最新旋风分离器计算模板整理
- 格式:pdf
- 大小:55.49 KB
- 文档页数:1
已知条件:若厚度为8mm,则:底面内圆直径 D1 = 1620 mm底面外圆直径 D2 = 1636 mm顶面内圆直径 d1 = 400 mm顶面外圆直径 d2 = 416 mm平截空心圆锥体高度 h = 1910 mm计算结果:平截空心圆锥体的上底面积 Sd1 = 10254.16 mm^2平截空心圆锥体的下底面积 Sd2 = 40916.1 mm^2平截空心圆锥体的侧面积 Sc = 12824825.84 mm^2平截空心圆锥体的表面积 Sn = 12875996.1 mm^2平截空心圆锥体的体积 V = 48867599.39 mm^3 ( 0.048867599 m^3 ) 平截空心圆锥体的重心位置 Zs = 764.25 mm若按密度(7850Kg/m^3)计算重量 = 383.6 Kg已知条件:若厚度为10mm,则:底面内圆直径 D1 = 1620 mm底面外圆直径 D2 = 1640 mm顶面内圆直径 d1 = 400 mm顶面外圆直径 d2 = 420 mm平截空心圆锥体高度 h = 1910 mm计算结果:平截空心圆锥体的上底面积 Sd1 = 12880.53 mm^2平截空心圆锥体的下底面积 Sd2 = 51207.96 mm^2平截空心圆锥体的侧面积 Sc = 12850021.96 mm^2平截空心圆锥体的表面积 Sn = 12914110.45 mm^2平截空心圆锥体的体积 V = 61204508.08 mm^3 ( 0.061204508 m^3 ) 平截空心圆锥体的重心位置 Zs = 764.62 mm若按密度(7850Kg/m^3)计算重量 = 480 Kg。
旋风分离器的工艺计算目录一.前言 (3)1.1应用范围及特点 (3)1.2分离原理 (3)1.3分离方法 (4)1.4性能指标 (4)二.旋风分离器的工艺计算 (4)2.1旋风分离器直径的计算 (5)2.2由已知求出的直径做验算 (5)2.2.1计算气体流速 (5)2.2.2计算旋风分离器的压力损失 (5)2.2.3旋风分离器的工作范围 (6)2.3进出气管径计算 (6)三.旋风分离器的性能参数 (6)3.1分离性能 (6)3.1.1临界粒径d pc (7)3.1.2分离效率 (8)3.2旋风分离器的压强降 (8)四.旋风分离器的形状设计 (9)五.入口管道设计 (10)六.尘粒排出设计 (10)七.算例(以天然气作为需要分离气体) (11)7.1工作原理 (11)7.2基本计算公式 (12)7.3算例 (13)八.影响旋风分离器效率的因素 (15)8.1气体进口速度 (15)8.2气液密度差 (15)8.3旋转半径 (15)参考文献 (15)旋风分离器的工艺计算摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。
现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。
这篇文章主要是讨论旋风分离器工艺计算。
旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。
在本篇文章中,主要是对旋风分离器进行工艺计算。
关键字:旋风分离器、工艺计算一.前言旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。
它是利用旋转气流产生的离心力将尘粒从气流中分离出来。
旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。
旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。
旋风分离器计算结果标准化工作室编码[XX968T-XX89628-XJ668-XT689N]旋风除尘器性能的模拟计算一、下图为旋风除尘器几何形状及尺寸,如图1所示,图中D、L及入口截面的长宽比在数值模拟中将进行变化与调整,其余参数保持不变。
图1 旋风分离器几何形状及尺寸(正视图)旋风分离器的空间视图如图2所示。
图2 旋风分离器空间视图二、旋风分离器数值仿真中的网格划分仿真计算时,首先对旋风除尘器进行网格划分处理,计算网格采用非结构化正交网格,如图3所示。
图3 数值仿真时旋风分离器的网格划分(空间)图4为从空间不同角度所观测到的旋风分离器空间网格。
图4 旋风分离器空间网格空间视图本数值仿真生成的非结构化空间网格数大约为125万,当几何尺寸(如D、L及长宽比)改变时,网格数会略有变化。
三、对旋风分离器的数值模拟仿真采用混合模型,应用Eulerian(欧拉)模型,欧拉方法,对每种工况条件下进行旋风分离器流场与浓度场的计算,计算残差<10-5,每种工况迭代约50000步,采用惠普工作站计算,CPU耗时约12h。
以下是计算结果的后处理显示结果。
由于计算算例较多,此处仅列出了两种工况条件下的计算后处理结果。
图5是L=1.3m,D=1.05m 入口长宽比1:3,入口速度10m/s时,在y=0截面(旋风分离器中心截面)上粒径为88微米烟尘的体积百分数含量分布图。
可以明显看出由于旋风除尘器的离心作用,灰尘被甩到外壁附近,而在靠近中心排烟筒下方筒壁四周,烟尘的体积浓度最大。
粒径88微米烟尘的空间浓度分布(空间)粒径88微米烟尘的浓度分布(旋风分离器中心截面)粒径200微米烟尘的空间浓度分布(空间)粒径200微米烟尘的浓度分布(旋风分离器中心截面)图5 L=1.3m、D=1.05m、长宽比1:3,入口速度10m/s时烟尘空间分布粒径88微米烟尘的空间浓度分布(空间)粒径88微米烟尘的浓度分布(旋风分离器中心截面)粒径200微米烟尘的空间浓度分布(空间)粒径200微米烟尘的浓度分布(旋风分离器中心截面)图6 L=2.3m、D=1.5m、长宽比1:1,入口速度15m/s时烟尘空间分布四、计算结果计算中,首先确定几何尺寸L,按照给定的两种烟尘颗粒,分别对L=2.3m、L=1.8m、L=1.3m、L=0.8m四种情况进行对比计算,对比计算结果为L=2.3m、L=1.3m时除尘效率较高。
旋风分离器的工艺计算》:*目录一.前言 ............................................................................................................. 错误!未定义书签。
应用范围及特点....................................................................................... 错误!未定义书签。
分离原理................................................................................................... 错误!未定义书签。
分离方法................................................................................................... 错误!未定义书签。
)性能指标 ................................................................................................. 错误!未定义书签。
二.旋风分离器的工艺计算.............................................................................. 错误!未定义书签。
旋风分离器直径的计算........................................................................... 错误!未定义书签。
由已知求出的直径做验算....................................................................... 错误!未定义书签。
旋风分离器的工艺计算目录一.前言 (3)1.1应用范围及特点 (3)1.2分离原理 (3)1.3分离方法 (4)1.4性能指标 (4)二.旋风分离器的工艺计算 (4)2.1旋风分离器直径的计算 (5)2.2由已知求出的直径做验算 (5)2.2.1计算气体流速 (5)2.2.2计算旋风分离器的压力损失 (5)2.2.3旋风分离器的工作范围 (6)2.3进出气管径计算 (6)三.旋风分离器的性能参数 (6)3.1分离性能 (6)3.1.1临界粒径d pc (7)3.1.2分离效率 (8)3.2旋风分离器的压强降 (8)四.旋风分离器的形状设计 (9)五.入口管道设计 (10)六.尘粒排出设计 (10)七.算例(以天然气作为需要分离气体) (11)7.1工作原理 (11)7.2基本计算公式 (12)7.3算例 (13)八.影响旋风分离器效率的因素 (15)8.1气体进口速度 (15)8.2气液密度差 (15)8.3旋转半径 (15)参考文献 (15)旋风分离器的工艺计算摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。
现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。
这篇文章主要是讨论旋风分离器工艺计算。
旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。
在本篇文章中,主要是对旋风分离器进行工艺计算。
关键字:旋风分离器、工艺计算一.前言旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。
它是利用旋转气流产生的离心力将尘粒从气流中分离出来。
旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。
旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。
旋风分离器计算程序--Muschelknautz 模型方法
by ZJ 2005/12/28
Refer to 6A.1 Hoffmann etc, 2001 experiment data
尺寸参数
(m)计算结果
50切割粒径 1.488微米D
外径D 0.900总效率99%内径
Dx 0.450粒径效率进口组成
出口
放料口直径Dd 0.050微米
eff
%
112% 1.00%0.001b
进料口宽度b 0.220281% 1.00%0.008进料口高度
a 0.500397% 1.00%0.010499% 1.00%0.010总高Ht 3.6005100% 1.00%0.010a DX Dx
锥体高度Hc 1.8006100% 1.00%0.010空间高度
Hi 3.1007100% 1.00%0.010升气管底与进料口高差Hg 0.0008100% 1.00%0.010Hg
进气平均半径Rin
0.340
9100% 2.00%0.020空气密度1kg/m^3
10100% 3.00%0.030空气粘度 1.50E-06Pa.S
15100%10.00%0.100器壁粗糙度
Ks
0.046mm
20100%15.00%0.15030100%20.00%0.200Ht
40100%15.00%0.150操作参数
50100%10.00%0.10060100%9.00%0.090空气体积流量Q 7500m^3/hr 70100% 4.00%0.040Hi
颗粒浓度C 4.50E-02
kg/m^380100% 2.00%0.020Dcone
Hc
粉尘真密度Rho_p 1500kg/m^390100% 1.00%0.010堆积密度度
Rho_b
1500
kg/m^3
100
100%
1.00%
0.010>100
-1.000.99
Muschelknautz Model Calculation 进口中位径
20
微米
入口速度Vin 18.939m/s T 因子
Theta 0.488888889
-迭代计算程序Dd
颗粒/气体 (m/m)Co 0.045-ReR 初值ReR0156384.196-入口收缩系数alpha 0.602相对粗糙度
Ks/R 0.000102222
-几何平均半径Rm 0.318m 查表得桶体摩擦系统 fair 0.0060-器壁表面轴向速度Vzw 5.898m/s 预计总效率eff 0.950-摩擦阻力总面积Ar 9.029m^2升气管弗劳德数Frx 6.241-器壁表面切向速度Vow 23.762m/s 总摩擦系数
f
0.009-内旋涡旋转速度Vocs 28.000m/s 内旋涡旋转速度计算值
V0cs
28.1904m/s
气体平均旋转速度Vom 25.794m/s 旋风分离器ReR ReR 112286.861
-升气管中气流速度Vx 13.106
m/s 分离效率压降计算进口中位径Din5020.000MU 分离器中损失
dP_body 389.156pa 切割粒径D50 1.488mu 旋转涡核与升气管损失dP_x 1272.705
pa 极限浓度
C0L 0.00158kg/kg 加速压力损失dP_acc 0.000pa C0>=0.10.00165kg/kg 总压力损失
Total
1661.861pa
C0<0.1
0.00158
kg/kg
V0w V0cs
V0cone
Rin。