色谱理论基础详解
- 格式:ppt
- 大小:950.50 KB
- 文档页数:20
色谱基础知识•第一部分色谱基础知识1、色谱起源2、色谱定义色谱法:利用组分在两相间分配系数不同而进行分离的技术流动相:携带样品流过整个系统的流体固定相:静止不动的一相,色谱柱3、色谱分类1、高效液相色谱High Performance Liquid Chromatography (HPLC)2、气相色谱 Gas Chromatography (GC)3、薄层色谱 Thin-Layer Chromatography (TLC)4、毛细管电泳 Capillary Electrophoresis(CE)4、色谱优点1、同时分析2、分离性能好3、灵敏度高 (ppm-ppb)4、进样量小 (1-100uL)HPLC vs GC液相色谱:以液体作为流动相的色谱分离方法1、适用于高沸点、大分子、强极性和热稳定性差的化合物的分析2、流动相具有运载样品分子和选择性分离的双重作用气相色谱:以气体作为流动相的色谱分离方法1、适用于沸点较低、热稳定性好的中小分子化合物的分析2、流动相只起运载样品分子的能力5、HPLC分类1、正相模式 (NP-LC)2、反相模式 (RP-LC)3、反相离子对色谱 (IPC)4、离子交换色谱 (IEC)5、尺寸排阻色谱 (GPC / GFC)反相模式 (RP)填料:C18 (ODS)、C8 (octyl)、C4 (butyl)、苯基、TMS和氰基相互作用力:反相模式下流动相的选择:优化水相(缓冲液)和有机相的比例非常重要(甲醇,乙腈和THF 是常用的有机溶剂)在有缓冲液的情况下, 缓冲液的浓度和pH值非常重要增加流动相极性:固定相极性变化对分离的影响:固定相极性变化对分离的影响:离子对色谱离子对试剂·阴离子化合物:氢氧化四丁基铵、溴化四丁基铵·阳离子化合物:丁烷基磺酸钠(C4)、戊烷基磺酸钠(C5)、己烷基磺酸钠(C6)、庚烷基磺酸钠(C7)、辛烷基磺酸钠(C8)、癸烷基磺酸钠(C10)、十二烷基磺酸钠(SDS)离子对色谱影响因素·离子对试剂的类型·离子对试剂的浓度·流动相的pH正相色谱色谱柱:·硅胶柱:常用·氰基柱: 常用·氨基柱: 分析糖·二醇基柱: 分析蛋白质相互作用力氢键力·如果样品有–-COOH: 羧基–-NH2: 氨基–-OH: 羟基则氢键力强.·如果样品没有任何官能团,象碳水化合物·如果样品有大的基团, 由于空间障碍则氢键力弱.正相模式下流动相的选择:·主要试剂:烷烃(戊烷, 己烷, 庚烷, 辛烷)、芳香烃(苯, 甲苯, 二甲苯)、二氯甲烷–氯仿、四氯化碳·辅助试剂:甲基-t-丁基醚(MTBE)、乙醚、四氢呋喃(THF)、二氧杂环乙烷、嘧啶、乙酸乙酯、乙腈、丙酮、异丙醇、乙醇、甲醇为了调整保留时间,可以选择主要试剂然后再加入辅助试剂。
色谱分析基本理论一、色谱分析基本理论二、气相色谱仪相关配置及问题解决三、气相色谱安装和调试四、气相色谱柱的安装五、毛细管分析常见问题的解决六、液相色谱仪相关配置及问题解决七、色谱分析常见问题解决八、相关气相色谱仪的使用经验九、常见色配件及消耗品价目表色谱基本理论一、色谱法原理:又称层析法。
根据其分离原理,有吸附色谱、分配色谱、离子交换色谱与排阻色谱等方法。
1、吸附色谱是利用吸附剂对被分离物质的吸附能力不同,用溶剂或气体洗脱,以使组分离。
常用的吸附剂剂有氧化铝、硅胶、聚酰胺等有吸附活性的物质。
2、分配色谱是利用溶液中被分离物质在两相中分配系数不同,以使组分分离。
其中一相为液体,涂布或使之键全在固体载体上,称固定相;另一相为液体或气体,称流动相。
常用的载体有硅胶、硅藻土、硅镁型吸附剂与纤维素粉等。
3、离子交换色谱是利用被分离物质在离子交换树脂上的离子交换势不同而使组分分离。
常用的有不同强度的阳、阴离子交换树脂,流动相一般为水或含有有机溶剂的缓冲液。
4、排阻色谱又称凝胶色谱或凝胶渗透色谱,是利用被分离物质分子量大小的不同和在填料上渗透程度的不同,以使组分分离常用的填料有分子筛、葡聚糖凝胶、微孔聚合物、微孔硅胶或玻璃珠等到,可根据载体和试样的性质,选用水或有机溶剂为流动相。
二、色谱法的分离方法:通常色谱的分离方法有柱色谱法、纸色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。
色谱所用溶剂(流动相)应与试样不起化学反应,并应用纯度较高的溶剂。
色谱时的温度,除气相色谱法或另有规定外,一般指在室温下操作。
分离后各成分的检出,应采用各单体中规定的方法。
通常用柱色谱、绝色谱或薄层色谱分离有色物质时,可根据其色带进行区分,对有些无色物质,可在245-365nm 的紫外灯下检视。
纸色谱或薄层色谱也可喷显色剂使之显色。
薄层色谱还可用加有荧光物质的薄层硅胶,采用荧光熄灭法检视。
用纸色谱进行定量测定时,可将色谱斑点部分剪下或挖取,用溶剂溶出该成分,再用分光光度法或比色法测定,也可用色谱扫描仪直接在纸或薄层板上测出,也可用色谱扫描仪直接以纸或薄层板测出。
色谱学堂知识点总结图一、色谱分析的基本原理1. 色谱基本原理色谱是通过样品和固定相之间的相互作用来进行分离的一种方法。
在色谱中,样品首先与移动相(气相或液相)一起通过色谱柱,其中移动相被固定相吸附或分配,从而实现了分离。
通过控制固定相和移动相的性质,可以实现对不同成分的选择性分离。
2. 色谱柱选择色谱柱是色谱分析中的重要组成部分,不同的色谱柱具有不同的分离机制和适用范围。
常见的色谱柱类型包括气相色谱柱、液相色谱柱和超高效液相色谱柱。
选择合适的色谱柱对于获得良好的分离效果非常重要。
3. 色谱分离机理色谱分离是通过样品成分与固定相之间的相互作用来实现的。
常见的色谱分离机理包括吸附色谱、分配色谱和离子交换色谱。
不同的分离机理适用于不同类型的样品和分析需求。
二、色谱技术1. 气相色谱技术气相色谱是一种常用的色谱分析技术,它适用于易挥发性和热稳定的样品。
在气相色谱中,样品首先以气体状态注入色谱柱,然后通过气相载气移动,最终被固定相吸附或分配,从而实现分离。
2. 液相色谱技术液相色谱是一种应用广泛的色谱分析技术,它适用于非挥发性和热敏感的样品。
在液相色谱中,样品首先以溶液状态注入色谱柱,然后通过液相流动,最终被固定相吸附或分配,从而实现分离。
3. 超高效液相色谱技术超高效液相色谱是一种高效的色谱分析技术,它利用超高压将样品溶液通过色谱柱,从而实现快速、高分辨率的分离。
4. 色谱联用技术色谱联用是指将色谱分离技术与其他分析技术(如质谱、光谱等)结合起来,从而进行更为全面和准确的分析。
常见的色谱联用技术包括气相色谱-质谱联用、液相色谱-质谱联用、气相色谱-光谱联用等。
三、色谱分析方法1. 样品前处理样品前处理是色谱分析中的重要步骤,它包括样品的提取、浓缩、净化等过程,旨在提高分析的灵敏度和准确性。
2. 色谱条件优化色谱条件的优化对于获得良好的分离效果非常重要。
包括固定相的选择、移动相的配比和流速、色谱柱温度等因素的优化。
色谱基础课程第一课色谱法概述色谱法是一种重要的分离分析方法,它是利用不同物质在两相中具有不同的分配系数(或吸附系数、渗透性),当两相作相对运动时,这些物质在两相中进行多次反复分配而实现分离。
在色谱技术中,流动相为气体的叫气相色谱,流动相为液体的叫液相色谱。
固定相可以装在柱内也可以做成薄层。
前者叫柱色谱,后者叫薄层色谱。
根据色谱法原理制成的仪器叫色谱仪,目前,主要有气相色谱仪和液相色谱仪。
色谱法的创始人是俄国的植物学家茨维特。
1905年,他将从植物色素提取的石油醚提取液倒人一根装有碳酸钙的玻璃管顶端,然后用石油醚淋洗,结果使不同色素得到分离,在管内显示出不同的色带,色谱一词也由此得名。
这就是最初的色谱法。
后来,用色谱法分析的物质已极少为有色物质,但色谱一词仍沿用至今,在50年代,色谱法有了很大的发展。
1952年,詹姆斯和马丁以气体作为流动相分析了脂肪酸同系物并提出了塔板理论。
1956年范第姆特总结了前人的经验,提出了反映载气流速和柱效关系的范笨姆特方程,建立了初步的色谱理论。
同年,高莱(Golay)发明了毛细管拄,以后又相继发明了各种检测器,使色谱技术更加完善。
50年代末期,出现了气相色谱和质谱联用的仪器,克服了气相色谱不适于定性的缺点。
则年代,由于检测技术的提高和高压泵的出现,高效液相色谱迅远发展,使得色谱法的应用范围大大扩展。
目前,由于高效能的色谱往、高灵敏的检测器及微处理机的使用,使得色谱法已成为一种分析速度快、灵敏度高、应用范围广的分析仪器。
在这里主要介绍气相色谱分析法。
同时也适当介绍液相色谱法。
气相色谱法的基本理论和定性定量方法也适用于液相色谱法。
其不同之处在液相色谱法中介绍。
第二课气相色谱仪典型的气相色谱仪具有稳定流量的载气,将汽化的样品由汽化室带入色谱柱,在色谱柱中不同组分得到分离,并先后从色谱柱中流出,经过检测器和记录器,这些被分开的组分成为一个一个的色谱峰。
色谱仪通常由下列五个部分组成:载气系统(包括气源和流量的调节与测量元件等)1.进样系统(包括进样装置和汽化室两部分)2.分离系统(主要是色谱柱)3.检测、记录系统(包括检测器和记录器)4.辅助系统(包括温控系统、数据处理系统等)第三课气相色谱仪-载气系统载气通常为氮、氢和氢气,由高压气瓶供给。