武汉大学空间数据库复习资料整理
- 格式:docx
- 大小:880.76 KB
- 文档页数:7
一、名词解释1.空间数据库:描述与特定空间位置有关的真实世界对象的数据集合。
2.数据库:统一存储和管理数据的基地3.空间数据:指以地球表面空间位置为参照,用来描述空间实体的位置、形状、大小及其分布等诸多方面信息的数据4.空间认知:对现实世界的空间属性包括位置、大小、距离、模式、运动和物体内部关系的认知,是通过获取、处理、存储、传递、和解译空间信息,来获取空间知识的过程5.矢量数据结构:利用欧式几何学中的点、线、面及其组合体来表示地理实体空间分布的一种数据组织方式6.栅格数据结构实际实质就是像元阵列,即像元按矩阵形式的集合7.空间关系:空间目标在一定区域上构成的与空间特性有关的联系。
8.四面体网格:将目标空间用紧密排列但不重叠的不规则四面体形成的网格来表示,其实质就是2D TIN结构在3D空间上的拓展9.空间数据库系统:指带有数据库的计算机系统,采用现代数据库技术来管理空间数据。
10.空间数据引擎:用来解决如何在关系数据库存储空间数据,实现真正的数据库方式管理空间数据,建立空间数据服务器的方法11.空间索引:指在存储空间数据时依据空间对象的位置和形状或空间对象之间的某种空间关系,按一定顺序排列的一种数据结构,其中包含空间对象的概要信息。
12.空间链接查询:是空间数据库系统一种重要的多路查询,即从两个数据集合中检索出所有满足某一条件的空间对象。
13.元数据:是关于数据的数据,用于描述数据的内容、质量、表示方式、空间参照系、管理方式、数据的所有者、数据的提供方式以及数据集的其他特征14.空间元数据:描述地理信息数据集内容、表示、空间参照、质量以及管理的数据二、填空1.空间数据特征包括:时空特征、多维特征、多尺度性、海量数据特征2.空间数据库的作用:①空间数据处理与更新②海量数据存储于管理③空间分析与决策④空间信息交换与共享3.空间数据库的特征:综合抽象特征、非结构化特征、分类编码特征、复杂性与多样性4.空间数据管理的五种方式:基于文件管理方式、文件与关系数据库混合型空间数据库、全关系型空间数据库、对象-关系型空间数据库、面向对象空间数据库5.空间类型的表现形式:感知空间、认知空间、符号空间6.空间认知模式:空间特征感知、空间对象认识、空间格局认知7.空间认知的三层模型:空间概念数据模型、空间逻辑数据模型、物理数据模型8.矢量数据结构主要有spaghetti结构和拓扑矢量数据结构9.最基本的拓扑关系:关联、临接、包含10.栅格数据结构实际实质就是像元阵列,即像元按矩阵形式的集合11.栅格数据取值的四种方法:中心归属法、面积占优法、长度占优法、重要性法12.四叉树编码的方式:规则四叉树、线性四叉树、一对四式四叉树13.栅格数据的存储:全栅格式存储、链式编码、行程编码、块式编码、四叉树编码14.空间关系可分为:拓扑关系、度量关系、顺序关系15.面向对象的数据模型涉及四个抽象概念:分类,概括,聚集,联合、以及继承和传播两个语义模型工具16.TIN常用的算法:逐点插入法、分治算法、三角形生长法17.空间构模方法可归纳为:基于面模型、基于体模型、基于混合模型18.根据模型所具有的主要特征大致可以将其分为4类:三维矢量模型、三维体元模型、混合或集成数据模型、面向实体的数据模型19.图形数据与专题数据的链接基本上有4种方式:图形数据与专题属性数据分别管理、对通用DBMS扩展以增加空间数据库的管理能力、属性数据与图形数据有统一的结构、图形数据与属性数据自成体系20.目前空间索引技术超过50多种,可概括为树结构、线性映射和多维空间区域变换三种类型,从应用范围上可以分为静态索引和动态索引21.典型的空间索引技术包括:R树索引、四叉树索引、网格索引22.四叉树索引的方法有:点四叉树索引、MX四叉树索引、PR四叉树索引、CIF四叉树索引、基于固定网格划分的四叉树索引、线性可排序四叉树索引23.SQL查询语言的优点:非过程化语言、统一的语言、所有关系数据库的公共语言24.SQL查询语言的功能:查询、操纵、定义、控制25.SQL可细分为:DDL、DML、DCL26.主要的空间查询包括:点查询、区域查询、最邻近查询27.空间查询采用的算法:过滤筛选步骤、细化步骤28.查询分析的类型:属性查询、空间查询、空间分析29.空间数据交换的方式:①外部数据交换模式②直接数据访问模式③基于空间数据转换标准的转换④空间数据互操作模式30.空间数据库的设计可分为:需求分析,概念设计,逻辑设计,物理设计,数据库的实现,数据库的运行和维护6个阶段31.空间数据库需求分析主要包括三方面内容:用户基本需求调研、分析空间数据现状、系统环境/功能分析三、问答题1.空间数据库与传统数据库的差异:①信息描述差异。
空间数据库复习资料空间数据库复习资料在当今科技快速发展的时代,数据已经成为了一种宝贵的资源。
而在这些数据中,空间数据也扮演着非常重要的角色。
空间数据库作为管理和存储空间数据的工具,具有广泛的应用领域,如地理信息系统、地球科学、城市规划等。
本文将对空间数据库的相关知识进行复习,以帮助读者更好地理解和应用空间数据库。
一、空间数据的特点空间数据与传统的非空间数据相比,具有一些特殊的特点。
首先,空间数据是具有地理位置信息的数据,可以用来描述和分析地理现象。
其次,空间数据具有多维度的属性,如经度、纬度、高度等。
此外,空间数据还具有拓扑关系和邻近关系,这些关系对于地理分析和查询非常重要。
二、空间数据库的基本概念1. 空间数据模型空间数据模型是描述和组织空间数据的方式。
常见的空间数据模型有层次模型、网络模型和关系模型等。
其中,关系模型是最常用的一种模型,它将空间数据表示为关系表的形式,利用表中的属性和关系进行空间查询和分析。
2. 空间索引空间索引是提高空间数据查询效率的重要手段。
常见的空间索引包括R树、四叉树和kd树等。
这些索引结构可以将空间数据进行划分和组织,加快查询速度。
3. 空间查询空间查询是通过特定的条件来检索符合条件的空间数据。
常见的空间查询包括范围查询、邻近查询和交叉查询等。
通过合理地设计查询条件和使用空间索引,可以提高查询效率和准确性。
三、空间数据库的应用1. 地理信息系统地理信息系统(GIS)是一种将地理空间数据与属性数据相结合的信息系统。
它可以进行地图制作、地理分析和空间查询等功能。
空间数据库作为GIS的核心组件,能够提供高效的数据管理和查询功能,为地理信息系统的应用提供了坚实的基础。
2. 地球科学地球科学研究需要大量的空间数据支持,如地震数据、气象数据和地质数据等。
空间数据库可以对这些数据进行有效的存储和管理,为地球科学研究提供了便利。
3. 城市规划城市规划需要对城市空间进行分析和规划。
空间数据库可以提供城市空间数据的存储和查询功能,帮助城市规划者更好地了解城市的发展状况和问题,为城市规划提供科学依据。
查询1、从查询处理的角度来看,空间数据库与关系数据库之间区别:答:至少有三个主要区别:①、与关系数据库不同,空间数据库没有固定的运算符集合可以充当查询计算的基本构件②、空间数据库要处理非常大量的复杂对象,这些对象具有空间范围,不能自然的排列成一维数组。
③、检测空间谓语要用到计算量极大的算法,所以不能再假定I/O代价在CPU的处理代价中只能主导地位2、空间查询的基本构件:点查询:给定一个查询点P,找出所有包含它的空间对象O;范围或区域查询:给定一个查询多边形P,找出所有与之相交的空间对象O;空间链接:两个表R和S基于一个空间谓语θ进行连接时,该连接成为空间连接。
最近邻居:空间聚集,即给定一个对象O,找出所有距离O最近的对象P3、空间查询处理的“过滤-精炼模式”是什么,其目的?(对象操作的两步查询处理)目的:用两步算法高效地处理复杂的数据类型过滤:寻找Q最终结果的超集S;精炼:利用GIS处理S来找到精确的Q的答案过滤-精炼策略的作用?两个步骤的内容是什么?提示:ppt : Efficient algorithms to answer spatial queriesCommon Strategy - filter and refine(过滤-精炼)Filter Step:Query Region overlaps with MBRs of B,C and D过滤:查询区域与B、C、D的最小外接矩形有重叠部分,保留B、C、D,其他的舍弃Refine Step: Query Region overlaps with B and C精炼:查询区域与B、C有重叠,舍弃D4、空间查询处理中,一般是采用什么(MBR))来替代不同类型的空间实体(如线、面)?这样做有何好处?答:Minimum orthogonal bounding rectangle (MOBR or MBR)最小外接矩形;能够加快查询速度5、对于点查询、区域查询、空间连接查询操作,各自有哪些处理算法(策略)?它们与什么因素有关?答:点查询:数据未排列且没有索引:穷举法,扫描整个文件并判断每条记录是否满足谓语;建立空间索引:在索引中使用find操作;需要查找的磁盘扇区等于索引的深度;空间填充曲线散列:运用折半法寻找点;检验大约logB(n),的磁盘扇区;区域查询:数据未排列且没有索引:穷举法,扫描整个文件并判断每条记录是否满足谓语;建立空间索引:在索引中使用范围查询操作;空间填充曲线散列:验证Z值满足范围查询要求;使用折半查询找到最低的Z值;扫描前面的数据文件直至满足查询要求的最大的Z值空间连接:嵌套循环,检验所有可能的空间谓语对;基于空间分块,只检验普通空间区域的对象对;树匹配:从每张表中找出分层的的对象组22.举例说明单遍扫描查询和多遍扫描查询的概念。
1.空间数据的定义及特点定义:空间数据是指用来描述空间实体的位置、形状、大小及其分布特征等诸多方面信息的数据,以及表示地球表层一定范围内的地理事物及其关系。
特点:(1)空间性,空间性表示了空间实体的位置或所处的地理位置、空间实体几何特征以及空间实体的拓扑关系,从而形成了空间实体的位置、形态以及由此产生的一系列特性。
空间性又包括空间定位、空间度量、空间结构和空间集合。
(2)专题性,专题性是指在一个坐标位置上的地理信息具有专题属性信息。
(3)时间性,时间性是指空间数据的空间特性和属性特征随时间变化的动态变化特征,即时序特征。
2.空间数据库的定义及特点定义:空间数据库是存放空间数据的数据库。
更准确地说,空间数据库是描述空间物体的位置数据、位置数据元素(点、线、面)之间的拓扑关系及描述这些物体的属性数据的数据库。
特点:(1)空间数据库管理的是现实世界中相关性大的连续数据,要求进行综合管理;(2)空间数据库中描述的数据实体类型多,关系复杂。
使数据模型复杂;(3)空间数据库存储的空间数据具有非结构化特征,不满足关系数据模型的范式要求。
3.传统关系数据库模型的局限性答:(1)用关系模型描述具有复杂结构和含义的地理对象时,对地理实体进行不自然的分解,导致存储模式、查询途径及操作等方面不够合理;(2)关系数据库模型无法用递归和嵌套的方式来描述复杂关系的层次和网状结构,因此模型和操作复杂地理对象的能力较弱;(3)空间数据中图形数据通常是变长的,而一般空间数据库管理系统记录固定长度的记录,这不利于空间数据的表达;(4)GIS要管理的是具有高度内部联系的数据,为了保证地理数据库的完整性,需要复杂的安全维护系统。
4.空间数据库引擎的定义及特点答:定义:SDE是空间数据组织管理的重要基础技术,从用户的角度的角度看,SDE是用户和异构空间数据库的接口;从软件的角度看,SDE是应用程序和空间数据库管理系统之间的查件,用来管理空间数据库;从系统的角度来看,SDE 利用空间数据库管理系统和其扩展功能,实现空间数据在数据库中的物理存储。
《空间数据库原理》一、概念解释1.空间数据结构是指空间数据适合于计算机存储、管理、处理的逻辑结构,是空间数据在计算机内的组织和编码形式,是地理实体的空间排列和相互关系的抽象描述。
2.空间数据库管理系统(SDBMS)对各类空间数据进行统一处理、存储、维护和管理的软件系统。
SDBMS是空间数据库的核心软件,他对空间数据和属性数据进行了一体化,为GIS应用开发提供空间数据库管理系统除了必须具备普通数据库管理系统的功能。
3.网格索引网格索引是空间数据库的非常常用的一种索引方法,通过对地理空间进行网格划分,划分成大小相同的网格,每个网格对应着一块存储空间,索引项登记上落入该网格的空间对象。
4.空间数据挖掘空间数据挖掘是指从空间数据库中抽取没有清楚表现出来的隐含的知识和空间关系,并发现其中有用的特征和模式的理论、方法和技术。
5.后关系型数据库采用了更现代化的多维模型,作为数据库引擎。
并且,这种以稀疏数组为基础的独特的多维数据库架构,是从已成为国际标准的数据库语言基础上继承和发展的数据库二、简答题1.什么是空间曲线填充?z曲线填充在数据库设计中的作用是什么?空间填充曲线是利用一个线性顺序来填充空间,可以获得丛一端到另一端的曲线。
多维空间本身没有自然排序关系,但存在一对一的连续映射,可以将多维空间的点映射到一维空间,以达到对多维空间进行一维排序的目的。
常用的算法有Z曲线和Hilberlt曲线Z曲线:1)读入x和y坐标的二进制表示 2)隔行扫描二进制数字的比特到一个字符串3)计算出结果二进制串的十进制值,作用:1)空间数据所处的多维空间中没有天然的顺序,加强了多维空间中的位置顺序2)允许在空间数据中使用传统的有效搜索3)存储磁盘从逻辑上说是一维的设备,空间聚类技术就是要寻找一个从高维空间向一维空间的映射方法,空间上邻近的元素,映射为直线上接近的点,而且一一对应为达到这一目的,人们提出了很多种算法2.试举例说明空间数据库设计的主要内容是什么?空间数据库设计的任务:经过一系列转换,将现实世界描述为计算机世界中的空间数据模型,也就是将地理现象表示为空间数据模型和数据结构。
一、为什么不能用传统的数据库管理(两者区别)结合空间数据库特点分析。
1.空间数据库概念空间数据库是某一区域内一定地理要素特征的相关空间数据集合;是地理信息系统在计算机物理存储介质上存储的与应用相关的地理空间数据的总和,一般是以特定结构的文件的形式组织在存储介质上的。
2. 用传统数据库系统管理空间数据不足之处:(1)传统数据库管理的是不连续的相关性较小的数字或字符,而空间数据是连续的,并且有很强的空间相关性;(2)传统数据库管理的实体类型较少,并且实体类型间关系简单固定,而GIS 数据库的实体类型繁多,实体间存在着复杂的空间关系;(3)传统数据库存储的数据通常为等长记录的数据,而空间数据的目标坐标长度不定,具有变长记录,并且数据项可能很多,很复杂;(4)传统数据库只查询和操作数字和文字信息,而空间数据库需要大量的空间数据操作和查询。
3. 空间数据特征:空间特征、空间关系、非结构化、抽象特征、多时空性特征、分类编码特征、海量数据特征、多尺度与多态性。
4.空间数据组织方式:(1)数据分层式(Data Layer)图层定义:将同区域的数据分成不同的类型或层级储存,例如依不同地类、专题、年代等,各储存类别称作“图层”;可按照:专题、时间、高度等分层。
专题图定义:传统纸质地图通常依不同的专题,如人口分布图、地质图、地形图等,来表现不同的人文活动或是地表现象,这些图称作专题图(Thematic Map) ;数据层:目前大多GIS数字图则以数据项目分层,称作数据层(Data Layer),但也常被称作图层或专题图层。
层:空间数据处理的一个工作单元,不同的系统工作处理层方式不同;逻辑层:当一个层所包含的内容太多(如管线层),为了方便于显示、制图和查询,对其中的部分要素定义逻辑层,逻辑层不改变存储关系,仅建立对照表,每个逻辑层包含了哪些指向地物类的指针。
数据分层式优缺点:–这种方式是目前颇为普遍的数据组织方法,方便使用者选择合适的数据,适合与栅格或矢量数据数据结构,目前大多数GIS软件采用这一方法。
空间数据库复习资料整理v3⼀、名词解释1空间数据库是地理信息系统在计算机物理存储介质上存储和应⽤的相关的地理空间数据的总合。
2空间数据库管理系统:能进⾏语义和逻辑定义存储在空间数据库上的空间数据,提供必需的空间数据查询、检索和存取功能,以及能够对空间数据进⾏有效的维护和更新的⼀套软件系统。
3空间数据库应⽤系统提供给⽤户访问和操作空间数据库的⽤户界⾯,是应⽤户数据处理需求⽽建⽴的具有数据库访问功能的应⽤软件。
⼀般需要进⾏⼆次开发,包括空间分析模型和应⽤模型。
4什么是arcSDE空间数据库引擎(SDE: Spatial Database Engine)ArcSDE是⼀个⽤于访问存储于关系数据库管理系统(RDBMS)中的海量多⽤户地理数据库的服务器软件产品。
5什么是空间数据地理信息系统的数据库(简称空间数据库或地理数据库)是某⼀区域内关于⼀定地理要素特征的数据集合。
6空间数据模型空间数据(库)模型:就是对空间实体及其联系进⾏描述和表达的数学⼿段,使之能反映实体的某些结构特性和⾏为功能。
空间数据模型是衡量GIS功能强弱与优劣的主要因素之⼀。
7空间数据结构不同空间数据模型在计算机内的存储和表达⽅式。
8场模型在空间信息系统中,场模型⼀般指的是栅格模型,其主要特点就是⽤⼆维划分覆盖整个连续空间9对象模型⾯向对象数据模型(Object―Oriented Data Model,简称O―O Data Model)是⼀种可扩充的数据模型,在该数据模型中,数据模型是可扩充的,即⽤户可根据需要,⾃⼰定义新的数据类型及相应的约束和操作。
10概念数据模型按⽤户的观点来对数据和信息建模。
⽤于组织信息世界的概念,表现从现实世界中抽象出来的事物以及它们之间的联系。
如E-R模型。
11结构数据模型从计算机实现的观点来对数据建模,是信息世界中的概念和联系在计算机世界中的表现⽅法。
如层次模型、⽹状模型、关系模型、⾯向对象模型。
12空间元数据空间元数据是指在空间数据库中⽤于描述空间数据的内容、质量、表⽰⽅法、空间参考和管理⽅式等特征的数据,是实现地理空间信息共享的核⼼标准之⼀。
一、数据管理的发展阶段1、人工管理阶段2、文件系统阶段3、数据库管理阶段注意了解各阶段的背景和特点二、数据库系统的特点1、面向全组织的复杂的数据结构2、数据的冗余度小,易扩充3、具有较高的数据和程序的独立性:数据独立性数据的物理独立性数据的逻辑独立性三、数据结构模型三要素1、数据结构2、数据操作3、数据的约束性条件四、数据模型反映实体间的关系1、一对一的联系(1:1)2、一对多的联系(1:N)3、多对多的联系(M:N)五、数据模型:是数据库系统中用于提供信息表示和操作手段的形式构架。
数据库结构的基础就是数据模型。
数据模型是描述数据(数据结构)、数据之间的联系、数据语义即数据操作,以及一致性(完整性)约束的概念工具的集合。
概念数据模型:按用户的观点来对数据和信息建模。
ER模型结构数据模型:从计算机实现的观点来对数据建模。
层次、网状模型、关系六、数据模型的类型和特点1、层次模型:优点:结构简单,易于实现缺点:支持的联系种类太少,只支持二元一对多联系数据操纵不方便,子结点的存取只能通过父结点来进行2、网状模型:优点:能够更为直接的描述世界,结点之间可以有很多联系具有良好的性能,存取效率高缺点:结构比较复杂网状模型的DDL、DML复杂,并且嵌入某一种高级语言,不易掌握,不易使用3、关系模型:特点:关系模型的概念单一;(定义、运算)关系必须是规范化关系;在关系模型中,用户对数据的检索操作不过是从原来的表中得到一张新的表。
优点:简单,表的概念直观,用户易理解。
非过程化的数据请求,数据请求可以不指明路径。
数据独立性,用户只需提出“做什么”,无须说明“怎么做”。
坚实的理论基础。
缺点:由于存储路径对用户透明,存储效率往往不如非关系数据模型4、面向对象模型5、对象关系模型七、三个模式和二级映像1、外模式(Sub-Schema):用户的数据视图。
是数据的局部逻辑结构,模式的子集。
2、模式(Schema):所有用户的公共数据视图。
空间数据库复习知识点(余东福)1数据库:存放数据的仓库,是存储在计算机内的有结构的数据集合。
2 数据库管理系统:用以维护数据库、接受并完成用户对数据库的一切操作的软件系统。
3 数据库系统:指由硬件设备、软件系统、专业领域的数据体和管理人员构成的一个运行系统。
4 数据库的发展历程:人工管理阶段(50年代中期以前)文件系统阶段(50年代后期至60年代后期)数据库系统阶段(70年代初至现在)5 空间数据库:存在于电脑信息介质(如硬盘)上,有一定格式、结构、组织的可长期存储、共享的数据集合。
它具有较小的冗余度,较高的数据独立性和易扩展性,并可以为各种用户共享。
6 空间数据库应具备的功能:传统数据库的所有功能;准确、高质量的存储、处理(海量)空间数据;空间数据额时空关系处理;数据编码;数据的组织与重构;检索和分析;建模;视觉变换;系统维护。
7传统的关系数据库已很成熟,为什么还要发展空间数据库?原因:传统模型存储空间数据有其局限性。
首先,层次模型用于空间数据库有一定的局限性,很难描述复杂的地理实体之间的联系,描述多对多的关系时导致物理存储上的冗余,并且查询效率很低,很难进行反向查询,数据独立性差,等等;其次,网状模型用于空间数据库有一定的局限性;再次,关系模型用于空间数据库有一定的局限性。
8 数据结构:数据组织的形式,是适合于计算机存储、管理和处理的数据逻辑结构。
9 空间数据结构:地理实体的空间排列方式和相互关系的抽象描述。
10 文件:有记录组成,是数据库组织的基础,包括逻辑文件和物理文件。
11 文件组织:按一定的逻辑结构(树等)把有关联的数据记录组织成为文件,并用体现这种逻辑结构的物理存储形式把文件中的数据存放在某种存储设备上,是指构成物理文件的机构。
12 线性表:一个线性表时n>=0个数据元素的有限序列,线性表在逻辑上可表示为(a1,a2,a3,…,a n)。
13 栈:限定只在表的一端进行插入和删除的线性表。
空间数据库复习资料(仅供参考)1.什么是空间数据库?阐述空间数据库管理系统的主要功能?答:(1)空间数据库:是长期储存在计算机内、有组织的、可共享的大量空间数据的集合。
(指某区域内以特定的信息结构和数据模型表达、存储和管理的空间数据的集合。
)(2)主要功能:数据定义功能,数据组织、存储和管理,数据操纵功能,数据库的事务管理和运行管理,数据库的建立和维护功能;空间数据和空间关系的定义和描述,空间操作算子,空间数据索引,空间数据查询语言,几何完整性约束,长事务管理,海量空间数据的存储和组织,空间数据的可视化。
2.阐述数据库系统的外部、内部体系结构。
答:(1)外部体系结构:单用户结构/主从式结构,客户/服务器,分布式结构,B/S结构(2)内部体系结构:三级模式结构:外模式,模式,内模式3.什么是数据模型?阐述常用数据模型的基本思想。
答:(1)数据模型:在数据库中用数据模型来抽象、表示和处理现实世界中的数据和信息。
数据模型应满足三方面要求:能比较真实地模拟现实世界,容易为人所理解,便于在计算机上实现。
(2)常用数据模型的基本思想:①层次模型是用树形结构来表示实体及实体间联系的模型,它将数据组织成一对多的联系。
②网状模型是用网状结构来表示实体及实体间联系的模型,它将数据组织成多对多的联系。
③关系模型是用二维关系来表示实体及实体间联系的模型,它将数据组织成规范化的关系表格。
④面向对象模型象的基本思想就是以接近人类思维的方式将客观世界的一切实体或现象模型化为一系列对象。
每一种对象都有各自的内部状态和行为,不同对象之间的相互联系和相互作用就构成了各种不同的面向对象系统4.什么是空间索引?阐述格网索引、四叉树索引、R树索引的基本思想。
答:(1)空间索引,也叫空间访问方法,是指依据空间对象的位置、形状以及空间对象之间的某种空间关系,按一定顺序排列的一种数据结构。
其中包括空间对象的概要信息,如对象的标识、外接矩形及指向空间对象实体的指针。
1、举例说明什么是空间数据、非空间数据如何理解空间查询和非空间查询的区别常用的空间数据库管理方式有哪几种及其各自特点。
数据:是指客观事务的属性、数量、位置及其相互关系等的符号描述。
空间数据:是对现实世界中空间对象(事物)的描述,其实质是指以地球表面空间位置为参照,用来描述空间实体的位置、形状、大小及其分布特征等诸多方面信息的数据。
河流的泛洪区,卫星影像数据、气象气候数据等都可以是空间数据书店名称店员人数,去年的销售量,电话号码等是非空间数据空间查询是对空间数据的查询或命令人工管理阶段文件管理阶段缺点:1)程序依赖于数据文件的存储结构,数据文件修改时,应用程序也随之改变。
2)以文件形式共享,当多个程序共享一数据文件时,文件的修改,需得到所有应用的许可。
不能达到真正的共享,即数据项、记录项的共享。
常用:文件与数据库系统混合管理阶段优点:由于一部分建立在标准的RDBMS上,存储和检索数据比较有效、可靠。
缺点:1)由于使用了两个子系统,它们各自有自己的规则,查询操作难以优化,存储在RDBMS外的数据有时会丢失数据项的语义。
2)数据完整性的约束条件可能遭破坏,如在几何空间数据系统中目标实体仍存在,但在RDBMS中却已删除。
3)几何数据采用图形文件管理,功能较弱,特别是在数据的安全性、一致性、完整性、并发控制方面,比商用数据库要逊色得多全关系型空间数据库管理系统◆属性数据、几何数据同时采用关系式数据库进行管理◆空间数据和属性数据不必进行烦琐的连接,数据存取较快◆属性间接存取,效率比DBMS的直接存取慢,特别是涉及空间查询、对象嵌套等复杂的空间操作◆GIS软件:System9,Small World、GeoView等本质:GIS软件商在标准DBMS顶层开发一个能容纳、管理空间数据的系统功能。
对象关系数据库管理系统优点:在核心DBMS中进行数据类型的直接操作很方便、有效,并且用户还可以开发自己的空间存取算法。
缺点:用户须在DBMS环境中实施自己的数据类型,对有些应用相当困难。
1、举例说明什么是空间数据、非空间数据?如何理解空间查询和非空间查询的区别?常用的空间数据库管理方式有哪几种及其各自特点。
数据:是指客观事务的属性、数量、位置及其相互关系等的符号描述。
空间数据:是对现实世界中空间对象(事物)的描述,其实质是指以地球表面空间位置为参照,用来描述空间实体的位置、形状、大小及其分布特征等诸多方面信息的数据。
河流的泛洪区,卫星影像数据、气象气候数据等都可以是空间数据书店名称店员人数,去年的销售量,电话号码等是非空间数据空间查询是对空间数据的查询或命令人工管理阶段文件管理阶段缺点:1)程序依赖于数据文件的存储结构,数据文件修改时,应用程序也随之改变。
2)以文件形式共享,当多个程序共享一数据文件时,文件的修改,需得到所有应用的许可。
不能达到真正的共享,即数据项、记录项的共享。
常用:文件与数据库系统混合管理阶段优点:由于一部分建立在标准的RDBMS上,存储和检索数据比较有效、可靠。
缺点:1)由于使用了两个子系统,它们各自有自己的规则,查询操作难以优化,存储在RDBMS外的数据有时会丢失数据项的语义。
2)数据完整性的约束条件可能遭破坏,如在几何空间数据系统中目标实体仍存在,但在RDBMS中却已删除。
3)几何数据采用图形文件管理,功能较弱,特别是在数据的安全性、一致性、完整性、并发控制方面,比商用数据库要逊色得多全关系型空间数据库管理系统◆属性数据、几何数据同时采用关系式数据库进行管理◆空间数据和属性数据不必进行烦琐的连接,数据存取较快◆属性间接存取,效率比DBMS的直接存取慢,特别是涉及空间查询、对象嵌套等复杂的空间操作◆GIS软件:System9,Small World、GeoView等本质:GIS软件商在标准DBMS顶层开发一个能容纳、管理空间数据的系统功能。
对象关系数据库管理系统优点:在核心DBMS中进行数据类型的直接操作很方便、有效,并且用户还可以开发自己的空间存取算法。
空间数据是对空间事物的描述,实质上就是指以地球表面空间位置为参照,用来描述空间实体的位置、形状、大小及其分布特征诸多方面的数据。
数据库是长期储存在计算机内的、有组织的、可共享的数据集合。
空间数据特征:时空特征、多维特征、多尺度性、海量数据特征。
空间数据库作用:空间数据处理与更新、海量数据存储与管理、空间分析与决策、空间信息交换与共享。
空间认知的三层模型:空间概念数据模型(是人们对客观事物或现象的一种认识,有时也称为语义数据模型,目前存在的空间概念数据模型主要有矢量数据模型、栅格数据模型和矢量-栅格一体化数据模型) 空间逻辑数据模型(将前面的空间概率数据模型确定的空间数据库信息内容,空间实体和空间关系,具体的表达为数据项、记录等之间的关系,常用的数据模型包括层次模型、网络模型和关系模型)物理数据模型(逻辑数据模型并不涉及最底层的物理实现细节,而计算机只处理二进制数据。
所以必需将逻辑数据模型转换为物理数据模型,即要求完成空间数据的物理组织、空间存取方法和数据库总体存储结构等的设计工作)。
矢量数据结构:Spaghetti结构(简单数据结)、拓扑矢量数据结构(关联不同类元素之间的关系、邻接同类元素之间的关系、包含同类但不同级的元素之间的拓扑关系)。
栅格数据存储:全栅格式存储、链式编码、行程编码、块式编码、四叉树编码。
对象:含有数据和操作方法的独立模块。
面向对象数据模型核心技术:1分类:是把一组具有相同属性结构的操作方法的对象归纳或映射为一个公共类的过程。
2概括:是将相同特征和操作的类再抽象为一个更高层次,更具一般性超类的过程。
3聚集:是将几个不同特征的对象组合成一个更高水平的对象。
4联合:是将同一对象中的几个具有时间部分相同属性值的对象结合起来,形成一个更高水平的集合对象的过程。
5继承。
6传播。
OGC(openGIS Consortium)是为了发展开放式地理数据系统、研究地学空间信息标准化以及处理方法的一个非营利组织,旨在利用其开放地理数据互操作规范使得应用系统开发者可以在单一的环境和工作流中,使用分布于网上的任何地理数据和地理处理。
cha 1-绪论-1.1 数据库管理系统(简称DBMS):位于用户和操作系统之间的,管理控制DB的建立、运行和维护的软件。
具有数据定义、数据操纵、数据库运行、数据库建立和维护功能。
1.2 为什么要研究空间数据库?GIS的出现激发了人们开发空间数据库的兴趣。
GIS提供了便于分析地理数据和将地理数据可视化的机制。
GIS 可以对某些对象和图层进行多种操作。
GIS还可以用来处理海量空间数据。
而实际上GIS就是空间数据库的前端!1.3 .数据指输入到计算机并能被计算机进行处理的数字、文字、符号、声音、图象等符号,一般描述客观事物的属性、数量、位置及其相互关系等;1.4.空间空间可定义为一系列结构化物体及其相互间联系的集合。
从感观角度将空间看作是目标或物体所存在的容器或框架。
地理空间:指人类在地球表面活动的的地理环境,主要包括岩石圈、水圈、大气圈。
1.5.空间数据定义:是对空间事物的描述,是以地球表面空间位置为参照,用来描述空间实体的位置、形状、大小及其分布特征诸多方面信息的数据。
1.6 空间数据特性时空特性:空间位置、空间属性、空间关系、时间属性多维特性:同一位置上具有多种专题的信息结构多尺度性:包括空间多尺度和时间多尺度,应用于宏观、中观和微观的多层次应用图形图像特征:结果可视化海量数据特征:更新快、多分辨率1.7空间数据—空间关系拓扑邻接:同种空间实体之间的关系。
例:N1/N2 ,N1/N3 ,N1/N4 ;P1/P3 ;P2/P3拓扑关联:不同种空间实体之间的关系。
例:N1/е1、е3 、е6 ;P1/е1、е5 、е6 拓扑包含:同种空间实体之间的关系。
例:P3与P41.8 数据结构:是指数据的组织形式,在计算机存储、管理和处理的数据逻辑结构。
1.9 数据模型(数据库模型):是描述实体及其相互关系的数学描述,是空间数据库建立的逻辑模型。
1.10 关系模型用于空间数据库的局限性1)无法用递归和嵌套的方式来描述复杂关系的层次和网状结构,模拟和操作复杂地理对象的能力较弱;2)用关系模型描述本身具有复杂结构和涵义的地理对象时,需对地理实体进行不自然的分解,导致存储模式、查询途径及操作等方面均显得语义不甚合理;3)由于概念模式和存储模式的相互独立性,及实现关系之间的联系需要执行系统开销较大的联接操作,运行效率不够高。
1、数据库:就是为了一定的目的,在计算机系统中以特定的结构组织、存储、管理和应用的相关联的数据集合,是数据管理的高级阶段。
空间数据库是存取、管理空间信息的数据库,指的是地理信息系统在计算机物理存储介质上存储的应用相关的地理空间数据的总和,一般是以一系列特定结构的文件的形式组织在存储介质之上的空间数据库与关系数据库间的主要区别:1)和关系数据库相比,空间数据库没有固定的运算符集合2)空间数据库处理对象复杂,具有空间范围,不能自然按一维排序3)检测空间谓词需要用到大量复杂计算,所以CPU的代价不是主要由I/O决定空间数据模型:是关于现实世界中空间实体及其相互联系的概念,它为描述空间数据的组织和设计空间数据库模式提供着基本方法空间数据库管理系统:1)一个SDBMS是一个软件模块,它利用一个底层数据库管理系统2)SDBMS支持多种空间数据模型、相应的空间抽象数据类型(ADT)以及一种能够调用这些ADT的查询语言3)SDBMS支持空间索引、高效的空间操作算法以及用于查询优化的特定领域规则空间信息:也就是指在某个空间框架(如地球表面)中的位置信息。
空间信息是指与研究对象的空间地理分布有关的信息,它表示地理系统诸多要素的数量、质量、分布特征,相互联系和变化规律的图、文、声、像等的总称地理信息系统:是用于采集、模拟、处理、检索、分析和表达地理空间数据的计算机信息系统,可以作为ADBMS的前端数据模型:数据模型是一条或一组用于标识和表示空间参照对象的规则,数据模型是数据集的特定结构和模式,是对数据的文件描述,有利于某些性质的前期分析。
数据模型是数据库系统中关于数据内容和数据之间联系的逻辑组织的形式表示。
每一个具体的数据库都是由一个相应的数据模型来定义。
层次模型、网络模型、关系模型、面向对象模型对象模型:对象模型很适合表示有固定形状的空间实体场模型:用于表示连续的或无固定形状的概念2、数据库的发展:(图)数据库系统的前身为文件系统,数据库技术最初产生于20世纪60年代中期,根据数据模型的发展,可以划分为三个阶段:第一代的网状、层次数据库系统;第二代的关系数据库系统;第三代的以面向对象模型为主要特征的关系数据库系统3、场操作可以分为三类:局部操作、聚焦操作、区域操作局部操作:空间框架内一点给定位置的新场的取值只依赖于同一位置场的输入值聚焦操作:在指定位置的结果场的值依赖于同一位置的一个假定小领域输入场的值区域操作:与聚集运算符或微积分中的积分运算有关,如森林的例子中计算每个树种的平均高度4、数据库设计的三个步骤:首先,采用高层次的概念数据模型来组织所有与应用相关的可用信息:重点关注应用的数据类型及其联系和约束,设计过程的这个阶段不考虑具体实现细节。
《空间数据库原理》第一章数据库1、空间数据库:①提供结构用于存储和分析空间数据②空间数据由多维空间的对象组成③在标准数据库中存储空间数据需要大量的空间,从一个标准数据库中检索查询空间数据需要很多时间并且很累赘,通常导致很多错误。
2、DBMS:(数据的操作系统)一种操纵和管理数据库的大型软件,用于建立、使用和维护数据库。
SDBMS:增加了处理空间数据功能的DBMS。
①在它的数据模型中提供空间数据类型和查询语言②至少在执行时支持提供空间数据类型:空间索引;空间链接有效的算法。
在地理信息系统中为什么要研究专门的空间数据库系统?1.空间数据库能提供结构存储和空间数据分析2.空间数据库包含多面空间的对象3.在标准数据库中存储空间数据会需要过多的空间4.标准数据库的查询反馈和空间数据分析会消耗过多时减并且留下大量错误空间5.空间数据库能提供更多有效率的存储和空间数据分析3、哈希(Hash)函数:一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
质数除余法(直接取余法):f(x):=x mod maxM ;maxM一般是不太接近2^t的一个质数。
乘法取整法:f(x):=trunc((x/maxX)*maxlongit) mod maxM,主要用于实数。
平方取中法:f(x):=(x*x div 1000 ) mod 1000000);平方后取中间的,每位包含信息比较多。
第二章数据库基本原理1、数据模型Data Model:关于数据基础或对象以及他们之间的关系的抽象描述被表示在一个数据库中。
3、概念数据模型:也称语义模型,关于实体和实体间联系的抽象概念集,用统一的语言描述、综合、集成的用户视图。
2、数据字典:是指对数据库的内容包括数据项和属性码定义,是元数据的重要组成部分。
(是指对数据的数据项、数据结构、数据流、数据存储、处理逻辑、外部实体等进行定义和描述,其目的是对数据流程图中的各个元素做出详细的说明。
)Metadata:是描述数据的数据,主要是描述数据属性的信息,用来支持如指示存储位置、历史数据、资源查找、文件记录等功能。
3、数据库设计和实现:①需求分析②概念数据建模③逻辑建模(参考DBMS和基础数据模型)④物理建模或者实现(参考物理存储和电脑环境)。
需求调查:根据数据库设计的主题对用户的需求进行调查,了解用户特点和要求,取得设计者与用户对需求的一致看法。
需求分析:指的是在创建一个新的或改变一个现存的系统或产品时,确定新系统的目的、范围、定义和功能时所要做的所有工作。
4、E-R图:描述对象类型之间的关系,是表示概念模型的一种方式。
第三章基本空间概念1、凸多边形:把一个多边形任意一边向两方无限延长成为一条直线,如果多边形的其他各边均在此直线的同旁,那么这个多边形就叫做凸多边形。
2、点集拓扑:一个基于相邻关系定义拓扑学空间的方法。
3、大圆距离:大圆距离指的是从球面的一点A出发到达球面上另一点B,所经过的最短路径(圆弧)的长度。
曼哈顿距离:两个点上在标准坐标系上的绝对轴距之总和。
4、欧式空间(欧几里德空间):空间的坐标模型。
作用:能将空间属性转化为以实数为元组的属性;坐标系包括一个确定的原点和在原点交叉的一对正交轴线。
拓扑几何空间:①关注的属性在拓扑转换能下保持不变②直观上看,拓扑转换表现为橡皮条转换③能协调由一系列不同固定点和相交在原点的正交线组成的框架,使其在拓扑转换时仍然能保持各对象的邻接关系。
5、G图:被定义为有限非空点集和不同节点的无序对(边缘)的总和。
第四章空间数据模型1、模型Model:(字典解释)①一组计划(蓝图)②是对一个系统的微型解释,用于分析感兴趣的属性(特定解释)③一个模型是对现实世界中实体或现象的艺术构造,使其简化和抽象,但是保留了事物的一些固有特征和构造。
数据模型Data Model:①一个属性集的指定结构或模式②数据的文本描述③促进一些性质的初始分析。
2、建模应用域:①域建模:管理领域,网络②概念模型:实体/物体,属性,关系③逻辑模型:在数据库或者数据库管理系统中实例化④物理模型:实际执行。
领域模型:可以被看作是一个系统的概念模型,用于以可视化的形式描述系统中的各个实体及其之间的关系。
空间数据模型三个层次:①概念数据模型:也称语义模型,关于实体和实体间联系的抽象概念集,用统一的语言描述、综合、集成的用户视图②逻辑数据模型:表达概念模型中数据实体(或记录)及其间的关系③物理数据模型:描述数据在计算机中的物理组织、存储路径和数据库结构。
3、场模型:也称作域模型,是把地理空间中的现象作为连续的变量或体来看待。
适合用来描述具有一定空间内连续分布特点的对象,根据应用的不同场可以表现为二维或三维场。
表达与存贮:表现形式:经常用一系列等值线组成,等值线就是地面上所有具有相同属性值的点的有序集合。
方法:用栅格数据结构实现,栅格模型(例如遥感影像)、DEM(数字高程模型)、TIN(不规则三角网)模型、空间插值模型和等高线模型。
4、对象模型:也称要素模型,将研究的整个地理空间看成一个空域,地理现象和空间实体作为独立的对象分布在该域中。
适用于具有明确边界的地理现象建模。
表达与存贮:针对不同地物要素表现形式:①点对象:有特定位置,维数为0的物体②线对象:维数为1的空间组分,有一系列坐标表示③多边形对象/面状实体:由一封闭曲线加内点来表示。
方法:用矢量数据结构实现。
5、场Fields:用于收集或显示属性域的空间结构。
物体Objects:离散独立的实体,每个都与属性地理相关。
6、镶嵌模型:将平面分解为互不相交的多边形,可以是规则的多边形也可以是不规则的多边形。
7、Isotropic field各向同性场:沿不同方向属性相同。
Anisotropic field各向异性场:沿不同方向属性不同。
8、Spatial auto-correlation空间自动相关:空间场的聚类分析。
9、数字高程模型DEM:模拟地形测量的高程(数字地面模型DTM:同样模拟其他地面要素)。
这个空间结构直接显示了嵌入欧几里德2或3维空间的一部分地球表面。
10、数据库设计:数据库应用建模三步法:①概念数据类型,关系和约束条件(ER model)②关系模型的逻辑映射和查询语言(Relational Algebra)③物理文件结构,索引。
11、E-R图:ER模型的表示,描述对象类型之间的关系。
第五章地理数据空间表示和算法1、Spaghetti面条数据模型:仅记录空间对象的位置坐标和属性信息,不记录拓扑关系。
存储方式:①独立存储:空间对象位置直接跟随空间对象②点位字典:点坐标独立存储,线、面由点号组成。
例:2、Topological拓扑数据模型:①最广泛使用的矢量数据模型②借用了拓扑学的原理来描述空间事物③通过拓扑关系,识别地图中的空间数据关系④不仅记录空间对象的空间位置和几何特性,还记录空间关系。
表达对象:主要点、线、面之间的关联拓扑关系。
例:3、DIME:是一种把几何量度信息(直角坐标)和拓扑逻辑信息结合起来的系统,用于表示区域实体的一个单独的非覆盖集。
其基本元素是连接两个结点的一条线段,称为段。
段通过她的两个结点及两侧区域来标识。
例:POLYVRT:是DIME的扩充,在这个模式里链作为基本元素取代了段。
链扮演了一个重要的拓扑角色,同时形成了几何学与区域实体的接口。
POLYVRT首先引进了地图数据结构,用于继续形成各种各样内部数据结构的支柱,这些结构我们今天仍然用于表示段或链。
4、TIN:一种表示数字高程模型的方法,根据区域有限个点集将区域划分为相连的三角面网络,区域中任意点落在三角面的顶点、边上或三角形内。
如果点不在顶点上,该点的高程值通常通过线性插值的方法得到。
例:数据组织:存储每个点的高程,还要存储其平面坐标、节点链接的拓扑关系,三角形及邻接三角形等关系。
应用:三维显示技术、三维分析、三角网内插、等高线追踪、内插等高线。
5、栅格链式编码:从某一点开始用沿八个基本方向前进的单位矢量李链来表示对象(线状地物或多边形的边界)。
行(游)程编码:按行的顺序连续且属性值相同的若干栅格。
块式编码:将游程扩大到二维情况,把多边形范围划分为若干具有同一属性的正方形,然后对各个正方形进行编码。
6、空间索引:是指根据空间要素的地理位置、形状或空间对象之间的某种空间关系,按一定的顺序排列的一种数据结构,一般包括空间要素指标,外包络矩形以及指向空间要素的指针。
7、R树:是一种高度平衡的树,由中间节点和叶节点组成,实际数据对象的最小外接矩形存储在叶节点中,中间节点通过聚集其低层节点的外接矩形形成,包含所有这些外接矩形。
优点:R树是一种动态索引结构,即:它的查询可与插入或删除同时进行,而且不需要定期的对树结构进行重新组织。
R 树的搜索算法是一个递归的过程。
设搜索的区域为S,则搜索区域S 内的空间对象的过程如下: (1)子树的搜索:从R 树的根结点T 开始,如果T 不是叶子结点,那么依次判断该结点中各单元的I 与区域S 的空间位置关系,如果I 与搜索区域S 相交,则该单元所指向的结点为待搜索的根结点,重复进行上面的操作。
如果T 是叶子结点则转至第二步。
(2)叶子结点的搜索:如果T 是叶子结点,依次判断其中的空间对象与搜索区域S 之间的空间位置关系,如果空间位置对象落在搜索区域S 以内,则表明其满足搜索条件。
8、Quad-Tree四叉树:是一种每个节点最多有四个子树的数据结构。
四叉树索引的基本思想是将地理空间递归划分为不同层次的树结构。
它将已知范围的空间等分成四个相等的子空间,如此递归下去,直至树的层次达到一定深度或者满足某种要求后停止分割。
四叉树的结构比较简单,并且当空间数据对象分布比较均匀时,具有比较高的空间数据插入和查询效率,因此四叉树是GIS中常用的空间索引之一。
可以用来在数据库中放置和定位文件(称作记录或键)。
9、BSP Tree二叉树:二叉树是每个结点最多有两个子树的有序树。
二叉树常被用于实现二叉查找树和二叉堆。
值得注意的是,二叉树不是树的特殊情形。
在图论中,二叉树是一个连通的无环图,并且每一个顶点的度不大于2。
有根二叉树还要满足根结点的度不大于2。
有了根结点后,每个顶点定义了唯一的根结点,和最多2个子结点。
然而,没有足够的信息来区分左结点和右结点。
大题:1)概念设计概念设计是通过对错综复杂的现实世界的认识与抽象,最终形成空间数据库系统及其应用系统所需的模型。
具体是对需求分析阶段所收集的信息和数据进行分析、整理,确定地理实体、属性及它们之间的联系,将各用户的局部视图合并成一个总的全局视图,形成独立于计算机的反映用户观点的概念模式。
概念模式与具体的DBMS无关,结构稳定,能较好地反映用户的信息需求。
表示概念模型最有力的工具是E-R模型,即实体-联系模型,包括实体、联系和属性三个基本成分。