2.4平面向量的坐标----教案
- 格式:doc
- 大小:294.00 KB
- 文档页数:3
高二数学《平面向量的坐标表示》说课稿1各位老师好:我是户县二中的李敏,今天讲的课题是《平面向量的坐标的表示》,本节课是高中数学北师大版必修4第二章第4节的内容,下面我将从四个方面对本节课的教学设计来加以说明。
一、学情分析本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。
而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。
二、高考的考点分析:在历年高考试题中,平面向量占有重要地位,近几年更是有所加强。
这些试题不仅平面向量的相关概念等基本知识,而且常考平面向量的运算;平面向量共线的条件;用坐标表示两个向量的夹角等知识的解题技能。
考查学生在数学学习和研究过程中知识的迁移、融会,进而考查学生的学习潜能和数学素养,为考生展现其创新意识和发挥创造能力提高广阔的空间,相关题型经常在高考试卷里出现,而且经常以选择、填空、解答题的形式出现。
三、复习目标1.会用坐标表示平面向量的加法、减法与数乘运算.2.理解用坐标表示的`平面向量共线的条件.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.教学重难点的确定与突破:根据《20xx高考大纲》和对近几年高考试题的分析,我确定本节的教学重点为:平面向量的坐标表示及运算。
难点为:平面向量坐标运算与表示的理解。
我将引导学生通过复习指导,归纳概念与运算规律,模仿例题解决习题等过程来达到突破重难点。
四、说教法根据本节课是复习课,我采用了“自学、指导、练习”的教学方法,即通过对知识点、考点的复习,围绕教学目标和重难点提出一系列精心设计的问题,在教师的指导下,用做题来复习和巩固旧知识点。
五、说学法根据平时作业中的问题来看,学生会本节课遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算等方面。
平面向量的坐标及其运算【教学过程】一、基础铺垫1.平面向量的坐标平面上的两个非零向量a与b,如果它们所在的直线互相垂直,我们就称向量a与b垂直,记作a⊥b.规定零向量与任意向量都垂直.如果平面向量的基底{e1,e2}中,e1⊥e2,就称这组基底为正交基底;在正交基底下向量的分解称为向量的正交分解.一般地,给定平面内两个相互垂直的单位向量e1,e2,对于平面内的向量a,如果a=x e1+y e2,则称(x,y)为向量a的坐标,记作a=(x,y).方便起见,以后谈到平面直角坐标系时,默认已经指定了与x轴及y轴的正方向同向的两→对应的个单位向量.此时,如果平面上一点A的坐标为(x,y)(通常记为A(x,y)),那么向量OA→=(x,y);反之结论也成立.坐标也为(x,y),即OA2.平面上向量的运算与坐标的关系设平面上两个向量a,b满足a=(x1,y1),b=(x2,y2),则a=b⇔x1=x2__且y1=y2;a+b=(x1+x2,y1+y2).设u,v是两个实数,那么u a+v b=(ux1+vx2,uy1+vy2),u a-v b=(ux1-vx2,uy1-vy2).如果向量a=(x,y),则|a|■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关.(2)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.3.平面直角坐标系内两点之间的向量公式与中点坐标公式设A (x 1,y 1),B (x 2,y 2)为平面直角坐标系中的两点,则AB →=(x 2-x 1,y 2-y 1); 设线段AB 中点为M (x ,y ),则⎩⎪⎨⎪⎧x =x 1+x 22,y =y 1+y 224.向量平行的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 2y 1=x 1y 2.■名师点拨两向量的对应坐标成比例,这种形式较易记忆,而且不易出现搭配错误.二、合作探究1.平面向量的坐标表示【例1】如图,在平面直角坐标系xOy 中,已知OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA→=a ,AB →=b ,四边形OABC 为平行四边形. (1)求向量a ,b 的坐标;(2)求向量BA→的坐标; (3)求点B 的坐标.【解】(1)作AM ⊥x 轴于点M ,则OM =OA ·cos 45°=4×22=22,AM =OA ·sin 45°=4×22=22, 所以A (22,22),故a =(22,22).因为∠AOC =180°-105°=75°,∠AOy =45°,所以∠COy =30°.又OC =AB =3,所以C ⎝ ⎛⎭⎪⎫-32,332, 所以AB →=OC →=⎝ ⎛⎭⎪⎫-32,332, 即b =⎝ ⎛⎭⎪⎫-32,332.(2)BA →=-AB →=⎝ ⎛⎭⎪⎫32,-332. (3)因为OB→=OA →+AB → =(22,22)+⎝ ⎛⎭⎪⎫-32,332 =⎝⎛⎭⎪⎫22-32,22+332. 所以点B 的坐标为(22-32,22+332).【规律方法】平面内求点、向量坐标的常用方法(1)求一个点的坐标:可利用已知条件,先求出该点相对应坐标原点的位置向量的坐标,该坐标就等于相应点的坐标.(2)求一个向量的坐标:首先求出这个向量的始点、终点的坐标,再运用终点坐标减去始点坐标即得该向量的坐标.2.平面向量的坐标运算【例2】(1)已知a +b =(1,3),a -b =(5,7),则a =________,b =________.(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM→=3CA →,CN →=2CB →,求M ,N 及MN →的坐标.【解】(1)由a +b =(1,3),a -b =(5,7),所以2a =(1,3)+(5,7)=(6,10),所以a =(3,5),2b =(1,3)-(5,7)=(-4,-4),所以b =(-2,-2).(2)法一(待定系数法):由A (-2,4),B (3,-1),C (-3,-4),可得CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3), 所以CM→=3CA →=3(1,8)=(3,24), CN→=2CB →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),则CM →=(x 1+3,y 1+4)=(3,24),x 1=0,y 1=20;CN →=(x 2+3,y 2+4)=(12,6),x 2=9,y 2=2,所以M (0,20),N (9,2),MN→=(9,2)-(0,20)=(9,-18). 法二(几何意义法):设点O 为坐标原点,则由CM→=3CA →,CN →=2CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 从而OM→=3OA →-2OC →,ON →=2OB →-OC →, 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2), 即点M (0,20),N (9,2),故MN→=(9,2)-(0,20)=(9,-18). 【规律方法】平面向量坐标的线性运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可完全类比数的运算进行.3.判定直线平行、三点共线【例3】(1)已知A ,B ,C 三点共线,且A (3,-6),B (-5,2),若C 点的横坐标为6,则C 点的纵坐标为()A .-13B .9C .-9D .13(2)已知A (-1,-1),B (1,3),C (1,5),D (2,7),向量AB→与CD →平行吗?直线AB 平行于直线CD 吗?【解】(1)选C .设C (6,y ),因为AB→∥AC →, 又AB→=(-8,8),AC →=(3,y +6), 所以-8×(y +6)-3×8=0,所以y =-9.(2)因为AB→=(1-(-1),3-(-1))=(2,4), CD→=(2-1,7-5)=(1,2). 又2×2-4×1=0,所以AB→∥CD →. 又AC→=(2,6),AB →=(2,4),所以2×4-2×6≠0, 所以A ,B ,C 不共线,所以AB 与CD 不重合,所以AB ∥CD .【规律方法】向量共线的判定方法4.已知平面向量共线求参数【例4】已知a =(1,2),b =(-3,2),当k 为何值时,k a +b 与a -3b 平行?平行时它们是同向还是反向?【解】法一(共线向量定理法):k a +b =k (1,2)+(-3,2)=(k -3,2k +2),a -3b =(1,2)-3(-3,2)=(10,-4),当k a +b 与a -3b 平行时,存在唯一实数λ,使k a +b =λ(a -3b ).由(k -3,2k +2)=λ(10,-4),所以⎩⎨⎧k -3=10λ,2k +2=-4λ,解得k =λ=-13. 当k =-13时,k a +b 与a -3b 平行,这时k a +b =-13a +b =-13(a -3b ),因为λ=-13<0,所以k a +b 与a -3b 反向.法二(坐标法):由题知k a +b =(k -3,2k +2),a -3b =(10,-4),因为k a +b 与a -3b 平行,所以(k -3)×(-4)-10×(2k +2)=0,解得k =-13.此时k a +b =⎝ ⎛⎭⎪⎫-13-3,-23+2=-13(a -3b ), 所以当k =-13时,k a +b 与a -3b 平行,并且反向.【规律方法】已知平面向量共线求参数的思路(1)利用共线向量定理a =λb (b ≠0)列方程组求解.(2)利用向量平行的坐标表达式x 1y 2-x 2y 1=0直接求解.三、课堂练习1.给出下面几种说法:①相等向量的坐标相同;②平面上一个向量对应于平面上唯一的坐标;③一个坐标对应于唯一的一个向量;④平面上一个点与以原点为始点,该点为终点的向量一一对应.其中正确说法的个数是()A .1B .2C .3D .4解析:选C .由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故③错误.2.下列向量组中,能作为表示它们所在平面内所有向量的一组基底的是()A .a =(0,0),b =(2,3)B .a =(1,-3),b =(2,-6)C .a =(4,6),b =(6,9)D .a =(2,3),b =(-4,6)解析:选D .只有D 选项中两个向量不共线,可以作为表示它们所在平面内所有向量的一组基底,故选D .3.已知两点A (2,-1),B (3,1),则与AB→平行且方向相反的向量a 可以是() A .(1,-2)B .(9,3)C .(-2,4)D .(-4,-8)解析:选D .由题意,得AB→=(1,2),所以a =λAB →=(λ,2λ)(其中λ<0).符合条件的只有D 项,故选D .4.已知平行四边形OABC ,其中O 为坐标原点,若A (2,1),B (1,3),则点C 的坐标为________.解析:设C 的坐标为(x ,y ),则由已知得OC→=AB →,所以(x ,y )=(-1,2). 答案:(-1,2)5.已知点A (1,3),B (4,-1),则与向量AB→同方向的单位向量为________. 解析:AB →=(3,-4),则与AB →同方向的单位向量为AB →|AB →|=15(3,-4)=⎝ ⎛⎭⎪⎫35,-45. 答案:⎝ ⎛⎭⎪⎫35,-45。
平面向量教案3篇平面向量教案1一、教学目标:1. 理解平面向量的定义及相关术语;2. 掌握平面向量的基础运算和性质,如向量的加、减、数乘、模长等;3. 能够利用向量解决几何、三角学以及力学等问题。
二、教学重难点:教学重点:向量的基础运算和性质;教学难点:向量问题的解答。
三、教学方法:讲述法、举例法、实验法。
四、教学过程:1. 前置知识概括为了有利于学生对本次课程的学习,首先需要对平面向量有一定的了解。
向量是运用在三角学以及计算机科学中的一个概念,它表示一个方向和一个大小。
在二维空间中,向量通常用一个有序数对(x, y)表示,其中x和y分别表示向量在x轴和y轴上的分量。
然而,在本课程中,我们将会介绍另一种同样重要的表现向量的方式:平面向量。
2. 讲解平面向量的定义及相关术语平面向量即为有向线段,表示为 $\vec{a}$,具有大小和方向。
平面向量有以下几个重要的术语:(1)起点:向量 $\vec{a}$ 的起点是线段的始点,表示为 $A$。
(2)终点:向量 $\vec{a}$ 的终点是线段的末点,表示为 $B$。
(3)长度:向量 $\vec{a}$ 的长度等于线段 $AB$ 的长度,可以用$|\vec{a}|$表示。
(4)方向角:向量 $\vec{a}$ 的方向角是向量与$x$轴正方向的夹角,通常用 $\theta$表示。
(5)方向余弦:向量 $\vec{a}$ 的方向余弦分别是向量在$x$和$y$轴上的投影与向量长度的比值,分别用 $\cos\alpha$ 和$\cos\beta$表示。
(6)坐标表示:用有序数对 $(a_x, a_y)$ 表示向量 $\vec{a}$,其中 $a_x$ 和 $a_y$ 分别表示向量在$x$轴和$y$轴上的分量。
3. 讲解向量的基本运算及性质(1)向量的加法:设 $\vec{a}$ 和 $\vec{b}$ 为两个向量,它们的和记为 $\vec{a}+\vec{b}$,可通过作一平行四边形得到。
【高教版中职教材—数学(基础模块)下册电子教案课程】平面向量的坐标表示【教学目标】知识目标:(1)了解向量坐标的概念,了解向量加法、减法及数乘向量运算的坐标表示;(2)了解两个向量平行的充要条件的坐标形式.能力目标:培养学生应用向量知识解决问题的能力.【教学重点】向量线性运算的坐标表示及运算法则.【教学难点】向量的坐标的概念.采用数形结合的方法进行教学是突破难点的关键.【教学设计】向量只有“模”与“方向”两个要素,为了研究方便,我们首先将向量的起点放置在坐标原点(一般称为位置向量).设x轴的单位向量为i,轴的单位向量为j.如果点A的坐标为(x,y),则i j,=+OA x y将有序实数对(x,y)叫做向量OA的坐标.记作OA=(x,y).例1是关于“向量坐标概念”的知识巩固性例题.要强调此时起点的位置.让学生认识到,当向量的起点为坐标原点时,其终点的坐标就是向量的坐标.例2是关于“向量线性运算的坐标表示”的知识巩固性例题.要强调与公式的对应.在研究起点为坐标原点的向量的基础上,利用向量加法的三角形法则,介绍起点在任意位置的向量的坐标表示,向量的坐标等于原点到终点的向量的坐标减去原点到起点的向量的坐标,由此得到公式().数值上可以简单记为:终点的坐标减去起点的坐标.例3是关于“起点在任意位置的向量的坐标表示”的巩固性例题.要强调“终点的坐标减去起点的坐标”.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间 *揭示课题平面向量的坐标表示*创设情境 兴趣导入 【观察】设平面直角坐标系中,x 轴的单位向量为i , y 轴的单位向量为j ,OA 为从原点出发的向量,点A 的坐标为(2,3)(图7-17).则图7-172OM =i ,3ON =j .由平行四边形法则知23OA OM ON =+=+i j .【说明】可以看到,从原点出发的向量,其坐标在数值上与向量终点的坐标是相同的.介绍 质疑引导分析了解 思考 自我 分析从实例出发使学生自然的走向知识点0 5*动脑思考 探索新知 【新知识】设i , j 分别为x 轴、y 轴的单位向量,(1)设点(,)M x y ,则i +j =OM x y (如图7-18(1));仔细思考引导 式启(2)设点1122(,)(,)A x y B x y ,(如图7-18(2)),则(1)(2)图7-1822112121()()()()i +j i +j i j =-=-=-+-AB OB OA x y x y x x y y .由此看到,对任一个平面向量a ,都存在着一对有序实数(,)x y , 使得x y =+a i j .有序实数对(,)x y 叫做向量a 的坐标,记作 (,)x y =a . 如图7-17所示,向量的坐标为(2,3)=OA .如图7-18(1)所示,起点为原点,终点为(,)M x y 的向量的坐标为(,)=OM x y .j iBA OyxOxij M (x ,y)y2(=AB x *巩固知识 典型例题例1 如图7-19所示,用x 轴与y 轴上的单位向量i 、j 表示向量a 、b , 并写出它们的坐标.解 因为a =OM +MA =5i +3j ,所以 (5,3)=a . 同理可得 (4,3)=-b .【想一想】观察图7-19,OA 与OM 的坐标之间存在什么关系?例2 已知点(2,1)(3,2)-P Q ,,求PQ QP ,的坐标. 解 (3,2)(2,1)(1,3),=--=PQ (2,1)(3,2)(1,3)=--=--QP .图7-19OA的坐标,并用OA.,写出向量的坐标.两点的坐标,求AB BA,的坐标.*创设情境兴趣导入【观察】观察图7-20,向量=+=.可以看到,(5,3)OM OA OPOP=,(8,3)OA=,(3,0)两个向量和的坐标恰好是这两个向量对应坐标的和.图7-20【教师教学后记】。
7.3.1 向量的分解
【教学目标】
1. 理解平面向量的基本定理,会用已知的向量来表示未知的向量.
2. 启发学生发现问题和提出问题,培养学生独立思考的能力,让学生学会分析问题和解决问题.
3. 通过教学,培养学生数形结合的能力.
【教学重点】
平面向量的基本定理,用已知的向量来表示未知的向量.
【教学难点】
理解平面向量的基本定理.
【教学方法】
本节课采用启发式教学和讲练结合的教学方法,引导学生分析归纳,形成概念.
7.3.2 向量的直角坐标运算
【教学目标】
1. 理解平面向量的坐标表示,掌握平面向量的坐标运算.
2. 能够根据平面向量的坐标,判断向量是否平行.
3. 通过学习,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辩证思维能力.
【教学重点】
平面向量的坐标表示,平面向量的坐标运算,根据平面向量的坐标判断向量是否平行.
【教学难点】
理解平面向量的坐标表示.
【教学方法】
本节课采用启发式教学和讲练结合的教学方法,教师可以充分发挥学生的主体作用,开展自学活动,通过类比、联想,发现问题,解决问题.引导学生分析归纳,形成概念.
【教学过程】。
《平面向量》优秀说课稿(通用3篇)作为一位不辞辛劳的人民教师,就不得不需要编写说课稿,通过说课稿可以很好地改正讲课缺点。
那么什么样的说课稿才是好的呢?下面是小编为大家整理的《平面向量》优秀说课稿(通用3篇),希望对大家有所帮助。
《平面向量》说课稿1一、说教材平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。
本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。
为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。
本节内容也是全章重要内容之一。
二、说学习目标和要求通过本节的学习,要让学生掌握(1):平面向量数量积的坐标表示。
(2):平面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三、说教法在教学过程中,我主要采用了以下几种教学方法:(1)启发式教学法因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!主要辅助教学的手段(powerpoint)(3)讨论式教学法主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四、说学法学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。
通过精讲多练,充分调动学生自主学习的积极性。
如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!五、说教学过程这节课我准备这样进行:首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:(1)模的计算公式(2)平面两点间的距离公式。
高中数学平面向量教案(精选6篇)为大家收集的高中数学平面向量教案,欢迎阅读,希望大家能够喜欢。
高中数学平面向量教案精选篇1教学目标1、了解基底的含义,理解并掌握平面向量基本定理。
会用基底表示平面内任一向量。
2、掌握向量夹角的定义以及两向量垂直的定义。
学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。
如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备重点难点重点:对平面向量基本定理的探究难点:对平面向量基本定理的理解及其应用教学过程4.1第一学时教学活动活动1【导入】情景设置火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j。
活动2【活动】探究已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)做法:作OA=e1,OB=e2,OC=c,过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2。
因为OC=OM+ON,所以c=6 e1+6e2。
向量c=__6__e1+___6__e2活动3【练习】动手做一做请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2。
活动4【活动】思考问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?生:不行,e1,e2必须是平面内两不共线向量活动5【讲授】平面向量基本定理平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2。
平面向量的坐标运算教学设计:Ⅰ.复习回顾:上一节,我们学习了平面向量的基本定理,这一节,我们将利用此定理推得平面向量的坐标表示.我们知道,在直角坐标系内,第一个点都可以用一个有序实数对(x ,y )来表示,本节我们将把向量放入直角坐标平面内,同样用有序数对(x ,y )来表示.在平面直角坐标系中,i 、j 为x 轴、y 轴正方向的单位向量(一组基底),由平面向量的基本定理可知:平面内任一向量a ,有且只有一对实数x ,y ,使→→→+=j y i x a 成立.2.探索新知:知识点1:平面向量的坐标加减法运算问题一:已知)3,1(=→a ,)1,5(=→b ,如何求→→+b a ,→→-b a 的坐标呢?猜想:若),(),,(2211y x b y x a ==→→则),(2121y y x x b a ++=+→→,),(2121y y x x b a --=-→→ 平面向量的坐标运算法则证明若→→→→→→+==+==j y i x y x b j y i x y x a 22221111),(,),( 则),()()(21212121y y x x j y y i x x b a ++=+++=+→→→→ ),()()(21212121y y x x j y y i x x b a --=-+-=-→→→→结论:两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
问题二:探究:若已知 点A 、B 的坐标分别为 (1,3),(4,2),如何求 AB 的坐标呢? O xyBA→AB =→OB -→OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=→一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.思考:坐标为()1212,y y x x --的点P 在哪里?设计目的 :此环节教师充当引导者,以学生为主体,让学生在讨论思考中享受成功的快乐。
《平面向量的坐标运算》教学设计 本节内容包括“平面向量的正交分解及坐标表示、坐标运算、平面向量共线的坐标表示”,这些内容是上一节所讨论问题的深入,为平面向量的坐标表示奠定理论基础,因为只有确定了任意一个向量在两个不共线的基底上能进行唯一分解,建立坐标系才有了依据,同时,只有正确地构建向量的坐标才能有向量的坐标运算.(1)借助平面直角坐标系,掌握平面向量的正交分解及坐标表示;会用坐标表示平面向量的线性运算;能用坐标表示向量共线的条件.(2)体会平面向量的正交分解是向量分解中常用且重要的一种分解;引入向量的坐标表示可使向量运算代数化;不仅向量的线性运算可以通过坐标来实现,向量的位置关系也可以通过坐标研究.(3)建立数与形的联系,利用几何图形描述问题,借助几何直观理解问题;理解运算对象,掌握运算法则,探究运算思路,求得运算结果.【问题1】如图,光滑斜面上一个木块受到重力G 的作用,产生两个效果,一是木块受平行 于斜面的力1F 的作用,沿斜面下滑;一是木块产生垂直于斜面的压力2F .问重力G 与力1F 和2F 有什么关系?【设计意图】通过学生熟悉的力的分解问题,引出本节的主题,由此可以使学生感受到向量的正交分解与现实的联系.任意一个向量可以分解为两个不共线的向量,实际上是平面向量基本定理的一个应用.【师生活动】(1)学生:12G F F =+.(2)老师:由平面向量基本定理,对平面上的任意向量a 均可以分解为不共线的两个向量11a λ和22a λ,使1122a a a λλ=+.(3)老师:在不共线的向量中,垂直是一种重要的特殊情形.把一个向量分解为两个互相垂◆ 教学过程◆ 教学目标◆ 教材分析 G F 1 F 2直的向量,叫做向量正交分解.正交分解是向量分解中常见的一种情形.【问题2】在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角 坐标平面内的每一个向量,如何表示呢?【设计意图】通过类比平面直角坐标系中点用有序数对表示,提示学生思考在直角坐标系中 表示一个平面向量的方法.【师生活动】(1)老师:结合平面向量基本定理,如何在平面直角坐标系中选两个向量作为基底?(2)学生:分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.(3)教师:对于平面内的一个向量,由平面向量基本定理可知,有且只有一对实数,x y , 使得a xi y j =+.所以a 就由,x y 唯一确定.有序数对(,)x y 叫做向量的坐标,记作 (,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,(,)a x y =叫做向量的坐标表示.【问题3】设OA xi y j =+,则向量OA 的坐标与点A 的坐标有什么关系?【设计意图】使学生知道向量的的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.【师生活动】(1)老师:O(2)学生:向量OA 的坐标(,)x y 就是终点A 的坐标;反过来,终点A 的坐标(,)x y 也就是向量OA 的坐标.(3)老师:在平面直角坐标系内,每一个平面向量都可以用一有序实数对唯一表示. 例1.如图,分别用基底i 、j 表示向量a 、b 、c 、d ,并求出它们的坐标.【设计意图】平面向量正交分解的应用,要充分运用图形之间的几何关系,求向量的坐标.【问题4】已知1122(,),(,)a x y b x y ==,你能得出,,a b a b a λ+-的坐标吗?【设计意图】运用向量线性运算的交换律、结合律、分配律,推导两个向量的和、差、以及 数乘运算的坐标运算.(1)学生1:11221212()()()()a b x i y j x i y j x x i y y j +=+++=+++1212(,)a b x x y y ∴+=++.(2)学生2:11221212()()()()a b x i y j x i y j x x i y y j -=+-+=-+-1212(,)a b x x y y ∴-=--.(3)学生3:1111()a x i y j x i y j λλλλ=+=+11(,)a x y λλλ∴=.(4)教师:以上推导过程体现了向量的坐标形式与向量形式的相互转化.练习1:已知1122(,),(,)A x y B x y ,求AB 的坐标.(5)学生:22112121(,)(,)(,)AB OB OA x y x y x x y y =-=-=--.(6)教师:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.(7)教师:如何在平面直角坐标系中标出坐标为2121(,)x x y y --的点P ?有什么发现?(8)学生:向量AB 的坐标与以原点为起点、点P 为终点的向量的坐标是相同的.(9)教师:试求向量AB 的模长.(10)学生:222121()()AB OP x x y y ==-+-.例2. 如图,已知ABCD 的三个顶点,,A B C 的坐标分别是(2,1)(1,3)(3,4--、、),试求顶点D 的坐标.(1)学生:利用AB DC =,求出点D 的坐标.(2)学生:利用OD OB BD OB BA BC =+=++,求出点D 的坐标.(3)学生:利用11()()22OM OB OD OA OC =+=+,求出点D 的坐标. 【设计意图】让学生熟悉向量的坐标运算.解题过程中,关键是充分利用图形中各线段的位 置关系(主要是平行关系),数形结合,将顶点的坐标表示为已知点的坐标.【问题5】设1122(,),(,)a x y b x y ==,其中0b ≠.若a 与b 共线,这两个向量的坐标会有 什么关系?【设计意图】向量的线性运算可以通过坐标运算实现,引导学生思考向量的共线、垂直的坐 标表示.【师生活动】(1)学生:若a 与b 共线,则当且仅当存在实数λ,使得a b λ=,从而1122(,)(,)x y x y λ=,所以1212x x y y λλ=⎧⎨=⎩ 消去λ得到12210x y x y -=. 例3.已知(11)(13),(25A B C --,,,,),试判断A B C ,,三点的位置关系.【设计意图】引导学生三点共线的实质是从同一点出发的两个向量共线.(1)学生:口述解题思路,书写解题过程.(2)老师:引导学生总结思想方法.例4.设点P 是线段12P P 上的一点,12P P 、的坐标分别是1122(,)(,)x y x y 、. (1)当点P 是线段12P P 的中点时,求点P 的坐标;(2)当点P 是线段12P P 的一个三等分点时,求点P 的坐标.【设计意图】本例实际上是给出了线段的中点坐标公式,线段的三等分点坐标公式.引导学生推导线段的定比分点公式.利用向量共线的坐标表示求线段的定比分点坐标公式,只要通过简单的向量线性运算就可实现,这是向量的坐标运算带来的优越性.【师生活动】(1)学生:利用121()2OP OP OP =+,求得点P 的坐标. (2)学生:利用121233OP OP OP =+(或122133OP OP OP =+),求得点P 的坐标. (3)老师:三等分点有两种可能的位置,如果学生没有回答全面,要引导学生讨论补充.(4)老师:当12PP PP λ=时,点P 的坐标是什么? (5)学生:由学生类比求得中点坐标及三等分点坐标的过程,给出一般定比分点的坐标公式,进一步熟练向量的坐标运算,体会其中的数学思想方法.【问题6】你能够总结一下本节课我们学习的内容吗?【设计意图】课堂小结,由学生完成,概括本节课所学习的基本概念和运算法则,由教师提炼和总结本节课获得基本原理的数学研究方法.【习题检测】1.课中检测:(完成练习,拍照上传)练习1.已知点(0,0)O ,向量(2,3),(6,3),OA OB ==-点P 是线段AB 的三等分点,求点P 的坐标.练习2.已知(2,3),(4,3)A B -,点P 在线段AB 的延长线上,且32AP PB =,求点P 的坐 标.2.课后检测请完成课后练习,检测学习效果.。
平面向量的坐标表示使用说明:1.用15分钟左右的时间,阅读课本第86—87页的基础知识,自主高效预习,提升自己的阅读理解能力;2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成教材助读设问及自测练习。
3.通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的学习目标。
【学习目标】1、使学生掌握平面向量的和、差、实数与向量的积的坐标表示方法,理解并掌)2、引入平面向量的坐标可使向量运算完全代数化,通过数行结合, 培养学生分问题、解决问题的能力。
【重点和难点】重点: 平面向量的坐标表示以及运算 。
难点: 对平面向量共线的坐标表示以及运算的理解。
相关知识链接平面向量的基本定理是什么?教材助读1.向量的正交分解是指-------------------------------------------------------------------------------------,所取的一组基底是--------------------------------------------------,为坐标平面内的任意向量,以坐标原点O 为起点作= OA a ,由平面向量基本定理可知,有且只有一对实数对x,y,使得=OA a =-------------------------,把----------------------叫作向量的坐标,记作---------------------。
2.由1可知,全体有序实数对与坐标平面内的所有向量之间可以建立----------------------关系3.已知=(x 1,y1),b = (x 2 ,y 2)则 a + b =a -b =若k 为任意实数,则k =4.已知A (x 1,y 1),B (x 2 ,y 2)AB =预习自测1.在平面内以点O 的正东方向为x 轴正向,正北方向为y 轴的正向建立直角坐标系。
质点在平面内作直线运动 ,分别求下列位移向量的坐标。
平面向量共线的坐标表示教学目的:(1)理解平面向量的坐标的概念;(2)掌握平面向量的坐标运算;(3)会根据向量的坐标,判断向量是否共线.教学重点:平面向量的坐标运算教学难点:向量的坐标表示的理解及运算的准确性授课类型:新授课教具:多媒体、实物投影仪教学过程:一、复习引入:1.平面向量的坐标表示分别取与x 轴、y轴方向相同的两个单位向量、j作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yjxia把),(y x 叫做向量a 的(直角)坐标,记作),(y x a 其中x 叫做a 在x 轴上的坐标,y叫做a 在y轴上的坐标,特别地,)0,1(i,)1,0(j,)0,0(0.2.平面向量的坐标运算若),(11y x a ,),(22y x b ,则b a ),(2121y y x x ,ba),(2121y y x x ,),(y x a .若),(11y x A ,),(22y x B ,则1212,y y x x AB 二、讲解新课:a ∥b(b 0)的充要条件是x 1y 2-x 2y 1=0设a =(x 1, y 1) ,b =(x 2, y 2) 其中b a . 由a =λb 得, (x 1, y 1) =λ(x 2, y 2)2121y y x x 消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0,∵b 0∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y ∵x 1, x 2有可能为0(3)从而向量共线的充要条件有两种形式:a ∥b(b 0)1221y x y x b a 三、讲解范例:例1已知a =(4,2),b =(6, y),且a ∥b ,求y.例2已知A(-1, -1),B(1,3),C(2,5),试判断A ,B ,C 三点之间的位置关系.例3设点P 是线段P 1P 2上的一点, P 1、P 2的坐标分别是(x 1,y 1),(x 2,y 2).(1)当点P 是线段P 1P 2的中点时,求点P 的坐标;(2) 当点P是线段P1P2的一个三等分点时,求点P的坐标.例4若向量a=(-1,x)与b=(-x, 2)共线且方向相同,求x解:∵a=(-1,x)与b=(-x, 2)共线∴(-1)×2- x?(-x)=0∴x=±2∵a与b方向相同∴x=2例5已知A(-1, -1),B(1,3),C(1,5) ,D(2,7) ,向量AB与CD 平行吗?直线AB与平行于直线CD吗?解:∵AB=(1-(-1), 3-(-1))=(2, 4) ,CD=(2-1,7-5)=(1,2) 又∵2×2-4×1=0 ∴AB∥CD又∵AC=(1-(-1),5-(-1))=(2,6),AB=(2, 4),2×4-2×60 ∴AC与AB不平行∴A,B,C不共线∴AB与CD不重合∴AB∥CD四、课堂练习:1.若a=(2,3),b=(4,-1+y),且a∥b,则y=()A.6B.5C.7D.82.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为()A.-3B.-1C.1D.33.若AB=i+2j,DC=(3-x)i+(4-y)j(其中i、j的方向分别与x、y 轴正方向相同且为单位向量). AB与DC共线,则x、y的值可能分别为()A.1,2B.2,2C.3,2D.2,44.已知a=(4,2),b=(6,y),且a∥b,则y=.5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为.6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x=.五、小结。
OA与单位向量OA分解为之和,建立了向量OA与点之间的关系,并且OA=x i+y接着利用向量的减法建立了AB与它的终点B与起点A的坐标的差之间的关系,AB=(x2-- y1) j.这两个式子表明任意一个向量都可以用一个有序实数对与之对应,这个有序实数对就是向量的坐标表示..知道向量坐标的合理性和应用价值,会用直角坐标表示向量;.能用向量坐标进行向量的线性运算和内积运算;OP,点,y).向量OP与两个单位向量之间有什么关系呢?P分别作x轴、y轴的垂线,垂足.由于向量OM与i共线,并且OM的模等于OM= x i;同理可得,ON =y j.根据向量加法的平行四边形法则,OP =OM+ON= x i+.进一步,对于下图中所示的以为起点的向量AB,记点(x1,1)和(x2,y2),则有AB=OB-OA=(x2i= ( x2- x1)+( y2- y因此,对于平面直角坐标系中的任一向,都存在着一对有序实数(x,y),使得. 我们把有序实数对称为向量a的坐标展示讲解OP=(x,AB=(x2-x例1已知两点A(-2,3)AB 和BA的坐标.解AB=(3-(2),1-3)= (5BA=(-2-2如图所示,D四点,∠CON=45°,求向量OB、OM、ON、OE的OB=(0,2⎫⎪⎪⎭,OM=22⎛⎝提问引导讲解强调ON =(cos225°,sin225°)=2222⎛⎫−− ⎪⎪⎝⎭,; OE =(cos120°,sin120°)=1322⎛⎫− ⎪ ⎪⎝⎭,. 例3 如图所示,ABCD 的三个顶点A 、B 、C 的坐标分别为(2,3)、(−2,1)、(−1,0),求第四个顶点D 的坐标.解 在ABCD 中,有CD =BA .设点D 的坐标为(x ,y ),则CD =( x +1,y ).又BA =(-2(-2),3-1)=(4,2),所以 ( x +1,y )=(4,2). 于是, {x +1=4,y =2,解得 =3=2.x y ⎧⎨⎩,所以,点D 的坐标为(3,2).AB和BAAB、BC、DE的坐标.解(1)根据题意,△ABO和△长为2得到正三角形,故点0).因此⃗⃗⃗⃗⃗AB(2)设正六边形与y 轴的负半轴交于点G ,则OG 为正三角形ABO 的高和中线.于是OG =3BG =3×1=3,故点B 的坐标为(1,-3).于是,BC⃗⃗⃗⃗⃗ =(2,0)-(1,-√3)= (1,√3);(3)OB ⃗⃗⃗⃗⃗ = (1,-√3),所以BE ⃗⃗⃗⃗⃗ =-2OB ⃗⃗⃗⃗⃗ =(-2,2 √3).我们知道,当a ≠0时,a ∥b 存在实数λ,使得b =λa .设a =(x 1,y 1),b =(x 2,y 2),由b =λa 得,x 2=λx 1且y 2=λy 1,则21x x =21y y 或x 1 y 2=x 2 y 1. 因此,当a ≠0时,a ∥b ⇔21x x =21y y 或 x 1 y 2=x 2 y 1.例6 已知向量a =(−2,3),b =(4,−6),判断向量a 与b 是否共线.解 因为x 1y 2=−2×(−6)=12,x 2y 1=4×=12,所以x 1y 2= x 2y 1,故a ∥b ,即向量a 与b 共线.OC的坐标AD、AC、BD的坐标如图所示,正方的中心在原点四边与坐标轴垂直,AC与BD的坐标2.4.3 向量内积的坐标表示对于向量=(x1,y1),b是否可以用坐标表示?如何表示呢?由a= (。
平面向量的正交分解及坐标表示教案教学目的:掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加、减 及数乘运算。
教学重点:向量的坐标表示及坐标运算。
教学难点:坐标表示及运算意义的理解。
教学过程:一、复习提问:1.复习向量相等的概念 相等向量=,方向相同,大小相等。
2.平面向量的基本定理(基底)a =λ11e +λ22e ,其实质:同一平面内任一向 量都可以表示为两个不共线向量的线性组合。
二、新课:1.正交分解的物理背景及其概念图2.3-6(P105),光滑斜面上一个木块受到重力G 的作用,产生两个效果,一是木块受平行于斜面的F 1力的作用,沿斜面下滑;一是木块产生垂直于斜面的压力F 2,G =F 1+F 2,叫做把重力G 分解。
由平面向量的基本定理,对平面上任意向量a ,均可以分解为不共线的两个向量a =λ11e +λ22e 。
把一个向量分解为两个互相垂直的向量,叫做把向量正交分解。
2.平面向量的坐标表示取x 轴、y 轴上两个单位向量i , j 作基底,则平面内作一向量a =x i +y j , 记作:a =(x, y) 称作向量a 的坐标,这就叫做向量的坐标表示。
i =(1,0),j =(0,1),0=(0,0)例2 如图,分别用基底i , j 表示向量a 、b 、c 、d ,并求出它们的坐标。
解:由图可知: O B CA x y12AA AA =+a =2i +3j,所以,a =(2,3),同理,有:b =-2i +3j =(-2,3),c =-2i -3j =(-2,-3),d =2i -3j =(2,-3)。
3.平面向量的坐标运算(1)已知a (x 1, y 1),b (x 2, y 2),求a + b ,a - b 的坐标;(2)已知a (x, y)和实数λ,求λa 的坐标。
解:a + b =(x 1 i +y 1 j )+( x 2 i +y 2 j )=(x 1+ x 2) i + (y 1+y 2) j 即:a + b =(x 1+ x 2, y 1+y 2),同理:a - b =(x 1- x 2, y 1-y 2)。
2-4平面向量的坐标
一、教学目标:
1.知识与技能
⑴平面向量的坐标表示,平面向量的坐标运算.
⑵理解平面向量的坐标概念,掌握已知平面向量的和、差、实数与向量的积的坐标表示方法.
2.过程与方法
通过探索平面向量共线的坐标形式,灵活运用公式解决一些问题。
3.情感态度价值观
通过本节的学习,了解相关数学知识的来龙去脉,认识其作用和价值,培养学生的探索研究能力。
二.教学重、难点
重点: 平面向量的坐标运算.
难点: 向量的坐标表示的理解及运算的准确性.
三.学法与教学用具
自主性学习+探究式学习法
教学用具:电脑、投影机.
四.教学设想
【复习引入】 1.平面向量的基本定理:1212a e e λλ=+ ;
2.在平面直角坐标系中,每一个点都可用一对实数(,)x y 表示,那么,每一个向量可否也用一对实数来表示?
【新课讲解】
【知识点1】向量的坐标表示的定义 分别选取与x 轴、y 轴方向相同的单位向量i ,j 作为基底,对于任一向量a ,a xi y j =+ ,(,xy R ∈),实数对(,)x y 叫向量a 的坐标, 记作(,)a x y = . 其中x 叫向量a 在x 轴上的坐标,y 叫向量a 在y 轴上的坐标。
说明:⑴对于a ,有且仅有一对实数(,)x y 与之对应; ⑵(1,0)i = ,(0,1)j = ,0(0,0)= ; ⑶只有从原点引出的向量OA 的坐标(,)x y 才是点A 的坐标;不是从原点引出的向量C B 的坐标(,)x y ,就不是终点C 的坐标
⑷要把点的坐标与向量的坐标区别开来,相等的向量的坐标是相同的,但起点、终点的坐标却可以不同,若()3,5A ,()6,8B ,则()3,3AB = ;若()C 5,3-,()D 2,6-,则()3,3CD = 。
这里AB CD = ,显然,,,A B C D 四点坐标各不相同。
⑸向量的坐标表示实质上是向量的代数表示,引入向量表示后,可使向量运算代数化,将数形紧密结合起来,从而使许多几何问题的证明转化为数量运算。
【知识点2】向量的坐标运算 y x O (,)A x y j i a
已知11(,)a x y = ,22(,)b x y =
1.向量相等:a b = 等价于1212
x x y y =⎧⎨=⎩. 2.向量坐标的和与差
(1)()1212,a b x x y y +=++
(2)1212(,)a b x x y y -=--
即:向量和与差的坐标分别等于各向量相应坐标的和与差
3.向量坐标数乘
11(,)a x y λλλ=
即:实数与向量积的坐标分别等于实数与向量的相应坐标的乘积。
4.已知向量AB ,且点11(,)A x y ,22(,)B x y ,
则2211(,)(,)AB OB OA x y x y =-=- 2121(,)x x y y =--
即:一个向量的坐标等于其终点的相应坐标减去始点的相应坐标。
例1:已知()3,4a = ,()1,4b =- ,求a b + ,a b - ,23a b - 的坐标表示。
例2:已知平行四边形ABCD 的三个顶点,,A B C 的坐标分别为(2,1)-、(1,3)-、(3,4),求顶点D 的坐标。
变式训练:
1.已知(1,2),(2,1),(3,2),(2,3)A B C D --,以,AB AC 为一组基底来表示向量AD BD CD ++ .
2.设向量a =(1,-3), b =(-2,4), c =(-1,-2),若表示向量4a 、4b -2c 、()
2a c - 、d 的有向线段首尾相接能构成四边形,则向量d 为 。
【知识点3】向量平行的坐标表示 设11(,)a x y = ,22(,)b x y = ,(0b ≠ ),且//a b , 则(,0)a b R b λλ=∈≠ ,∴112222(,)(,)(,)x y x y x y λλλ==.
∴1212
x x y y λλ=⎧⎨=⎩, ∴12210x y x y -=. 进一步可变形为:
1212
x x y y = 我们可以得到:
定理:若两个向量(与坐标轴不平行)平行,则它们相应的坐标成比例。
定理:若两个向量相对应的坐标成比例,则它们平行。
符号表示: ①//a b (0)b ≠⇔ (,0)a b R b λλ=∈≠ ;
②11(,)a x y = ,22(,)b x y = ,(0)b ≠
//a b ⇔12210x y x y -=⇔1212
x x y y = 例3.已知(4,2)a = ,(6,)b y = ,且//a b ,求y .
例4.已知()1,2a = ,()3,2b =- 试判断是否存在实数k ,试向量ka b + 与3a b - 共线?若
存在,求k 的值;若不存在,说明理由。
变式练习:
1.已知(1,1)A --,(1,3)B ,(2,5)C ,求证A 、B 、C 三点共线.
2.如三点A(1,2),B(2,4),C(3,m)共线,求m.
3.如果(,12)OA k = ,(4,5)OB = ,(,10)OC k =- ,且A,B,C 三点共线,求k..
4.已知A(-1,6),B(3,0),在直线AB 上求一点P,使1.3
AP AB = 【课堂小结】
1.熟悉平面向量共线充要条件的两种表达形式;
2会用平面向量平行的充要条件的坐标形式证明三点共线和两直线平行;
3.明白判断两直线平行与两向量平行的异同。