电子技术基础·数字部分
- 格式:ppt
- 大小:3.50 MB
- 文档页数:80
第一章数字逻辑习题1.1数字电路与数字信号1.1.2图形代表的二进制数0101101001.1.4一周期性数字波形如图题所示,试计算:(1)周期;(2)频率;(3)占空比例MSB LSB0121112(ms)解:因为图题所示为周期性数字波,所以两个相邻的上升沿之间持续的时间为周期,T=10ms 频率为周期的倒数,f=1/T=1/0.01s=100HZ占空比为高电平脉冲宽度与周期的百分比,q=1ms/10ms*100%=10%1.2数制2−1.2.2将下列十进制数转换为二进制数,八进制数和十六进制数(要求转换误差不大于4(2)127(4)2.718解:(2)(127)D=72-1=(10000000)B-1=(1111111)B=(177)O=(7F)H(4)(2.718)D=(10.1011)B=(2.54)O=(2.B)H1.4二进制代码1.4.1将下列十进制数转换为8421BCD码:(1)43(3)254.25解:(43)D=(01000011)BCD1.4.3试用十六进制写书下列字符繁荣ASCⅡ码的表示:P28(1)+(2)@(3)you(4)43解:首先查出每个字符所对应的二进制表示的ASCⅡ码,然后将二进制码转换为十六进制数表示。
(1)“+”的ASCⅡ码为0101011,则(00101011)B=(2B)H(2)@的ASCⅡ码为1000000,(01000000)B=(40)H(3)you的ASCⅡ码为本1111001,1101111,1110101,对应的十六进制数分别为79,6F,75(4)43的ASCⅡ码为0110100,0110011,对应的十六紧张数分别为34,331.6逻辑函数及其表示方法1.6.1在图题1.6.1中,已知输入信号A,B`的波形,画出各门电路输出L的波形。
解:(a)为与非,(b)为同或非,即异或第二章逻辑代数习题解答2.1.1用真值表证明下列恒等式(3)A B AB AB ⊕=+(A⊕B)=AB+AB 解:真值表如下A B A B⊕ABAB A B⊕AB +AB00010110110000101000011111由最右边2栏可知,A B ⊕与AB +AB 的真值表完全相同。
《电子技术基础(数字部分)》课程标准适用专业:应用电子技术等专业课程类别:专业基础课程参考学时:74 参考学分:4.51、课程定位和课程设计1.1 课程性质与作用《电子技术基础(数字部分)》课程是面向应用电子技术专业、测控仪器与仪表专业和生产过程自动化技术专业的专业主干课程。
通过本课程的学习,从培养学生的基本技能入手,提高学生分析问题、解决问题以及实践应用能力,为学习其它有关课程和毕业后从事电子技术、测控技术、自动化以及计算机应用技术方面的工作打下必要的基础。
本课程是在学习完前导课程《电工技术》的基础上开设的,学生在掌握基本电工技术和模拟电子技术的基本原理之后,为《单片机及接口技术》、《电子产品设计制作》、《CPLD应用技术实训》等后续课程的学习奠定了良好的基础。
1.2 课程设计理念课程设计、建设和实施过程中,贯彻以下教育理念:终身学习的教育观:在现代信息社会,高等职业教育的目标已经由单一的满足上岗要求,走向贯穿职业生涯、适应社会发展,由终结教育演变为终身教育,职业能力的内涵已由狭义的职业技能拓展到兼具任务能力和整体能力的综合素质。
因此教师应从传授者变为引导者,使“教学”向“学习”转换,引导学生变成自我教育的主体,掌握终身学习的能力。
多元智能的学生观:高职学生不仅在学习基础、专业层次、应用导向上区别于本科院校,而且内部还存在多元性、差异化的智能结构、自我定位和心理调适能力。
教育者要因材施教,在保持职业教育共性的同时,尽力发掘学生潜能,发展个性;让学生体验开启智慧和增强自信的经历,培养能适应社会、适应各类专门岗位的人才。
行动导向的教学观:学生作为学习的行动主体,要以职业情境中的行动能力为目标,以基于岗位能力需求的学习情境中的行动过程为途径,实现行动过程与学习过程的统一。
通过师生间互动合作,建构属于自己的经验和知识体系。
只有在教学中重视实践能力的培养,培养出来的学生才能具有较强的动手能力,实现“零距离”上岗。
数字部分是电子技术基础中的一个重要组成部分,涉及数字电路和数字系统的基本原理和应用。
以下是数字部分的主要内容:
二进制系统:介绍二进制数的表示方法、二进制运算和逻辑运算。
逻辑门电路:介绍逻辑门的基本类型,包括与门、或门、非门、与非门、或非门和异或门等,以及它们的真值表和逻辑功能。
组合逻辑电路:介绍由逻辑门组成的组合逻辑电路,包括多路选择器、译码器、编码器、加法器和比较器等,以及它们的设计和应用。
时序逻辑电路:介绍由触发器构成的时序逻辑电路,包括RS触发器、D触发器、JK触发器和T触发器等,以及它们的工作原理和应用。
计数器和时钟:介绍二进制计数器、同步计数器和异步计数器的原理和设计,以及时钟信号的生成和应用。
存储器:介绍存储器的基本类型,包括随机存储器(RAM)和只读存储器(ROM),以及它们的特点、应用和工作原理。
数字系统:介绍数字系统的组成和层次结构,包括数据表示、编码和解码,数字信号处理和数字通信等。
数字信号处理:介绍数字信号处理的基本原理和方法,包括数字滤波、频谱分析、离散傅里叶变换和数字信号处理器(DSP)的应用。
数字通信:介绍数字通信的基本原理和技术,包括数字调制、数字解调、误码控制和数字传输系统等。
以上是电子技术基础中数字部分的主要内容。
深入学习和理解这些知识将有助于理解和设计数字电路和数字系统,以及应用于电子设备和通信领域中的相关技术和应用。
电子技术基础数字部分
数字部分是指在电子技术中涉及到数字信号处理、数字电路设计等方面的知识。
以下是一些电子技术基础数字部分的主要内容:
1. 二进制系统:了解二进制表示法、二进制转换和二进制的基本运算。
2. 布尔代数:了解布尔运算、逻辑门及其真值表、卡诺图和布尔表达式等。
3. 組合逻辑电路设计:了解数制转换、编码器、译码器、多路选择器、加法器、减法器、挑选器、计数器和寄存器等。
4. 时序逻辑电路设计:了解触发器、时钟、状态机、计时器和定时器等。
5. 数字信号处理:了解数字信号的采样与量化、离散傅里叶变换、数字滤波器和数字信号传输等。
6. 数字集成电路:了解数字集成电路的设计和应用,例如门电路、触发器、存储器、ALU和微处理器等。
7. 数字系统设计:了解数字系统的设计方法和技术,如采样和保持电路、时钟和定时电路、数据转换电路和控制电路等。
8. FPGA和CPLD:了解可编程逻辑器件的架构、编程语言和设计流程,并能进行基本的FPGA和CPLD设计。
以上是电子技术基础数字部分的一些主要内容。
掌握这些知识可以帮助你理解和设计数字电路,并为深入学习更高级的数字电路和系统提供基础。
《电子技术基础-数字部分》一、基础知识1、代数逻辑进制与码1)二进制(B)八进制(O) 十进制(D) 十六进制(H)2) BCD码公式定理反演规则(必考)1)与、或互换2)0、1互换3)原变量、反变量互换不属于单个变量上的非号要保留不变对偶规则(必考)a. 与、或互换b. 0、1互换 代数化简(大题) 并项法: A+Ā=1 吸收法: A+AB=A 消去法: A+AB=A+B 卡诺图化简(大题)写出最小项表达式 填卡诺图 合并最小项 将包围圈相加2、逻辑门1) OC 门---TTL (集电极开路门)指TTL 门电路输出级BJT 管的集电极是开路的 OC 门必须外接负载电阻和电源才能正常工作OD 门(漏极开路门): 指CMOS 门输出电路只有NMOS 管, 并且漏极是开路的 与OD 门相比可以承受较高的电压和较大的电流 2) 三态门---TSL输出除了输出高、低电平外, 还具有高输出阻抗的第三状态,称为高阻态, 又称为禁止态3) CMOS 传输门①既可以传输数字信号, 又可以传输模拟信号 ②传输门的输入和输出可以互换OC 门 传输门1)扇入扇入数=输入端的个数, 3输入, 则Ni=32)扇出扇出No ——驱动同类门的个数(有两种情况):①拉电流②灌电流如果NOL ≠NOH,则No取二者中的最小值二、组合电路1、分析(大题)①由给定的逻辑图写出逻辑关系表达式②对表达式进行化简③列出真值表④由真值表总结出逻辑功能2、设计(大题)①电路功能描述②真值表(关于A.B.Y等要有文字说明)③逻辑表达式或卡诺图④最简与或表达式⑤逻辑变换(例如, 变换为用与非门实现)⑥逻辑电路图3、集成模块运用(大题)1)编码器(CD4532)编码:把二进制码按一定规律编排, 为每组代码赋予特定的含义CD4532:8线-3线优先编码器功能表:2)译码器(74x138)译码:将具有特定含义的二进制编码进行辨别, 并转换成控制信号74x138:3线-8线译码器功能表扩展使用:3)数据选择器(74x151)数据选择:根据地址选择码从多路输入数据中选择一路, 送到唯一的公共数据通道上输出74x151:8选1数据选择器功能表:扩展使用:4)数值比较器(74x85)数值比较器——用来比较多个数值的大小的数字逻辑电路74x85:四位数值比较器功能表:扩展使用:串联方式(8位数值比较器)5)算术运算器(74x283)半加器: 两个 1 位二进制数相加不考虑低位进位全加器: 被加数、加数和低位来的进位信号相加74x283:四位二进制全加器功能表:三、触发器触发器: 脉冲边沿敏感的存储单元电路1、考试重点:各触发器应用, 绘制波形图(必考)2、SR触发器(下降沿有效)特性方程: 功能表: 逻辑符号:3、JK 触发器(下降沿有效)(重点)特性方程:功能表:逻辑符号:nn n QK Q J Q+=+1⎩⎨⎧=+=+0SR Q R S Q n 1n4、D 触发器(上升沿有效)特性方程:功能表:逻辑符号:5、T 触发器(下降沿有效)特性方程:功能表:逻辑符号:四、时序电路1.分析(大题)2.设计(大题)1) 分析逻辑功能要求, 画出状态表(状态图); 2) 复合卡诺图;3) 给出输出方程、状态方程、驱动方程; 4) 画出逻辑电路图;5) 检察逻辑功能和自启动特性。
电子技术基础数字部分
电子学技术基础的数字部分,是指电子学的数字基础技术。
它是用来解决电子应用中
各种类型的问题的基本方法。
这种数字技术可以从两个方面进行研究,即硬件和软件。
硬件方面的数字技术涉及电子学的硬件方面,主要包括数字电路技术和数字电子技术。
数字电路技术包括芯片设计,电路设计,模拟数字转换,信号处理,模拟集成电路设计等。
数字电子技术主要包括程序控制,数十、万亿级计算机等。
软件方面,数字技术主要涉及编程技术,软件可靠性,图形化用户界面设计,通信协
议等以及相关的技术。
编程技术又包括编程语言,操作系统,编程规范,软件工程等。
软
件可靠性技术涉及系统分析,系统测试,自动化测试,性能测试等。
图形用户界面设计技
术涉及交互设计,界面完成等。
电子学技术基础的数字部分,是今后电子技术的关键,其中各类技术的发展将是未来
的核心。
因此,正确的认识,正确的研究和开发,将会让未来的电子技术发展更加顺利。
掌握电子学技术基础的数字部分,是未来的角色能够应对电子技术应用的新挑战,能够实
现电子技术的更新迭代发展。
电子技术基础数字部分介绍电子技术是现代社会的重要组成部分,而其基础数字部分则是电子技术的核心。
数字部分涉及数字电路、数字信号处理以及数字系统等内容,是电子技术发展中不可或缺的一环。
本文将介绍电子技术基础数字部分的核心概念和应用。
数字电路数字电路是电子设备中进行数字信号处理的基础。
数字电路将输入的模拟信号转换为数字信号,再经过逻辑运算得到输出结果。
常见的数字电路包括门电路、寄存器、计数器和多路复用器等。
门电路门电路是数字电路中最基本的构建模块之一。
它通过逻辑门进行布尔运算,包括与门、或门和非门等。
与门将多个输入信号进行与运算,只有当所有输入信号都为真时,输出才为真。
与门可用于电路的逻辑判断和控制。
类似地,或门和非门分别进行或运算和非运算。
寄存器寄存器是一种能够存储和读取数据的数字电路。
它由触发器组成,可用于在设备中存储数据。
寄存器通常用于计算机内部的数据传输和存储。
计数器计数器是一种能够实现数字计数功能的数字电路。
常见的计数器是二进制计数器,能够按照二进制数字顺序进行计数,从0到2^n-1(n为计数器位数)。
计数器常用于时序控制和频率分频等应用。
多路复用器多路复用器是一种能够实现多路信号选择功能的数字电路。
它将多个输入信号中的一个输出到单个信号线上。
多路复用器可以通过控制信号选择要输出的输入信号,常用于数据交换和通信系统中。
数字信号处理数字信号处理(DSP)是利用数字技术对信号进行获取、处理和传输的过程。
数字技术可以实现更高的精度和更灵活的处理方式,因此在实际应用中得到广泛应用。
常见的数字信号处理技术包括滤波、采样和量化。
滤波滤波是DSP中常用的信号处理技术之一。
它通过改变信号的频谱特性来改变信号的性质。
常见的滤波器有低通滤波器、高通滤波器和带通滤波器等。
滤波在通信系统、音频处理和图像处理等领域中广泛应用。
采样采样是将连续型信号转换为离散型信号的过程。
在采样过程中,信号在时间上被离散抽取,形成一系列的采样点。