(8):2677-2682[7]Lakshmikantham V,et al.General uniqueness and monotone iterative technique for fractional dif f erential equations[J].Applied Mathematics Letters,2008,21(8):828-834[8]Lakshmikantham V.Theory of fractional functional dif f erential equations[J].Nonlinear Analysis:TheoryMethods&Applications,2008,69(10):3337-3343[9]Babakhani A,et al.Existence of positive solutions of nonlinear fractional dif f erential equations[J].Journal of Mathematical Analysis and Applications,2003,278(2):434-442[10]Babakhani A,et al.Existence of positive solutions for N-term non-autonomous fractional dif f erential equations[J].Positivity,2005,9(2):193-206[11]Babakhani A,et al.Existence of positive solutions for multi-term non-autonomous fractional dif f erential equations with polynomial coefficients[J].Electronic Journal of Dif f erentialEquations,2006,2006(129):1-12[12]Bai C Z.Positive solutions for nonlinear fractional dif f erential equations with coefficient that changes sign[J].Nonlinear Analysis:Theory Methods&Applications,2006,64(4):677-685[13]Agarwal R P,et al.Boundary value problems for fractional dif f erential equation[J].Advanced Studies in ContemporaryMathematics,2008,16(2):181-196[14]Ahmad B,et al.Existence results for nonlinear boundary value problems of fractional integrodif f erential equations with integral boundary conditions[J].Boundary Value Problems,2009,708576:1-11[15]Bai Z B,et al.Positive solutions for boundary value problem of nonlinear fractional dif f erential equation[J].Journal of Mathematical Analysis and Applications,2005,311(2):495-505[16]Xu X J,et al.Multiple positive solutions for the boundary value problem of a nonlinear fractional dif f erential equation[J].Nonlinear Analysis:Theory Methods&Applications,2009,71(10):4676-4688[17]Zhang S Q.Positive solutions for boundary-value problems of nonlinear fractional dif f erential equations[J].Electronic Journal of Dif f erential Equations,2006,2006(36):1-12[18]Zhou W X,et al.Existence of solutions for fractional dif f erential equations with multi-point boundary conditions[J].Communications in Nonlinear Science and Numerical Simulation,2012,17(3):1142-1148[19]Zhou W X,et al.Multiple positive solutions for nonlinear semipositone fractional dif f erential equations[J].Discrete Dynamics in Nature and Society,2012,850871:1-10[20]Delbosco D,et al.Existence and uniqueness for a nonlinear fractional diff erential equation[J].Journal of Mathematical Analysis and Applications,1996,204(2):609-625[21]Qiu T T,et al.Existence of positive solutions for singular fractional dif f erential equations[J].Electronic Journal of Dif f erentialEquations,2008,2008(146):1-9[22]Harjani J,et al.Fixed point theorems for weakly contractive mappings in partially ordered sets[J].Nonlinear Analysis:TheoryMethods&Applications,2009,71(7-8):3403-3410。
用差分方法求解一类二阶两点边值问题邹序焱【摘要】Presents a difference method to solve a second order two-point boundary value problem.The method has second-order accuracy,the coefficient matrix is tridiagonal matrix,and Thomas method is used to get the solutions.Through an example verifies the accuracy of the algorithm.%对一类二阶两点边值问题给出一种差分算法。
该算法具有二阶精度,差分格式的系数矩阵为三对角矩阵,可用追赶法求解,并通过实例验证了算法的精度。
【期刊名称】《湖南工业大学学报》【年(卷),期】2012(026)003【总页数】3页(P13-15)【关键词】常微分方程;边值问题;差分算法;追赶法【作者】邹序焱【作者单位】宜宾学院数学学院,四川宜宾644000【正文语种】中文【中图分类】O241.81近年来,许多学者对非线性微分方程边值问题正解的存在性进行了研究[1-5],如文献[5]利用不动点定理研究了边值问题得到了在一定条件下存在解的结论。
大多数文献都只证明了解的存在性,并未给出解的求法以及解的表达式,这是因为求边值问题的解析解比较困难。
本文将采用差分方法讨论边值问题(1)的数值解法。
式中:p(x)∈ C1[a,b],p(x)≥ 0 ;r(x),f(x)∈C[a,b];,,λ1,λ2为已知常数。
1 用差分方法求解边值问题用有限差分方法解两点边值问题,一般分两步进行:第一步将求解区间进行网格剖分,取为网格步长,以xm=a+mh(m=0,1,…,N)为网格结点,将区间[a,b]分成N等分。
第二步用差商代替微商把原方程变成等价的离散方程。
Schauder不动点定理在(k,n-k)共轭边值问题中的应用王丽颖;许晓婕【摘要】利用Schauder不动点定理研究高阶奇异(k,n-k)共轭边值问题:{(-1)n-kx(n)=f(t,x)+e(t),t∈(0,1),x(i)(0)=0,0≤i≤k-1,x(j)(1)=0,0≤j≤n-k-1,其中f的第一个或第二个变量可以具有奇性, e可以是负的, 并给出了几个新的存在性结果.【期刊名称】《吉林大学学报(理学版)》【年(卷),期】2010(048)004【总页数】6页(P551-556)【关键词】正解;Schauder不动点定理;共轭边值问题【作者】王丽颖;许晓婕【作者单位】白城师范学院,数学系,吉林,白城,137000;中国石油大学(华东)数学与计算科学学院,山东,东营,257061;东北师范大学,数学与统计学院,长春,130024【正文语种】中文【中图分类】O175.11 引言与预备知识考虑如下高阶奇异(k,n-k)共轭边值问题正解的存在性:(1.1)其中: k为固定常数, 且1≤k≤n-1; f∈C((0,1)×(0,+∞),R); f(t,x)可能在x=0奇异; e可能取负值. 该问题称为半正问题. 文献[1-5]讨论了问题(1.1)的正非奇异性; 文献[6-10]讨论了问题(1.1)的半正非奇异性; 文献[11]讨论了二阶奇异半正问题周期解的存在性; 文献[12]研究了高阶奇异(k,n-k)共轭边值问题正解的存在性. 本文用Schauder不动点定理给出其非线性项f(t,x)=b(t)/xα+μc(t)xβ+e(t)正解的存在性.引理1.1[4] 令G(t,s)是如下(k,n-k)共轭边值问题的格林函数:(1.2)则G(t,s)可以写成引理1.2[4-5] 令G(t,s)是(k,n-k)共轭边值问题(1.2)的格林函数. 则(1.3)如果令则C0tk(1-t)n-ksn-k(1-s)k≤G(t,s)≤C1tk(1-t)n-ksn-k-1(1-s)k-1.定义线性(k,n-k)共轭边值问题(1.4)的解函数为C(t), 则C(t)=G(t,s)e(s)ds.令则tk(1-t)n-kγ*≤G(t,s)e(s)ds≤tk(1-t)n-kγ*.如果当t∈[0,1]时, b≥0, b∈L1(0,1), 并且在一个正测集上是正的, 则b≻0.2 主要结果设e(t)满足如下条件:(F) sn-k(1-s)k|e(s)|ds<∞.下面给出问题(1.1)正解的存在性.定理2.1 假设如下条件成立:(H1) 对任意的L>0, 存在一个函数φL≻0, 使得当t∈(0,1), x∈(0,L]时, f(t,tk(1-t)n-kx)≥φL(t);(H2) 存在函数g(x),h(x)和k(t)≻0, 使得当t∈(0,1), x∈(0,∞)时,0≤f(t,x)≤k(t){g(x)+h(x)}, 其中: g: (0,+∞)→[0,+∞)连续单调不增; f:[0,+∞)→[0,+∞)连续h/g单调不减;(H3) 存在一个正常数R>0, 使得R>ΦR+γ*>0, K(ΦR+γ*)<+∞, 并且其中:ΦR=C0sn-k(1-s)kφR(s)ds;K(ΦR+γ*)=C1sn-k-1(1-s)k-1k(s)g[(ΦR+γ*)tk(1-t)n-k]ds.则问题(1.1)至少有一个正解.证明: 令E=(C[0,1],‖·‖). E=C[0,1]表示[0,1]闭区间上的连续函数, 在范数下是一个Banach空间. Ω是一个闭凸集, 定义为Ω={x∈C[0,1]: 对所有的t∈[0,1], tk(1-t)n-kr≤x(t)≤tk(1-t)n-kR},其中R>r>0是待定的正常数.定义映射T: Ω→E,(Tx)(t) ∶=G(t,s)[f(s,x(s))+e(s)]ds.则问题(1.1)解的存在性等价于x=Tx不动点的存在性. 令R是满足(H3)的正常数, 并令r=ΦR+γ*, 则有R>r>0. 下面证明T(Ω)⊂Ω .事实上, 当t∈(0,1)时, 对每个x∈Ω, 由(H1),(H3)可知另一方面, 由条件(H2),(H3)可得因此, T(Ω)⊂Ω .最后证明T: Ω→Ω是全连续映射. 令xn,x0∈Ω, 当n→∞时, ‖xn-x0‖→ 0, 并且对任意的t∈(0,1), xn(t), x0(t)≥tk(1-t)n-kr>0, 则ρn(t)=|f(t,xn(t))-f(t,x0(t))|→0.又由于ρn(t)≤f(t,xn(t))+f(t,x0(t)), t∈(0,1),由控制收敛定理可知, 当n→∞时,‖Txn-Tx0‖≤C1sn-k-1(1-s)k-1ρn(s)ds→0,所以T: Ω→Ω是连续的. 又对任意的x∈Ω,tk(1-t)n-kr≤(Tx)(t)≤tk(1-t)n-kR,‖a‖≤1, 因此T(Ω)一致有界. 进一步, 当t∈(0,1), x∈Ω时, 有(2.1)易证T(Ω)是等度连续的, 于是应用Arzela-Ascoli定理可得T: Ω→Ω是紧算子. 从而由Schauder不动点定理可知, 方程(1.1)至少有一个正解x(t)∈C[0,1]. 证毕. 注2.1 假设如下条件成立:(P1) 存在一个常数K0>0, 使得对任意的a,b≥0, 有g(ab)≤K0g(a)g(b);(P2) sn-k-1(1-s)k-1k(s)g(sk(1-s)n-k)ds<∞;(P3) 存在一个正常数R>0, 使得R>ΦR+γ*>0, 并且其中:GR=C1K0g(ΦR+γ*); ΦR=C0sn-k(1-s)kφR(s)ds.则可以用(P2)和(P3)代替条件(H3).作为定理2.1的主要应用, 考虑γ*=0的情况, 有:推论2.1 假设f(t,x)满足条件(H1),(H2). 进一步, 假设:存在一个正常数R>0, 使得R>ΦR>0, K(ΦR)<+∞, 并且如果γ*=0, 则方程(1.1)至少有一个正解.下面考虑γ*>0的情况.定理2.2 假设f(t,x)满足条件(H2), 并且:(H4) 存在R>0, K(γ*)<+∞, 使得其中K的定义见条件(H3).如果γ*>0, 则方程(1.1)至少有一个正解.证明: 使用定理2.1中相同的记号和方法. 令R是满足(H4)的正常数, 取r=γ*, 由R>γ*, 则R>r>0. 下面证明T(Ω)⊂Ω .对任意的x∈Ω及t∈[0,1], 由函数G(t,s), f(t,x)的非负性, 有(Tx)(t)=G(t,s)f(s,x(s))ds+G(t,s)e(t)ds≥tk(1-t)n-kγ*=tk(1-t)n-kr.另一方面, 由(H2)和(H4)可得因此, T(Ω)⊂Ω . 应用Schauder不动点定理即得结论.上述结论中, 条件(H2)说明非线性项f(t,x)对于所有的(t,x)都是非负的, 因此有较强的限制. 当γ*>0时, 可以避免这样的限制.定理2.3 假设如下条件成立:(1) 存在函数g(x)和k(t)≻0, 使得当t∈(0,1), x∈(0,∞)时, f(t,x)≤k(t)g(x), 这里g: (0,+∞)→(0,+∞)连续且单调不增;(2) 如果K(γ*)<+∞, 定义R ∶=K(γ*)+γ*, 其中K的定义见(H3), 并且假设当t∈(0,1), x∈(0,R]时, f(t,x)≥0. 如果γ*>0, 则方程(1.1)至少有一个正解.证明: 应用Schauder不动点定理. 令R是满足的正常数, r=γ*, 则R>r>0. 与前面的证明类似, 易见T(Ω)⊂Ω . 下面的证明略.3 应用实例假设:(A) sn-k-1-αk(1-s)k-1-α(n-k)k(s)ds<∞.为方便, 引入记号:β1=C0 sn-k-αk(1-s)k-α(n-k)k(s)ds;β2=C1sn-k-1-αk(1-s)k-1-α(n-k)k(s)ds. 例3.1 考虑边值问题:(3.1)推论3.1 假设k≻0, α>0, 并且(A)成立.(1) 如果γ*=0, α<1, 则方程(3.1)至少有一个正解;(2) 如果γ*>0, 则方程(3.1)至少有一个正解.证明: 令则应用推论2.1可证明结论(1)成立. 显然只要R充分大, 即可应用定理2.2证明结论(2)成立.例3.2 考虑边值问题:(3.2)其中:α>0;β≥0;μ≥0是非负参数.推论3.2 假设k≻0, α>0, β≥0, 并且(A)成立.(1) 如果γ*=0, 0<α<1, 则:(i) 若α+β<1-α2, 则对每个μ≥0, 问题(3.2)至少存在一个正解;(ii) 若α+β≥1-α2, 则对每个0≤μ<μ1, 问题(3.2)至少存在一个正解, 其中μ1是某个正常数;(2) 如果γ*>0, 则:(i) 若α+β<1, 则对每个μ≥0, 问题(3.2)至少存在一个正解;(ii) 若α+β≥1, 则对每个0≤μ<μ2, 问题(3.2)至少存在一个正解, 其中μ2是某个正常数.证明: 令则应用推论2.1可以证明结论(1)成立.用定理2.2可以证明结论(2)成立.注3.1 类似于例3.2可以讨论更一般的情形, 如(3.3)其中b,c≻0, 只是结果更复杂.例3.3 考虑边值问题:(3.4)其中: α>0; β>0; 且μ>0是非负常数.如果k≻0, γ*>0, 并且(A)成立, 则对每个0≤μ<μ3, 方程(3.4)至少有一个正解, 其中μ3是某个正常数.证明: 由于非线性项是f(t,x)=k(t)(1/xα-μxβ), 所以成立, 其中g(x)=1/xα. 从而在中定义的R满足注意到f(t,x)≥0当且仅当μ≤x-(α+β). 因此, 对任意的成立. 于是, 当时, 结论成立.注3.2 在例3.1~例3.3中, 需要条件(A)成立. 当t∈[0,1], k(t)=1时, 条件(A)变为αk<n-k, α(n-k)<k.参考文献【相关文献】[1] Agarwal R P, O’Regan D. Multiplicity Results for Singular Conjug ate, Focal and (n,p) Problems [J]. J Differential Equations, 2001, 170(1): 142-156.[2] LIN Xiao-ning, JIANG Da-qing, LI Xiao-yue. Existence and Uniqueness of Solutions for Singular (k,n-k) Conjugate Boundary Value Problems [J]. Computers and Mathematics with Applications, 2006, 52(3/4): 375-382.[3] Eloe P W, Henderson J. Singular Nonlinear (k,n-k) Conjugate Boundary Value Problems [J]. J Differential Equations, 1997, 133(1): 136-151.[4] JIANG Da-qing. Multiple Positive Solutions to Singular Boundary Value Problems for Superlinear Higher Order ODEs [J]. Computers and Mathematics with Applications, 2000, 40(2/3): 249-259.[5] KONG Ling-bin, WANG Jun-yu. The Green’s Function for (k,n-k) Boundary Value Problems and Its Applications [J]. J Math Anal Appl, 2001, 255(2): 404-422.[6] Agarwal R P, O’Regan D. Positive Solutions of Differential, Difference and Integral Equations [M]. Dordrecht: Kluwer Acad Publishers, 1999.[7] LU Meng-seng. On a Fourth Order Eiqenvalue Problem [J]. Advances in Mathematics, 2000, 29(1): 91-93.[8] Agarwal R P, O’Regan D. Singular Differential, Integral and Discrete Equations: the Semipositone Case [J]. Mosc Math J, 2002, 2(2): 1-15.[9] Agarwal R P, Grace S R, O’Regan D. Discrete Semipositone Higher-Order Equations [J]. Computers and Mathematics with Applications, 2003, 45(6/7/8/9): 1171-1179. [10] Agarwal R P, Grace S R, O’Regan D. Existence of Positive Solutions to Semipositone Fredholm Integral Equations [J]. Funkcial Ekvac, 2002, 45: 223-235.[11] Torres P J. Weak Singularities May Help Periodic Solutions to Exist [J]. J Differential Equations, 2007, 232(1): 277-284.[12] ZU Li, JIANG Da-qing, GAI Yong-jie, et al. Weak Singularities and Existence of Solutions to (k,n-k) Conjugate Boundary Value Problems [J]. Nonlinear Analysis: Real World Applications, 2009, 10(5): 2627-2632.。