《空间点直线平面之间的位置关系》练习题
- 格式:docx
- 大小:99.06 KB
- 文档页数:3
空间点、直线、平面之间的位置关系(习题)1.判断正误,正确的打“√”,错误的打“×”(1)有三个公共点的两个平面必重合.()(2)空间中两条平行直线确定一个平面.()(3)空间两两相交的三条直线确定一个平面.()(4)三角形是平面图形.()(5)平行四边形、梯形、四边形都是平面图形.()(6)两组对边分别相等的四边形是平行四边形.()(7)垂直于同一直线的两直线平行.()(8)一条直线和两平行线中的一条相交,也必和另一条相交.()2.已知α,β为平面,A,B,M,N为点,a为直线,下列理解错误的是()A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=直线MNC.M∈α,M∈β,α∩β=l⇒M∈lD.A,B,M∈α,A,B,M∈β,且A,B,M不共线⇒α,β重合3.l1,l2,l3是空间中三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.已知a,b,c为三条不重合的直线,α,β为两个不重合的平面,有下列命题:①若a∥c,b∥c,则a∥b;②若a∥β,b∥β,则a∥b;③若a∥c,c∥α,则a∥α;④若a∥β,a∥α,则α∥β.其中正确的是()A.①②B.①C.②④D.③④5.如图,在空间四边形ABCD中,AB,BC,CD的中点分别是P,Q,R,且PQ=2,QR=5,PR=3,则异面直线AC和BD 所成的角为()A.90°B.60°C.45°D.30°第5题图第6题图6.如图,正方体ABCD-A1B1C1D1两个面上成异面关系的两条对角线所成的角为()A.60°B.90°C.60°或90°D.30°7.如图,在正方体ABCD-A1B1C1D1中,AA1=AB=4,AD=2,E,F,G分别是DD1,AB,CC1的中点,则直线A1E,FG所夹的角为_______.8.将正方体的纸盒展开(如图),则直线AB,CD在原正方体中所成的角为________.9.如图,在空间四边形ABCD中,E,F,G,H分别为AB,BC,CD,DA的中点,若AC=BD=a,且AC与BD所成的角为60°,则四边形EFGH的面积是________.10.如图,在正方体ABCD-A1B1C1D1中,E,F分别是AA1,CC1的中点,求证:四边形BFD1E是平行四边形.11.如图,在正方体ABCD-A′B′C′D′中,求:(1)AA′和C′D′所成角的大小;(2)AA′和B′C所成角的大小;(3)A′B和B′C所成角的大小.12.如图,△ABC在平面α外,直线AB∩平面α=P,直线AC∩平面α=Q,直线BC∩平面α=R,求证:P,Q,R三点共线.【参考答案】1.×√×√××××2.B3.B4.B5.A6.C7.90°8.60°9.238a 10.略11.(1)90°;(2)45°;(3)60°12.略。
第1题. 下列命题正确的是( ) A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面 C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面答案:D.第2题. 如图,空间四边形ABCD 中,E ,F ,G ,H 分别 是AB ,BC ,CD ,DA 的中点. 求证:四边形EFGH 是平行四边形.答案:证明:连接BD .因为EH 是ABD △的中位线,所以EH BD ∥,且. 同理,FG BD ∥,且BD .因为EH FG ∥,且EH FG =. 所以四边形EFGH 为平行四边形.试题号:4658 知识点:空间平行线的传递性——公理4。
试题类型:解答题 试题难度:容易 考查目标:基础知识 录入时间:2006-1-6第3题. 如图,已知长方体ABCD A BC D ''''-中,AB =AD =2AA '=. (1)BC 和A C ''所成的角是多少度? (2)AA '和BC '所成的角是多少度?AE BHGCFD答案:(1)45þ;(2)60þ.第4题. 下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则lα∥.②若直线l与平面α平行,则l与平面α内的任意一条直线都平行.③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点.A.0B.1 C.2 D.3答案:B.⊄,则下列结论成立的是()第5题. 若直线a不平行于平面α,且aαA.α内的所有直线与a异面B.α内不存在与a平行的直线C.α内存在唯一的直线与a平行D.α内的直线与a都相交答案:B.∥,且a与c的夹角为θ,那么b与c夹角第6题. 已知a,b,c是三条直线,角a b为.答案:θ.第7题. 如图,AA'是长方体的一条棱,这个长方体中与AA'垂直的棱共条.答案:8条.第8题. 如果a,b是异面直线,直线c与a,b都相交,那么这三条直线中的两条所确定的平面共有个.答案:2个.∥则b与α的位置关系是.第9题. 已知两条相交直线a,b,aα平面∥,或b与a相交.答案:b a第10题. 如图,三条直线两两平行且不共面,每两条确定一个平面,一共可以确定几个平面?如果三条直线相交于一点,它们最多可以确定几个平面?答案:3个,3个.第11题. 如图是正方体的平面展开图,则在这个正方体中:①BM与ED平行.②CN与BE是异面直线.③CN 与BM 成60˚角. ④DM 与BN 垂直.以上四个命题中,正确命题的序号是( ) A.①,②,③B.②,④ C.③,④D.②,③,④答案:C.第12题. 下列命题中,正确的个数为( )①两条直线和第三条直线成等角,则这两条直线平行;②平行移动两条异面直线中的任何一条,它们所成的角不变;③过空间四边形ABCD 的顶点A 引CD 的平行线段AE ,则BAE ∠是异面直线AB 与CD 所成的角;④四边相等,且四个角也相等的四边形是正方形 A.0 B.1 C.2 D.3 答案:B.第13题. 在空间四边形ABCD 中,N ,M 分别是BC ,AD 的中点,则2MN 与AB CD +的大小关系是 . 答案:2MN AB CD <+.第14题. 已知a b ,是一对异面直线,且a b ,成70角,P 为空间一定点,则在过P 点的直线中与a b ,所成的角都为70的直线有 条.答案:4.第15题. 已知平面αβ//,P 是平面αβ,外的一点,过点P 的直线m 与平面αβ,分别交于A C ,两点,过点P 的直线n 与平面αβ,分别交于B D ,两点,若698PA AC PD ===,,, 则BD 的长为 .答案:24245或.第16题. 空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,若AC BD a ==,且AC 与BD 所成的角为90,则四边形EFGH 的面积是 . 答案:214a .第17题. 已知正方体1111ABCD A B C D -中,E ,F 分别为11D C ,11C B 的中点,AC BD P = ,11AC EF Q = .求证:(1)D ,B ,F ,E 四点共面;(2)若1AC 交平面DBFE 于R 点,则P ,Q ,R 三点共线. 答案:证明:如图.(1)EF 是111D B C △的中位线,11EF B D ∴∥. 在正方体1AC 中,11B D BD ∥,∴EF BD ∥.EF ∴确定一个平面,即D ,B ,F ,E 四点共面.(2)正方体1AC 中,设11A ACC 确定的平面为α,又设平面BDEF 为β.11Q AC ∈ ,Q α∴∈.又Q EF ∈,Q β∴∈.则Q 是α与β的公共点,PQ αβ∴= . 又1AC R β= ,1R AC ∴∈. R α∴∈,R β∈且,则R PQ ∈.故P ,Q ,R 三点共线.第18题. 已知下列四个命题: ① 很平的桌面是一个平面; ② 一个平面的面积可以是4m 2; ③ 平面是矩形或平行四边形;④ 两个平面叠在一起比一个平面厚. 其中正确的命题有( ) A.0个 B.1个 C.2个 D.3个 答案:A.第19题. 给出下列命题:和直线a 都相交的两条直线在同一个平面内; 三条两两相交的直线在同一平面内; 有三个不同公共点的两个平面重合; 两两平行的三条直线确定三个平面. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3 答案:A.第20题. 直线12l l ∥,在1l 上取3点,2l 上取2点,由这5点能确定的平面有( )A.9个 B.6个 C.3个 D.1个 答案:D.第21题. 三条直线相交于一点,可能确定的平面有( ) A.1个 B.2个 C.3个 D.1个或3个 答案:D.第22题. 下列命题中,不正确的是( )①一条直线和两条平行直线都相交,那么这三条直线共面; ②每两条都相交但不共点的四条直线一定共面; ③两条相交直线上的三个点确定一个平面; ④两条互相垂直的直线共面. A.①与② B.③与④ C.①与③ D.②与④ 答案:B.第23题. 分别和两条异面直线都相交的两条直线一定是( ) A.异面直线 B.相交直线 C.不相交直线 D.不平行直线答案:D.第24题. 在长方体1111ABCD A B C D 中,点O ,1O 分别是四边形ABCD ,1111A B C D 的对角线的交点,点E ,F 分别是四边形11AA D D ,11BB C C 的对角线的交点,点G ,H 分别是四边形11A ABB ,11C CDD 的对角线的交点. 求证:1OEG O FH △≌△.答案:证明:如图,连结1AD ,AC ,1CD ,11C A ,1C B ,1BA由三角形中位线定理可知OE ∥ 112CD ,1O F ∥112BA . 又1BA ∥1CD ,OE ∴ ∥1O F .同理可证EG ∥FH . 由等角定理可得1OEG O FH ∠=∠.∴1OEG O FH △≌△.第25题. 若a ,b 是异面直线,b ,c 也是异面直线,则a 与c 的位置关系是( ) A.异面 B.相交或平行 C.平行或异面 D.相交或平行或异面 答案:D.第26题. a ,b 是异面直线,A ,B 是a 上两点,C ,D 是b 上的两点,M ,N 分别是线段AC 和BD 的中点,则MN 和a 的位置关系是( ) A.异面直线 B.平行直线 C.相交直线 D.平行、相交或异面 答案:A.第27题. 如下图是正方体的平面展开图,在这个正方体中 ①BM 与ED 平行;②CN 与BE 是异面直线; ③CN 与BM 成60þ角;④DM 与BN 垂直.以上四个命题中,正确命题的序号是( )A.①②③ B.②④ C.③④ D.②③④答案:C.第28题. 直线与平面平行的条件是这条直线与平面内的( ) A.一条直线不相交B.两条直线不相交C.任意一条直线不相交D.无数条直线不相交答案:C.第29题. 如果直线a平行于平面α,则()A.平面α内有且只有一直线与a平行B.平面α内有无数条直线与a平行C.平面α内不存在与a平行的直线D.平面α内的任意直线与直线a都平行答案:B.第30题. 已知直线的倾斜角为α,若3sin5α=,则此直线的斜率为()C.34±D.43±。
空间角和距离一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线m 与平面α间距离为d ,那么到m 与α距离都等于2d 的点的集合是( )A .一个平面B .一条直线C .两条直线D .空集 2.异面直线a 、b 所成的角为θ,a 、b 与平面α都平行,b ⊥平面β,则直线a与平面β所成的角( )A .与θ相等B .与θ互余C .与θ互补 D .与θ不能相等.3.在正方体ABCD —A 'B 'C 'D '中,BC '与截面BB 'D 'D 所成的角为( ) A .3πB .4π C .6πD .arctan24.在正方形SG 1G 2G 3中,E ,F 分别是G 1G 2及G 2G 3的中点,D是EF 的中点,现在沿SE ,SF 及EF 把这个正方形折成一个四面体,使G 1,G 2,G 3三点重合,重合后的点记为G ,那么,在四面体S -EFG中必有( )A .SG ⊥△EFG 所在平面B .SD ⊥△EFG 所在平面C .GF ⊥△SEF 所在平面D .GD ⊥△SEF 所在平面 5.有一山坡,它的倾斜角为30°,山坡上有一条小路与斜坡底线成45°角,某人沿这条小路向上走了200米,则他升高了( )A .1002米 B .502米 C .256米D .506米6.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小为 ( )A .arccos33 B .arccos 31 C .2π D .32π7.正四面体A —BCD 中E 、F 分别是棱BC 和AD 之中点,则EF 和AB 所成的角 ( ) A .45︒ B .60︒ C.90︒D .30︒8.把∠A =60°,边长为a 的菱形ABCD 沿对角线BD 折成60°的二面角,则AC 与BD 的距离为( )A .43aB .43 a C .23 aD .46 a9.若正三棱锥的侧面均为直角三角形,侧面与底面所成的角为α,则下列各等式中成立的是( )A .0<α<6πB .6π<α<4πC .4π<α<3πD .3π<α<2π10.已知A (1,1,1),B (-1,0 ,4),C (2 ,-2,3),则〈AB ,CA〉的大小为( )A .6πB .65π C .3πD .32π二、填空题(本大题共4小题,每小题6分,共24分)11.从平面α外一点P 引斜线段PA 和PB ,它们与α分别成45︒和30︒角,则∠APB 的最大值是______最小值是_______12.∆ABC 中∠ACB=90︒,PA ⊥平面ABC ,PA=2,AC=2 3 ,则平面PBC 与平面PAC ,平面ABC 所成的二角的大小分别是______、_________.13.在三棱锥P-ABC中,90=∠ABC,30=∠BAC,BC=5,又PA=PB=PC=AC,则点P到平面ABC的距离是 .14.球的半径为8,经过球面上一点作一个平面,使它与经过这点的半径成45°角,则这个平面截球的截面面积为 . 三、解答题(共计76分)15.(本小题满分12分)已知SA ⊥平面ABC ,SA=AB ,AB ⊥BC ,SB=BC ,E 是SC 的中点,DE ⊥SC 交AC 于D . (1) 求证:SC ⊥面BDE ;(2)求二面角E —BD —C 的大小.16.(本小题满分12分)如图,点P 为斜三棱柱111C B A ABC -的侧棱1BB 上一点,1BB PM⊥交1AA 于点M,1BB PN ⊥交1CC 于点N.(1) 求证:MN CC ⊥1; (2) 在任意DEF ∆中有余弦定理:DFEEF DF EFDFDE∠⋅-+=cos 2222.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.17.(本小题满分12分)如图,四棱锥S—ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=3.(1)求证BC SC;(2)求面ASD与面BSC所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.18.(本小题满分12分)在直角梯形ABCD中,∠D=∠BAD=90︒,AD=DC=1AB=a,(如图一)将△ADC 沿AC折起,使2D到D'.记面AC D'为α,面ABC为β.面BC D'为γ.(1)若二面角α-AC-β为直二面角(如图二),求二面角β-BC-γ的大小;(2)若二面角α-AC-β为60︒(如图三),求三棱锥D'-ABC的体积.19.(本小题满分14分)如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.(1)求证AM//平面BDE;(2)求二面角A-DF-B的大小;(3)试在线段AC上确定一点P,使得PF与BC所成的角是60︒.20.(本题满分14分)如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直.点M在AC上移动,点N在BF上移动,若a=)BNCM=<a.20(<(1)求MN的长;(2)当a为何值时,MN的长最小;(3)当MN长最小时,求面MNA与面MNB所成的二面角α的大小.参考答案一.选择题(本大题共10小题,每小题5分,共50分)二.填空题(本大题共4小题,每小题6分,共24分) 11.750 ,150 12.900 ,300 13.35 14.π32三、解答题(本大题共6题,共76分)15.(12分) (1)证明:(1)∵SB=BC E 是SC 的中点 ∴BE ⊥SC ∵DE ⊥SC ∴SC ⊥面BDE(2)解:由(1)SC ⊥BD ∵SA ⊥面ABC ∴SA ⊥BD ∴BD ⊥面SAC ∴∠EDC 为二面角E-BD-C 的平面角设SA=AB=a,则SB=BC=a2.,2,a SC SBC Rt =∆∴中在,30,0=∠∆∴DCESAC Rt 中在60,=∠∆∴EDC DEC Rt 中在.16.(12分) (1) 证:MNCC PMN CC PN CC PM CC BB CC ⊥⇒⊥∴⊥⊥⇒111111,,//平面 ; (2)解:在斜三棱柱111C B A ABC -中,有αcos 21111111111222A ACCB BCCA ACCB BCCA ABBS S S S S ⋅-+=,其中α为 平面B B CC 11与平面A A CC 11所组成的二面角.∴⊥,1PMN CC 平面 上述的二面角为MNP ∠,在PMN ∆中,cos 2222⇒∠⋅-+=MNP MN PN MNPNPMMNPCC MN CC PN CCMN CC PN CCPM ∠⋅⋅⋅-+=cos )()(211111222222, 由于111111111,,BB PM S CCMN S CCPN S A ABBA ACCB BCC⋅=⋅=⋅=,∴有αcos 21111111111222A ACCB BCCA ACCB BCCA ABBS S S S S ⋅-+=.17.(12分) (1)证法一:如,∵底面ABCD 是正方形, ∴BC ⊥DC .∵SD ⊥底面ABCD ,∴DC 是SC 在平面ABCD 上的射影, 由三垂线定理得BC ⊥SC .证法二:如图1,∵底面ABCD 是正方形, ∴BC ⊥DC .∵SD ⊥底面ABCD ,∴SD ⊥BC ,又DC ∩SD=D ,∴BC ⊥平面SDC ,∴BC ⊥SC .(2)解:如图2,过点S 作直线,//AD l l ∴在面ASD 上,∵底面ABCD 为正方形,l BC AD l ∴∴,////在面BSC 上,l ∴为面ASD 与面BSC 的交线.l ∴,,,,SC l SD l SC BC AD SD ⊥⊥∴⊥⊥∴∠CSD 为面ASD 与面BSC 所成二面角的平面角.(以下同解法一) (3)解1:如图2,∵SD=AD=1,∠SDA=90°, ∴△SDA 是等腰直角三角形.又M 是斜边SA 的中点,∴DM ⊥SA .∵BA ⊥AD ,BA ⊥SD ,AD ∩SD=D ,∴BA ⊥面ASD ,SA 是SB 在面ASD 上的射影.由三垂线定理得DM ⊥SB .∴异面直线DM 与SB 所成的角为90°.图1图2解2:如图3,取AB 中点P ,连结MP ,DP .在△ABS 中,由中位线定理得 MP//SB ,DMP ∠∴是异面直线DM 与SB 所成的角.2321==SB MP,又,25)21(1,222=+==DP DM∴在△DMP 中,有DP 2=MP 2+DM 2,︒=∠∴90DMP∴异面直线DM 与SB 所成的角为90°.18.(12分) 解:(1)在直角梯形ABCD 中, 由已知∆DAC 为等腰直角三角形, ∴45,2=∠=CAB a AC , 过C 作CH ⊥AB ,由AB=2a ,可推得 AC=BC=.2a∴ AC ⊥BC .取 AC 的中点E ,连结ED ',则 ED '⊥AC 又 ∵ 二面角β--AC a 为直二面角,∴ED '⊥β 又 ∵ ⊂BC 平面β ∴ BC ⊥E D ' ∴ BC ⊥a ,而a C D ⊂',∴ BC ⊥C D ' ∴ CAD '∠为二面角γβ--BC 的平面角.由于45='∠CAD , ∴二面角γβ--BC 为 45.(2)取AC 的中点E ,连结E D ',再过D '作β⊥'O D ,垂足为O ,连结OE .∵ AC ⊥E D ', ∴ AC ⊥OE ∴ EOD '∠为二面角β--ACa 的平面角, ∴ EO D '∠60=. 在OE D Rt '∆中,aACE D 2221==',∴O D S V ABC ABC D '⋅=∆-'31O D BC AC '⋅⋅⨯=2131a a a 462261⨯⨯⨯=.1263a =19.(14分)解法一: (1)记AC 与BD 的交点为O,连接OE, ∵O 、M 分别是AC 、EF 的中点,图3ACEF 是矩形,∴四边形AOEM 是平行四边形, ∴AM ∥OE .∵⊂OE平面BDE ,⊄AM 平面BDE ,∴AM ∥平面BDE .(2)在平面AFD 中过A 作AS ⊥DF 于S ,连结BS ,∵AB ⊥AF , AB ⊥AD , ,A AF AD = ∴AB ⊥平面ADF ,∴AS 是BS 在平面ADF 上的射影,由三垂线定理得BS ⊥DF .∴∠BSA 是二面角A —DF —B 的平面角. 在RtΔASB 中,,2,36==AB AS∴,60,3tan ︒=∠=∠ASB ASB∴二面角A —DF —B 的大小为60º.(3)设CP=t (0≤t≤2),作PQ ⊥AB 于Q ,则PQ ∥AD , ∵PQ ⊥AB ,PQ ⊥AF ,A AFAB = ,∴PQ ⊥平面ABF ,⊂QE平面ABF ,∴PQ ⊥QF .在RtΔPQF 中,∠FPQ=60º,PF=2PQ . ∵ΔPAQ 为等腰直角三角形,∴).2(22t PQ -=又∵ΔPAF 为直角三角形,∴1)2(2+-=t PF,∴).2(2221)2(2t t -⋅=+-所以t=1或t=3(舍去),即点P是AC 的中点.解法二: (1)建立如图所示的空间直角坐标系. 设NBD AC = ,连接NE , 则点N 、E 的坐标分别是()0,22,22、(0,0,1),∴)1,22,22(--=NE, 又点A 、M 的坐标分别是)0,2,2(,()1,22,22∴AM =()1,22,22--∴AMNE =且NE与AM 不共线,∴NE ∥AM .又∵⊂NE 平面BDE , ⊄AM 平面BDE ,∴AM ∥平面BDF .(2)∵AF ⊥AB ,AB ⊥AD ,AF ,A AD = ∴AB ⊥平面ADF .∴AB)0,0,2(-=为平面DAF 的法向量.∵DBNE ⋅=()1,22,22--·)0,2,2(-=0, ∴NFNE⋅=()1,22,22--·)0,2,2(=0得DBNE ⊥,NFNE⋅,∴NE 为平面BDF 的法向量.∴cos<>⋅NE AB =21∴AB 与NE 的夹角是60º.即所求二面角A —DF —B的大小是60º. (3)设P(t,t,0)(0≤t≤2)得PF),1,2,2(t t --=∴BC =(2,0,0)又∵PF 和BC 所成的角是60º.∴21)2()2(2)2(60cos 22⋅+-+-⋅-=︒t t t解得22=t 或223=t (舍去),即点P 是AC 的中点.20.(14分) 解:(1)作MP ∥AB 交BC 于点P NQ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且MP =NQ,即MNQP 是平行四边形∴MN =PQ由已知a BN CM ==,1===BE AB CB∴2==BF AC 又21a CP =,21a BQ =,即2a BQ CP ==∴MN=PQ =22)1(BQCP +-=22)2()21(a a +-=21)22(2+-a )20(<<a(2)由(Ⅰ),MN=21)22(2+-a ,所以,当22=a 时,MN=22即M 、N 分别移动到AC 、BF 的中点时,MN 的长最小,最小值为22.(3)取MN 的中点G ,连结AG 、BG ,∵ANAM =,BNBM=,G 为MN的中点 ∴AG⊥MN,BG ⊥MN,∠A G B即为二面角α的平面角,又AG =BG 46=,所以,由余弦定理有314646214646cos 22-=⋅⋅-⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=α, 故所求二面角⎪⎭⎫⎝⎛-=31arccos α。
第二章 《点、直线、平面之间的位置关系》一、选择题1. 给出下列关于互不相同的直线m 、l 、n 和平面α、β的四个命题: ①若不共面与则点m l m A A l m ,,,∉=⋂⊂αα;②若m 、l 是异面直线,ααα⊥⊥⊥n m n l n m l 则且,,,//,//; ③若m l m l //,//,//,//则βαβα;④若.//,//,//,,,βαββαα则点m l A m l m l =⋂⊂⊂ 其中为假命题的是A .①B .②C .③D .④2.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||; ③若βα||,α⊂l ,则β||l ;④若l =βαI ,m =γβI ,n =αγI ,γ||l ,则m ||其中真命题的个数是A .1B .2C .3D .43.已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若βαβα//,,则⊥⊥m m ;②若βααβγα//,,则⊥⊥; ③若βαβα//,//,,则n m n m ⊂⊂;④若m 、n 是异面直线,βααββα//,//,,//,则n n m m ⊂⊂。
其中真命题是A .①和②B .①和③C .③和④D .①和④4.已知直线n m l 、、及平面α,下列命题中的假命题是A .若//l m ,//m n ,则//l n .B .若l α⊥,//n α,则l n ⊥.C .若l m ⊥,//m n ,则l n ⊥.D .若//l α,//n α,则//l n .5.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立的是A .BC ∥平面PDFB .DF ⊥平面PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面ABC 6.有如下三个命题:①分别在两个平面内的两条直线一定是异面直线; ②垂直于同一个平面的两条直线是平行直线;③过平面α的一条斜线有一个平面与平面α垂直. 其中正确命题的个数为A .0B .1C .2D .3 7.下列命题中,正确的是 A .经过不同的三点有且只有一个平面 B .分别在两个平面内的两条直线一定是异面直线 C .垂直于同一个平面的两条直线是平行直线 D .垂直于同一个平面的两个平面平行 8.已知直线m 、n 与平面βα,,给出下列三个命题:①若;//,//,//n m n m 则αα ②若;,,//m n n m ⊥⊥则αα ③若.,//,βαβα⊥⊥则m m其中真命题的个数是 A .0 B .1 C .2 D .3 9.已知a 、b 、c 是直线,β是平面,给出下列命题: ①若c a c b b a //,,则⊥⊥; ②若c a c b b a ⊥⊥则,,//; ③若b a b a //,,//则ββ⊂;④若a 与b 异面,且ββ与则b a ,//相交;⑤若a 与b 异面,则至多有一条直线与a ,b 都垂直. 其中真命题的个数是 A .1 B .2 C .3 D .4 10.过三棱柱任意两个顶点的直线共15条,其中异面直线有A .18对B .24对C .30对D .36对 11.正方体1111ABCD A B C D -中,P 、Q 、R 分别是AB 、AD 、11B C的中点.那么,正方体的过P 、Q 、R 的截面图形是A .三角形B .四边形C .五边形D .六边形 12.不共面的四个定点到平面α的距离都相等,这样的平面α共有A .3个B .4个C .6个D .7个 13.设γβα、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是A .l m l ⊥=⋂⊥,,βαβαB .γβγαγα⊥⊥=⋂,,mC . αγβγα⊥⊥⊥m ,,D .αβα⊥⊥⊥m n n ,,14.设α、β 为两个不同的平面,l 、m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若α∥β,则l ∥m ;②若l ⊥m ,则α⊥β.那么 A .①是真命题,②是假命题 B . ①是假命题,②是真命题 C . ①②都是真命题 D .①②都是假命题 15.对于不重合的两个平面α与β,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β, 其中,可以判定α与β平行的条件有 A .1个B .2个C .3个D .4个二、填空题1.已知平面βα,和直线m ,给出条件:①α//m ;②α⊥m ;③α⊂m ;④βα⊥;⑤βα//.(i )当满足条件 时,有β//m ;(ii )当满足条件 时,有β⊥m (填所选条件的序号)2.在正方形''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 (写出所有正确结论的编号) 3.下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥. ②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥. ③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥.④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥. 其中,真命题的编号是____________.(写出所有真命题的编号)4.已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题:①若//,,,m n αβαβ⊂⊂则//m n②若,,//,//,m n m n αββ⊂则//αβ③若,,//m n m n αβ⊥⊥,则//αβ④m 、n 是两条异面直线,若//,//,//,//,m m n n αβαβ则//αβ上面命题中,真命题的序号是____________(写出所有真命题的序号)5. 已知m 、n 是不同的直线,,αβ是不重合的平面,给出下列命题:① 若//m α,则m 平行于平面α内的任意一条直线② 若//,,,m n αβαβ⊂⊂则//m n ③若,,//m n m n αβ⊥⊥,则//αβ④若//,m αβα⊂,则//m β上面命题中,真命题的序号是____________(写出所有真命题的序号)6.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号) ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形三、计算题1. 如图1所示,在四面体P —ABC 中,已知PA=BC=6,PC=AB=10,AC=8,PB=342.F 是线段PB 上一点,341715=CF ,点E 在线段AB 上,且EF ⊥PB.(Ⅰ)证明:PB ⊥平面CEF ; (Ⅱ)求二面角B —CE —F 的大小.[解](I )证明: ∵2221006436PC AC PA ==+=+∴△PAC 是以∠PAC 为直角的直角三角形,同理可证△PAB 是以∠PAB 为直角的直角三角形,△PCB 是以∠PCB 为直角的直角三角形 故PA ⊥平面ABC又∵11||||1063022PBC S PC BC ∆==⨯⨯= 而PBC S CF PB ∆==⨯⨯=3017341534221||||21故CF ⊥PB,又已知EF ⊥PB ∴PB ⊥平面CEF(II )由(I )知PB ⊥CE, PA ⊥平面ABC ∴AB 是PB 在平面ABC 上的射影,故AB ⊥CE在平面PAB 内,过F 作FF 1垂直AB 交AB 于F 1,则FF 1⊥平面ABC , EF 1是EF 在平面ABC 上的射影,∴EF ⊥EC故∠FEB 是二面角B —CE —F 的平面角35610cot ===∠=∠AP AB PBA FEB 二面角B —CE —F 的大小为35arctan2.如图,在五棱锥S —ABCDE 中,SA ⊥底面ABCDE ,SA=AB=AE=2,3==DE BC ,=∠=∠=∠120CDE BCD BAE⑴ 求异面直线CD 与SB 所成的角(用反三角函数值表示); ⑵ 证明:BC ⊥平面SAB ;⑶ 用反三角函数值表示二面角B —SC —D 的大小(本小问不必写出解答过程)[解](Ⅰ)连结BE ,延长BC 、ED 交于点F ,则∠DCF=∠CDF=600,∴△CDF 为正三角形,∴CF=DF又BC=DE ,∴BF=EF 因此,△BFE 为正三角形, ∴∠FBE=∠FCD=600,∴BE//CD所以∠SBE (或其补角)就是异面直线CD 与SB 所成的角 ∵SA ⊥底面ABCDE ,SA=AB=AE=2,∴SB=22,同理SE=22,又∠BAE=1200,所以BE=32,从而,cos ∠SBE=46,∴∠46 所以异面直线CD 与SB 所成的角是46 (Ⅱ) 由题意,△ABE 为等腰三角形,∠BAE=1200,∴∠ABE=300,又∠FBE =600, ∴∠ABC=900,∴BC ⊥BA∵SA ⊥底面ABCDE ,BC ⊂底面ABCDE ,∴SA ⊥BC ,又SA I BA=A , ∴BC ⊥平面SAB(Ⅲ)二面角B-SC-D 的大小8282-π3. 已知三棱锥P —ABC 中,E 、F 分别是AC 、AB 的中点,△ABC ,△PEF 都是正三角形,PF ⊥AB.(Ⅰ)证明PC ⊥平面PAB ;(Ⅱ)求二面角P —AB —C 的平面角的余弦值; (Ⅲ)若点P 、A 、B 、C 在一个表面积为12π的 球面上,求△ABC 的边长.[解] 本小题主要考查空间中的线面关系,三棱锥、球的有关概念及解三角形等基础知识,考查空间想象能力及运用方程解未知量的基本方法。
限时集训(四十二) 空间点、直线、平面之间的位置关系(限时:45分钟 满分:81分)一、选择题(本大题共6小题,每小题5分,共30分)1.给出下列四个命题:①没有公共点的两条直线平行;②互相垂直的两条直线是相交直线;③既不平行也不相交的直线是异面直线;④不同在任一平面内的两条直线是异面直线.其中正确命题的个数是( )A .1B .2C .3D .42.平行六面体ABCD -A 1B 1C 1D 1中,既与AB 共面又与CC 1共面的棱的条数为( )A .3B .4C .5D .63.若直线l 不平行于平面α,且l ⊄α,则( )A .α内的所有直线与l 异面B .α内不存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都相交4.(2013·福州模拟)如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25C.35D.455.(2013·聊城模拟)对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l ( )A .平行B .相交C .垂直D .互为异面直线6.(2012·重庆高考)设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是( )A .(0, 2)B .(0, 3)C .(1, 2)D .(1, 3)二、填空题(本大题共3小题,每小题5分,共15分)7.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN ∥CD .以上四个命题中,正确命题的序号是________.8.(2012·大纲全国卷)已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为________.9.直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于________.三、解答题(本大题共3小题,每小题12分,共36分)10.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为CC 1,AA 1的中点,画出平面BED 1F 与平面ABCD 的交线.11.如图所示,三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =60°,P A =AB =AC =2,E 是PC 的中点.(1)求证AE 与PB 是异面直线;(2)求异面直线AE 和PB 所成角的余弦值.12.(2012·上海高考)如图,在四棱锥P -ABCD 中,底面ABCD是矩形,P A ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,P A =2.求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小.限时集训(四十二) 空间点、直线、平面之间的位置关系答 案1.B 2.C 3.B 4.D 5.C 6.A7.①③ 8.359.60° 10.解:如图所示.PB 即为平面BED 1F 与平面ABCD 的交线.11.解:(1)证明:假设AE 与PB 共面,设平面为α,∵A ∈α,B ∈α,E ∈α,∴平面α即为平面ABE ,∴P ∈平面ABE ,这与P ∉平面ABE 矛盾,所以AE 与PB 是异面直线.(2)取BC 的中点F ,连接EF 、AF ,则EF ∥PB ,所以∠AEF 或其补角就是异面直线AE 和PB 所成角,∵∠BAC =60°,P A =AB =AC =2,P A ⊥平面ABC ,∴AF =3,AE =2,EF =2;cos ∠AEF =2+2-32×2×2=14, 所以异面直线AE 和PB 所成角的余弦值为14. 12.解:(1)因为P A ⊥底面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,所以CD ⊥平面P AD , 从而CD ⊥PD .因为PD =22+(22)2=23,CD =2,所以三角形PCD 的面积为12×2×23=2 3. (2)取PB 的中点F ,连接EF 、AF ,则EF ∥BC ,从而∠AEF (或其补角)是异面直线BC 与AE 所成的角.在△AEF 中,由EF =2、AF =2、AE =2知△AEF 是等腰直角三角形,所以∠AEF =π4. 因此,异面直线BC 与AE 所成的角的大小是π4.。
专题十一空间点、直线、平面之间的位置关系核心素养练习一、核心素养聚焦考点一逻辑推理-证明直线共面例题9.已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.考点二直观想象-直线之间的关系例题10.在空间四边形ABCD中,E,F分别为对角线AC,BD的中点,则BE与CF( ) A.平行 B.异面C.相交D.以上均有可能二、学业质量测评一、选择题1.设α,β为两个平面,则α∥β的充要条件是A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面2.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )A.1条或2条B.2条或3条C.1条或3条D.1条或2条或3条()3.如图是一个正方体的平面展开图,则在正方体中直线AB与CD的位置关系为 A.相交B.平行C.异面而且垂直D.异面但不垂直4.若是异面直线,且//平面,那么与平面的位置关系是( ),a b a αb αA .B .与相交C .D .以上三种情况都有可能//b αb αb α⊂5.已知平面平面,直线,直线,则直线,的位置关系为( )//αβm α⊂n β⊂m n A .平行或相交B .相交或异面C .平行或异面D .平行、相交或异面6.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l ∥αD .如果两个平面有三个大众点,则这两个平面重合.二、多选题7.(多选)下列说法中错误的是( )A .不共面的四点中,任意三点不共线B .三条两两相交的直线在同一平面内C .有三个不同大众点的两个平面重合D .依次首尾相接的四条线段不一定共面8.(多选)已知表示不同的点,表示直线,表示不同的平面,则下列推理正确的是()A B C ,,l αβ,A .,,,∈A l A α∈B l ∈B l αα∈⇒⊂B .,,,A α∈A β∈B α∈B ABβαβ∈⇒= C .,l αÚA l A α∈⇒∉D .,,A α∈∈A l l l Aαα⊄⇒⋂=三、填空题9.如图,在正方体中,分别为棱的中点,有以下四个结论:1111—ABCD A B C D M N ,111C D C C ,①直线与是相交直线;AM 1CC ②直线与是平行直线;AM BN ③直线与是异面直线;BN 1MB ④直线与是异面直线.AM 1DD 其中正确的结论的序号为________.10.棱长为的正方体中,是棱的中点,过作正方体的截面,则截面的面21111ABCD A B C D -M 1AA 1,,C M D 积是_________________.11.如图是表示一个正方体表面的一种平面展开图,图中的四条线段、、和在原正方体中AB CD EF GH 相互异面的有__________对.12.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有______组互相平行的面,与其中一个侧面相交的面共有______个.四、解答题13.已知四点和直线,且,,,,求证:直线共面.A B C D ,,,l ∈A l B l ∈C l ∈D l ∉AD BD CD ,,14.如图,AB ∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D 三点共线.15.如图所示的几何体中,,,,且,,,.求证:直11//AB A B 11//AC A C 11//BC B C 11AB A B <11AC A C <11BC B C <线,,相交于同一点.1A A 1B B 1C C专题十一空间点、直线、平面之间的位置关系核心素养练习一、核心素养聚焦考点一逻辑推理-证明直线共面例题9.已知:AB∩AC=A,AB∩BC=B,AC∩BC=C.求证:直线AB,BC,AC共面.【证明】法一:因为AC∩AB=A,所以直线AB,AC可确定一个平面α.因为B∈AB,C∈AC,所以B∈α,C∈α,故BC⊂α.因此直线AB,BC,AC都在平面α内,所以直线AB,BC,AC共面.法二:因为A不在直线BC上,所以点A和直线BC可确定一个平面α.因为B∈BC,所以B∈α,又A∈α,所以AB⊂α.同理AC⊂α,故直线AB,BC,AC共面.法三:因为A,B,C三点不在同一条直线上,所以A,B,C三点可以确定一个平面α.因为A∈α,B∈α,所以AB⊂α,同理BC⊂α,AC⊂α,故直线AB,BC,AC共面.考点二直观想象-直线之间的关系例题10.在空间四边形ABCD中,E,F分别为对角线AC,BD的中点,则BE与CF( ) A.平行 B.异面C.相交D.以上均有可能【参考答案】B 【解析】假设BE 与CF 是共面直线,设此平面为α,则E ,F ,B ,C ∈α,所以BF ,CE ⊂α,而A ∈CE ,D ∈BF ,所以A ,D ∈α,即有A ,B ,C ,D ∈α,与ABCD 为空间四边形矛盾,所以BE 与CF 是异面直线.二、学业质量测评一、选择题1.设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【参考答案】B【解析】由面面平行的判定定理知:内两条相交直线都与平行是的充分条件,由面面平行性质αβ//αβ定理知,若,则内任意一条直线都与平行,所以内两条相交直线都与平行是的必要条//αβαβαβ//αβ件,故选B .2.已知平面α与平面β、γ都相交,则这三个平面可能的交线有( )A .1条或2条B .2条或3条C .1条或3条D .1条或2条或3条【参考答案】D【解析】分类讨论:当α过平面β与γ的交线时,这三个平面有1条交线;当β∥γ时,α与β和γ各有一条交线,共有2条交线;当β∩γ=b ,α∩β=a ,α∩γ=c 时,有3条交线.本题选择D 选项.3.如图是一个正方体的平面展开图,则在正方体中直线AB 与CD 的位置关系为 ()A .相交B .平行C .异面而且垂直D .异面但不垂直【参考答案】D【解析】利用展开图可知,线段AB 与CD 是正方体中的相邻两个面的面对角线,仅仅异面,所成的角为600,因此选D4.若是异面直线,且//平面,那么与平面的位置关系是( ),a b a αb αA .B .与相交C .D .以上三种情况都有可能//b αb αb α⊂【参考答案】D【解析】若a 、b 是异面直线,且a ∥平面α,则根据空间中线面的位置关系可得:b ∥a 或者b ⊂α或者b 与α相交.故选:D .5.已知平面平面,直线,直线,则直线,的位置关系为( )//αβm α⊂n β⊂m n A .平行或相交B .相交或异面C .平行或异面D .平行、相交或异面【参考答案】C【解析】因为平面平面,直线,直线,//αβm α⊂n β⊂所以直线没有大众点,m n ,所以两条直线平行或异面.故选:C.6.下列结论正确的选项为( )A .梯形可以确定一个平面;B .若两条直线和第三条直线所成的角相等,则这两条直线平行;C .若l 上有无数个点不在平面α内,则l ∥αD .如果两个平面有三个大众点,则这两个平面重合.【参考答案】A【解析】因梯形的上下底边平行,根据公理3的推论可知A 正确.两条直线和第三条直线所成的角相等,这两条直线相交、平行或异面,故B 错.当直线和平面相交时,该直线上有无数个点不在平面内,故C 错.如果两个平面有三个大众点且它们共线,这两个平面可以相交,故D 错.综上,选A .二、多选题7.(多选)下列说法中错误的是( )A .不共面的四点中,任意三点不共线B .三条两两相交的直线在同一平面内C .有三个不同大众点的两个平面重合D .依次首尾相接的四条线段不一定共面【参考答案】BC【解析】由公理2易知选项AD 正确;对于选项B :如正方体中,具有同一顶点的三条棱不在同一平面内,故选项B 错误;对于选项C:三个不同的大众点可在两平面的交线上.,故选项C 错误;故选: BC8.(多选)已知表示不同的点,表示直线,表示不同的平面,则下列推理正确的是()A B C ,,l αβ,A .,,,∈A l A α∈B l ∈B l αα∈⇒⊂B .,,,A α∈A β∈B α∈B ABβαβ∈⇒= C .,l αÚA l A α∈⇒∉D .,,A α∈∈A l l l Aαα⊄⇒⋂=【参考答案】ABD【解析】对于选项A:由公理1知,,故选项A 正确;l α⊂对于选项B :因为表示不同的平面,由公理3知,平面相交,且,故选项B 正确;αβ,αβ,AB αβ= 对于选项C:分两种情况:与相交或.当与相交时,若交点为A,则,故选项C 错误;l α⊄l α//l a l αA α∈对于选项D :由公理1逆推可得结论成立,故选项D 成立;故选:ABD三、填空题9.如图,在正方体中,分别为棱的中点,有以下四个结论:1111—ABCD A B C D M N ,111C D C C ,①直线与是相交直线;AM 1CC ②直线与是平行直线;AM BN ③直线与是异面直线;BN 1MB ④直线与是异面直线.AM 1DD 其中正确的结论的序号为________.【参考答案】③④【解析】因为四边不共面,所以直线与是异面直线,所以①错误的;同理,直线与1,,,A M C C AM 1CC AM 也是异面直线,直线与是异面直线,直线与是异面直线,所以②是错误的;③是正确BN BN 1MB AM 1DD 的,④是正确的,故填③④.10.棱长为的正方体中,是棱的中点,过作正方体的截面,则截面的面21111ABCD A B C D M 1AA 1,,C M D 积是_________________.【参考答案】92【解析】如图,由面面平行的性质知截面与平面AB 1的交线MN 是△AA 1B 的中位线,所以截面是梯形CD 1MN ,又,.11MN CD CN MD ====92故参考答案为92AB CD EF GH11.如图是表示一个正方体表面的一种平面展开图,图中的四条线段、、和在原正方体中相互异面的有__________对.【参考答案】3【解析】画出展开图复原的几何体,所以C与G重合,F,B重合,所以:四条线段AB、CD、EF和GH在原正方体中相互异面的有:AB与GH,AB与CD,GH与EF,共有3对.故参考答案为3.12.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有______组互相平行的面,与其中一个侧面相交的面共有______个.【参考答案】4. 6.【解析】六棱柱的两个底面互相平行,每个侧面与其直接相对的侧面平行,故共有4组互相平行的面.六棱柱共由8个面围成,在其余的7个面中,与某个侧面平行的面有1个,其余6个面与该侧面均为相交的关系.故参考答案为:;46四、解答题13.已知四点和直线,且,,,,求证:直线共面.A B C D ,,,l ∈A l B l ∈C l ∈D l ∉AD BD CD ,,【参考答案】证明见解析【解析】证明:因为,所以直线与点可以确定平面,如图所示,D l ∉l D α因为,所以,又,所以.∈A l A α∈D α∈AD α⊂同理可证,,BD α⊂CD α⊂所以,,在同一平面内,AD BD CD α即直线,,共面AD BD CD 14.如图,AB ∥CD,AB∩α=B,CD∩α=D,AC∩α=E.求证:B,E,D 三点共线.【参考答案】略【解析】证明:∵AB ∥CD,∴AB,CD 可确定一个平面,设为平面β,∴AC 在平面β内,即E 在平面β内.而AB∩α=B,CD∩α=D,AC∩α=E,可知B,D,E 为平面α与平面β的大众点,根据公理3可得,B,D,E 三点共线.15.如图所示的几何体中,,,,且,,,.求证:直11//AB A B 11//AC A C 11//BC B C 11AB A B <11AC A C <11BC B C <11线,,相交于同一点.1A A 1B B 1CC 【参考答案】证明见解析【解析】证明∵,,11//AB A B 11AB A B <∴直线,确定一个平面,并且直线,相交,设.①1A A 1B B 11AA B B 1A A 1B B 11A A B B D ⋂=∵,∴与确定一个平面,11//AC A C AC 11A C 11AA C C ∵平面,∴平面.1A A ⊂11AA C C D ∈11AA C C 同理平面.D ∈11BB C C 又因为平面平面,∴.②11AA C C 111BB C C C C =1D C C ∈由①②可知,,,三线共点,即直线,,相交于同一点.1A A 1B B 1C C 1A A 1B B 1C C D 知识改变命运。
8.4.2空间点、直线、平面之间的位置关系基础巩固1.一条直线与两条平行线中的一条成为异面直线,则它与另一条()A.相交B.异面C.相交或异面D.平行2.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行3.下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点A.0B.1C.2D.34.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.不存在B.有1条C.有2条D.有无数条5.已知直线l和平面α,无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l()A.相交B.平行C.垂直D.异面6.若a,b是两条异面直线,且a∥平面α,则b与α的位置关系是.7.如图的直观图,用符号语言表述为(1),(2).8.如图,正方体ABCD A1B1C1D1中,M,N分别是A1B1,B1C1的中点,问(1)AM和CN是否是异面直线?(2)D1B和CC1是否是异面直线?说明理由.能力提升9.若平面α∥β,直线a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条直线与a平行C.存在无数条直线与a平行D.存在唯一一条与a平行的直线10.已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的序号是.(将你认为正确的序号都填上)11.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系并证明你的结论.素养达成12.如图所示,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,C∉l,直线AB与l不平行,那么平面ABC 与平面β的交线与l有什么关系?证明你的结论.8.4.2空间点、直线、平面之间的位置关系基础巩固答案1.一条直线与两条平行线中的一条成为异面直线,则它与另一条()A.相交B.异面C.相交或异面D.平行【答案】C【解析】一条直线与两条平行线中的一条异面,则它与另一条可能相交,也可能异面.故选C.2.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行【答案】C【解析】如图,a′与b异面,但a′∥c,故A错;a与b异面,且都与c相交,故B错;若a∥c,b∥c,则a∥b,与a,b异面矛盾,故D错.3.下列命题中正确的个数是()①若直线l上有无数个点不在平面α内,则l∥α②若直线l与平面α平行,则l与平面α内的任意一条直线平行③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行④若直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点A.0B.1C.2D.3【答案】B【解析】对于①,当直线l与α相交时,直线l上有无数个点不在平面α内,故①不正确;对于②,直线l与平面α平行时,l与平面α内的直线平行或异面,故②不正确:对于③,当两条平行直线中的一条与一个平面平行时,另一条与这个平面可能平行,也有可能在这个平面内,故③不正确;对于④,由线面平行的定义可知④正确.4.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.不存在B.有1条C.有2条D.有无数条【答案】D【解析】由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共直线l,在平面ADD1A1内与l平行的直线有无数条,且它们都不在平面D1EF内,则它们都与平面D1EF平行,故选D.5.已知直线l和平面α,无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l()A.相交B.平行C.垂直D.异面【答案】C【解析】当直线l与平面α平行时,在平面α内至少有一条直线与直线l垂直;当直线l⊂平面α时,在平面α内至少有一条直线与直线l垂直;当直线l与平面α相交时,在平面α内至少有一条直线与直线l垂直,所以无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l垂直.故选C.6.若a,b是两条异面直线,且a∥平面α,则b与α的位置关系是.【答案】b与α平行或相交或b在α内【解析】如图,在正方体ABCD-A1B1C1D1中,设平面ABCD为α,A1B1为a,则a∥α,当分别取EF,BC1,BC为b 时,均满足a与b异面,于是b∥α,b∩α=B,b⊂α(其中E,F为棱的中点).7.如图的直观图,用符号语言表述为(1),(2).【答案】(1)a∩b=P,a∥平面M,b∩平面M=A;(2)平面M∩平面N=l,a∩平面N=A,a∥平面M【解析】(1)a∩b=P,a∥平面M,b∩平面M=A(2)平面M∩平面N=l,a∩平面N=A,a∥平面M8.如图,正方体ABCD A1B1C1D1中,M,N分别是A1B1,B1C1的中点,问(1)AM和CN是否是异面直线?(2)D1B和CC1是否是异面直线?说明理由.【答案】(1) 不是异面直线;(2)是异面直线,证明见解析.【解析】由于M,N分别是A1B1和B1C1的中点,可证明MN∥AC,因此AM与CN不是异面直线.由空间图形可感知D1B和CC1为异面直线的可能性较大,判断的方法可用反证法.(1)不是异面直线.理由:因为M,N分别是A1B1,B1C1的中点,所以MN∥A1C1.又因为A1A C1C,所以A1ACC1为平行四边形.所以A1C1∥AC,得到MN∥AC,所以A,M,N,C在同一个平面内, 故AM和CN不是异面直线.(2)是异面直线,证明如下:假设D1B与CC1在同一个平面CC1D1D内,则B∈平面CC1D1D,C∈平面CC1D1D.所以BC⊂平面CC1D1D,这与ABCD A1B1C1D1是正方体相矛盾.所以假设不成立,故D1B与CC1是异面直线.能力提升9.若平面α∥β,直线a⊂α,点B∈β,则在β内过点B的所有直线中()A.不一定存在与a平行的直线B.只有两条直线与a平行C.存在无数条直线与a平行D.存在唯一一条与a平行的直线【答案】D【解析】因为α∥β,B∈β,所以B∉α.因为a⊂α,所以B,a可确定平面γ且γ∩α=a,设γ与β交过点B的直线为b,则a∥b.因为a,B在同一平面γ内.所以b唯一,即存在唯一一条与a平行的直线.10.已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的序号是.(将你认为正确的序号都填上)【答案】③④【解析】①错.a与b也可能异面.②错.a与b也可能平行.③对.因为α∥β,所以α与β无公共点.又因为a⊂α,b⊂β,所以a与b无公共点.④对.由③知a与b无公共点,那么a∥b或a与b异面.⑤错.a与β也可能平行.11.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系并证明你的结论.【答案】a,b无公共点, a∥β,证明见解析.【解析】a∥b,a∥β,理由:由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,因为α∥β,a⊂α,b⊂β,所以a,b无公共点.又因为a⊂γ,且b⊂γ,所以a∥b.因为α∥β,所以α与β无公共点,又a⊂α,所以a与β无公共点,所以a∥β.素养达成12.如图所示,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,C∉l,直线AB与l不平行,那么平面ABC 与平面β的交线与l有什么关系?证明你的结论.【答案】平面ABC与β的交线与l相交,证明见解析.【解析】平面ABC与β的交线与l相交.证明:因为AB与l不平行,且AB⊂α,l⊂α,所以AB与l一定相交,设AB∩l=P,则P∈AB,P∈l.又因为AB⊂平面ABC,l⊂β,所以P∈平面ABC,P∈β.所以点P是平面ABC与β的一个公共点,而点C也是平面ABC与β的一个公共点,且P,C是不同的两点,所以直线PC就是平面ABC与β的交线.即平面ABC∩β=PC,而PC∩l=P,所以平面ABC与β的交线与l相交.。
空间点、直线、平面之间的位置关系测试题(含答案)空间点、直线、平面之间的位置关系测试题1.已知平面α内有无数条直线都与平面β平行,那么正确的选项是()A。
α∥βB。
α与β相交C。
α与β重合D。
α∥β或α与β相交2.两条直线a,b满足a∥b,b⊥平面α,则a与平面α的关系是()A。
a∥αB。
a与α相交C。
a与α不相交D。
a⊥α3.对于命题:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一直线的两直线平行;④垂直于同一平面的两直线平行。
其中正确的个数有(。
)A。
1个B。
2个C。
3个D。
4个4.经过平面外两点与这个平面平行的平面()A。
只有一个B。
至少有一个C。
可能没有D。
有无数个5.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有()A。
3条B。
4条C。
5条D。
6条6.a,b是两条异面直线,下列结论正确的是()A。
过不在a,b上的任一点P,可作一个平面与a,b平行B。
过不在a,b上的任一点P,可作一条直线与a,b相交C。
过不在a,b上的任一点P,可作一条直线与a,b都平行D。
过a可以并且只可以作一平面与b平行7.m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A。
若m‖α,n‖α,则m‖nB。
若α⊥γ,β⊥γ,则α‖βC。
若m‖α,m‖β,则α‖βD。
XXX⊥α,n⊥α,则m‖n8.如图1,正四面体ABCD的棱长均为a,且AD⊥平面α于A,点B,C,D均在平面α外,且在平面α同一侧,则点B到平面α的距离是()A。
a/2B。
a/3C。
a/23D。
2a/39.如图2,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是A。
PB⊥ADB。
平面PAB⊥平面PBCC。
直线BC∥平面PAED。
直线PD与平面ABC所成的角为45°10.点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为()A。
点、直线、平面之间位置关系基础练习题一、单选题1.在四面体ABCD中,AD=BC,且AD⊥BC,E,F分别为AB,CD的中点,则EF与BC所成的角为()A. 30°B. 45°C. 60°D. 90°2.已知m,n是两条不同的直线,α,β是两个不同的平面,下列说法中正确的是()A. 若m⊂α,n⊂β,m//n,则α//βB. 若m⊂α,n⊂β,α//β,则m//nC. 若m⊂α,n⊂β,α//β,且m,n共面,则m//nD. 若m//n,m//α,n//β,则α//β3.如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB的中点,PM垂直于△ABC所在平面,那么()A. PA=PB=PCB. PA≠PB≠PCC. PA=PB>PCD. PA=PB<PC第II卷(非选择题)二、解答题(本大题共14小题,共168.0分)4.如图,P是四边形ABCD所在平面外一点,四边形ABCD是∠DAB=60°,且边长为a的菱形.侧面PAD为正三角形,其所在平面垂直于底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB.5.如图,在三棱柱ABC−A1B1C1中,O为AB的中点,CA=CB,AB=AA1,∠BAA1=60∘.(1)证明:AB⊥平面A1OC;(2)若AB=CB=2,OA1⊥OC,求三棱锥A1−ABC的体积.6.如图,四边形ABCD是平行四边形,P是平面ABCD外一点,M,N分别是AB,PC的中点.求证:MN//平面PAD.7.如图所示,已知P是平行四边形ABCD所在平面外一点,M为PB的中点.求证:PD//平面MAC.8.如图,P为▱ABCD所在平面外的一点,M,N分别为AB,PD的中点.求证:MN//平面PBC.9.如图,在梯形ABCD中,AD//BC,AB⊥BC,AB=BC=1,PA⊥平面ABCD,CD⊥PC.(1)证明:CD⊥平面PAC;(2)若E为AD的中点,求证:CE//平面PAB.10.如图,在三棱锥P−ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)当PA//平面BDE时,求三棱锥E−BCD的体积.11.四棱锥P−ABCD中底面ABCD是矩形,M是PB的中点,PO⊥平面ABCD,AB=2,BC=1,PO=√3(1)求证:AB⊥平面PAD;(2)求三棱锥B−DMC的体积.12.如图,在四棱锥P−ABCD中,底面ABCD为平行四边形,点M为PC中点,且∠PAB=∠PDC=90°.(1)证明:PA//平面BDM;(2)证明:平面PAB⊥平面PAD.13.如图,在四棱锥P−ABCD中,E是PC的中点,底面ABCD为矩形,AB=2,AD=4,△PAD为正三角形,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F.(1)求证:EF//AB;(2)求三棱锥P−AEF的体积.14.如图,在四棱锥P−ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD为正方形,M,N分别为AD,PD的中点.(1)证明:PA//平面MNC;(2)求三棱锥P−MNC的体积.15.如图,在四棱锥P−ABCD中,底面为正方形,△PAD为等边三角形,平面PAD⊥平面PCD.(1)证明:平面PAD⊥平面ABCD:(2)若AB=2,Q为线段的中点,求三棱锥Q−PCD的体积.16.如图,在三棱锥V−ABC中,平面VAB⊥平面ABC,ΔVAB为等边三角形,AC⊥BC且AC=BC=√2,O,M分别为AB,VA的中点。
2023高考数学复习专项训练《空间中直线与平面的位置关系》一、单选题(本大题共12小题,共60分)1.(5分)设m,n为两条不同的直线,α,β为两个不同的平面,给出下列命题:①若m⊥α,m⊥β,则α//β②若m//α,m//β,则α//β③若m//α,n//α,则m//n④若m⊥α.n⊥α,则m//n上述命题中,所有真命题的序号是()A. ①④B. ②③C. ①③D. ②④2.(5分)直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,下列命题正确的是:A. l与l1,l2都不相交B. l与l1,l2都相交C. l至多与l1,l2中的一条相交D. l至少与l1,l2中的一条相交3.(5分)已知α、β是不同的平面,m、n是不同的直线,则下列命题不正确的是()A. 若m⊥α,m//n,n⊂β,则α⊥βB. 若m//α,α∩β=n,,则m//nC. 若m//n,m⊥α,则n⊥αD. 若m⊥α,m⊥β,则α//β4.(5分)已知两条直线m、n,两个平面α、β,给出下面四个命题:①m//n,m⊥α⇒n⊥α①α//β,m⊂α,n⊂β⇒m//n①m//n,m//α⇒n//α①α//β,m//n,m⊥α,⇒m⊥β其中正确命题的序号是()A. ①①B. ①①C. ①①D. ①①5.(5分)已知α,β是两个不同的平面,下列四个条件中能推出α//β的是()①存在一条直线m,m⊥α,m⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线m,n,m⊂α,n⊂β,m//β,n//α;④存在两条异面直线m,n,m⊂α,n⊂β,m//β,n//α.A. ①①B. ①①C. ①①D. ①①6.(5分)棱柱的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是()A. 平行B. 相交C. 平行或相交D. 不相交7.(5分)若α,β是两个不同的平面,m,n,l是三条不同的直线,则下列命题错误的是()A. 若m⊂α,l∩α=A,且A∉m,则l与m不共面B. 若m,l是异面直线,l//α,m//α,且n⊥l,n⊥m,则n⊥αC. 若l⊂α,m⊂α,l∩m=A,l//β,m//β,则α//βD. 若l//α,m//β,α//β,则l//m8.(5分)已知平面α⊥平面β,α∩β=n,直线l⊂α,直线m⊂β,则下列说法正确的个数是()①若l⊥n,l⊥m,则l⊥β;②若l//n,则l//β;③若m⊥n,l⊥m,则m⊥α.A. 0B. 1C. 2D. 39.(5分)已知a,b为两条不同直线,α、β为两个不同平面.下列命题中正确的是()A. 若a//α,b//α,则a与b共面B. 若a⊥α,α//β,则a⊥βC. 若a⊥α,α⊥β,则a//βD. 若α//b,β//b,则α//β10.(5分)若直线l平行于平面α,则()A. α内所有直线与l平行B. 在α内不存在直线与l垂直C. α内存在唯一的直线与l平行D. α内存在无数条直线与l成60°角11.(5分)在空间中,设l是一条直线,α,β是两个不同的平面.下列结论正确的是()A. 若l//α,l//β,则α//βB. 若l⊥α,l⊥β,则α//βC. 若l//α,α//β,则l//βD. 若l//α,α⊥β,则l⊥β12.(5分)直线l⊂平面α,直线m⊄平面α,命题p:“若直线m⊥α,则m⊥l”的逆命题、否命题、逆否命题中真命题的个数为()A. 0B. 1C. 2D. 3二、填空题(本大题共5小题,共25分)13.(5分)设l,m,n是空间三条不同的直线,α,β是空间两个不重合的平面,给出下列四个命题:①若l与m异面,m//n,则l与n异面;②若l//α,α//β,则l//β;③若α⊥β,l⊥α,m⊥β,则l⊥m;④若m//α,m//n,则n//α.其中正确命题的序号有 ______ .(请将你认为正确命题的序号都填上)14.(5分)作直线a、b和平面α,则下列小组内两个事件互为对立事件的有 ______组(请填写个数).A组:“a//b”和“a⊥b”;B组:“a、b为异面直线”和“a⊥b”;C组:“a//α或a⊂α”和“a与α相交”.15.(5分)已知关于空间两条不同直线m,n,两个不同平面α,β,有下列四个命题:①若m//α且n//α,则m//n;②若m⊥β且m⊥n,则n//β;③若m⊥α且m//β,则α⊥β;④若n⊂α且m不垂直于α,则m不垂直于n.其中正确命题的序号为______.16.(5分)若α、β是两个相交平面,则在下列命题中,真命题的序号为______.(写出所有真命题的序号)①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线.②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直.③若直线m⊂α,则在平面β内,不一定存在与直线m垂直的直线.④若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线.17.(5分)已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为√3,那么P到平面ABC的距离为________.三、解答题(本大题共6小题,共72分)18.(12分)如图,四棱锥P−ABCD中,AD//BC,AB=BC=1AD,E,F,H分别为线段AD,PC,CD的中点,AC2与BE交于O点,G是线段OF上一点.(1)求证:AP//平面BEF;(2)求证:GH//平面PAD.19.(12分)用符号语表示图中点、直线、平面的位置关系.20.(12分)如图,在正三棱柱ABC−A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为√29,设这条最短路线与CC1的交点为N,求:(I)该三棱柱的侧面展开图的对角线长(II)PC和NC的长(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)21.(12分)如图,正方体ABCD−A1B1C1D1中,M,N分别是AB,A1D1的中点.判断直线MN与平面BB1D1D的位置关系,并说明理由.22.(12分)如图,在棱长为a的正方体ABCD−A1B1C1D1中,点E是棱D1D的中点,点F在棱B1B上,且满足B1F=2BF。
《空间点、直线、平面之间的位置关系》练习题
知识结构
1.点和直线的位置关系是 ;
2.点和平面的位置关系是 ;
3.直线和直线的位置关系是 ;
4.直线和平面的位置关系是 ;
5.平面和平面的位置关系是 。
6.直线与直线平行的判定:
7.直线与平面平行的判定:
8.平面与平面平行的判定:
练习
一、 选择题:
1.下面推理过程,错误的是( )
(A ) αα∉⇒∈A l A l ,//
(B ) ααα⊂⇒∈∈∈l B A l A ,,
(C ) AB B B A A =⋂⇒∈∈∈∈βαβαβα,,,
(D ) βαβα=⇒∈∈不共线并且C B A C B A C B A ,,,,,,,,
2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( )
(A ) 1个或3个 (B ) 1个或4个
(C ) 3个或4个 (D ) 1个、3个或4个
3.以下命题正确的有( )
(1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面;
(2)若a ∥α,则a 平行于平面α内的所有直线;
(3)若平面α内的无数条直线都与β平行,则α∥β;
(4)分别和两条异面直线都相交的两条直线必定异面。
(A ) 1个 (B ) 2个 (C ) 3个 (D )4个
4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( )
(A ) 2 (B ) 3 (C ) 6 (D ) 12
5.以下命题中为真命题的个数是( )
(1)若直线l 平行于平面α内的无数条直线,则直线l ∥α;
(2)若直线a 在平面α外,则a ∥α;
(3)若直线a ∥b ,α⊂b ,则a ∥α;
(4)若直线a ∥b ,α⊂b ,则a 平行于平面α内的无数条直线。
(A ) 1个 (B ) 2个 (C ) 3个 (D )4个
6.若三个平面两两相交,则它们的交线条数是( )
(A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条
7. 下列命题正确的是( )
A.经过三点确定一个平面 B.经过一条直线和一个点确定一个平面
C.四边形确定一个平面 D.两两相交且不共点的三条直线确定一个平面
8. 下列命题中正确的个数是( )
①若直线l 上有无数个点不在平面α内,则l α∥.
②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行.
③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行. ④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.
9. 若直线a 不平行于平面α,且a α⊄,则下列结论成立的是( )
A.α内的所有直线与a 异面 B.α内不存在与a 平行的直线 C.α内存在唯一的直线与a 平行 D.α内的直线与a 都相交
10. 三条直线相交于一点,可能确定的平面有( )
A.1个 B.2个 C.3个 D.1个或3个
10.分别和两条异面直线都相交的两条直线一定是( )
A.异面直线 B.相交直线 C.不相交直线 D.不平行直线二、 填空题:
1.若直线l 与平面α相交于点O ,l B A ∈,,α∈D C ,,且BD AC //,则O,C,D 三点的位置关系是 。
2.在空间中,
① 若四点不共面,则这四点中任何三点都不共线。
② 若两条直线没有公共点,则这两条直线是异面直线。
以上两个命题中为真命题的是 (把符合要求的命题序号填上)
3.已知,a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是
① 两条平行直线
② 两条互相垂直的直线
③ 同一条直线
④ 一条直线及其外一点
在上面结论中,正确结论的编号为 (写出所有正确结论的编号)。
4. 已知a ,b ,c 是三条直线,角a b ∥,且a 与c 的夹角为θ,那么b 与c 夹角为 .
5. 已知两条相交直线a ,b ,a α平面∥则b 与α的位置关系是 .
6.在空间四边形ABCD 中,N ,M 分别是BC ,AD 的中点,则2MN 与AB CD +的大小关系是 .
7. 如图,三条直线两两平行且不共面,每两条确定一个平面,一共可以确定几个平面?如果三条直线相交于一点,它们最多可以确定几个平面?
三、 解答题:
1.已知长方体1111D C B A ABCD -中,M 、N 分别是1BB
和BC 的中点,AB=4,AD=2,1521=BB ,求异面直线D
B 1与MN 所成角的余弦值。
2.如图,空间四边形ABCD 中,E ,F ,G ,H 分别
是AB ,BC ,CD ,DA 的中点.
求证:四边形EFGH 是平行四边形.
( 知识点:空间平行线的传递性 ;)
3. 如图,已知长方体ABCD A B C D ''''-中,23AB =,23AD =,2AA '=. (1)BC 和A C ''所成的角是多少度?
AA BC
A D
B C
D '
C ' B '
A '。