整式的除法-单项式除以单项式
- 格式:doc
- 大小:180.99 KB
- 文档页数:8
15.3.2整式的除法 (一)------单项式除以单项式一、教学分析(一)教学目标:1.掌握单项式除以单项式运算法则,能熟练进行单项式与单项式的除法运算;2.理解单项式除以单项式是在同底数幂的除法基础上进行的.(二)重点难点1.教学重点:单项式除以单项式的运算法则的探索过程及其应用.2.教学难点:法则的探索过程以及能够灵活地运用法则进行计算和化简二、指导自学(一)复习回顾,巩固旧知1.单项式乘以单项式的法则:2.同底数幂的除法法则:(二)创设情境,总结法则问题1:木星的质量约是1.90×1024吨.地球的质量约是5.08×1021吨.•你知道木星的质量约为地球质量的多少倍吗?分析:这是除法运算,木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.(1.90×1024)÷(5.98×1021)=242421211.9010 1.90105.9810 5.9810⨯=⨯⨯=29995×310≈0.318×310 问题2:(1)回顾计算()()21241098.51090.1⨯÷⨯的过程,说说你计算的根据是什么? 答:这是根据除法的意义得到的(1.90×1024)÷(5.98×1021)把系数相除的结果1.905.98≈0.318作为结果的一个因子;同底数幂相除得24211010=310作为另一个因子. (2)仿照(1)的计算方法,计算下列各式:a a 283÷分析: a a 283÷就是()()a a 283÷的意思, 解:363x y xy ÷分析: 363x y xy ÷ 就是()()363x y xy ÷的意思 解:2323312ab x b a ÷分析: 2323312ab x b a ÷就是()()2323312ab x b a ÷的意思 解:(3)讨论(2)中的三个式子是什么样的运算.答:这三个式子都是单项式除以单项式的运算.问题3同学们你能根据上面的计算,尝试总结一下单项式除以单项式的运算法则吗? (提示:从系数、相同字母、只在被除式中出现的字母三个方面总结)得到结论:单项式相除,(1)系数相除,作为商的系数;(2)同底数幂相除,作为商的因式;(3)只在被除式中出现的字母,则连同它的指数作为商的一个因式.问题4:上面问题2中的几个运算是仿照问题1计算出来的,下面同学们思考一下可不可以再用自己现有的知识和数学方法解决问题2的计算呢?并观察结果是否一样?提示:还可以从乘法与除法互为逆运算的角度考虑答:计算2323312ab x b a ÷,就是要求一个单项式,使它与23ab 的乘积等于32312x b a ∵ 3ab 2·(4a 2x 3)=12a 3b 2x 3 2323312ab x b a ÷=324x a上述两种算法有理有据,所以结果正确问题5:由问题2和问题4尝试总结出一般的单项式除以单项式的法则吗?单项式除以单项式的法则:单项式相除,把系数和同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.三、应用提高(一)巩固应用例1. (1)28x 4y 2÷7x 3y(2)-5a 5b 3c ÷15a 4b(3)(2x 2y )3·(-7xy 2)÷14x 4y3 (4)5(2a +b )4÷(2a +b )2解:(1)28x 4y 2÷7x 3y=(28÷7)·x 4-3·y2-1 =4xy .(2)-5a 5b 3c ÷15a 4b=(-5÷15)a 5-4b 3-1c =-13ab 2c . (3)(2x 2y )3·(-7xy 2)÷14x 4y3 =8x 6y 3·(-7xy 2)÷14x 4y3 =[8×(-7)]·x 6+1y 3+2÷14x 4y3 =(-56÷14)·x 7-4·y5-3 =-4x 3y 2.(4)5(2a +b )4÷(2a +b )2=(5÷1)(2a +b )4-2 =5(2a +b )2 =5(4a 2+4ab +b 2)=20a 2+20ab +5b2 解题心得:(1)、(2)直接运用单项式除法的运算法则;(3)要注意运算顺序:先乘方,•再乘除,再加减;(4)鼓励学生悟出:将(2a +b )视为一个整体来进行单项式除以单项式的运算.四、落实训练(一)当堂训练1.计算:(1)()ab ab 5103-÷ (2)23268ab b a ÷-(3)()3242321yx y x -÷- (4)()()56103106⨯÷⨯2.把图中左边括号里的每一个式子分别除以y x 22,然后把商式写在右边括号里. ⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧−−→−⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧--÷x y x yz x y x y x y x 221161242222343 (三)回顾提升教师:通过这节课的学习你有哪些收获?学生回顾交流,教师补充完善:1.掌握了单项式的除法法则.2.理解了单项式除法法则是在同底数幂的除法基础上进行的五、检测反馈(1)()xy y x 6242-÷ (2)()42255r r ÷-(3)()222747m p m m ÷(4)()232642112⎪⎭⎫ ⎝⎛÷-t s t s2.一颗人造卫星的速度是72.8810⨯米/时,一驾喷气飞机的速度是61.810⨯米/时,这颗人造地球卫星的速度是这驾喷气式飞机的速度的多少倍?3.已知1米=910纳米,某种病毒的直径为100纳米,多少个这种病毒能排成1毫米长?。
鸡西市第四中学2012-2013年度上学期初三数学导学案第二十一章第三节整式的除法编制人:孟珊珊复核人:使用日期:2012.12.3 编号:34 【学习目标】单项式除以单项式的运算法则及其应用和它们的运算算理。
【学习重点】单项式除以单项式的运算法则及其应用。
【学习难点】探索单项式与单项式相除的运算法则的过程【思维导航】1、单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.2、多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
【引入新知】问题:木星的质量约是1.90×1024吨.地球的质量约是5.08×1021吨.•你知道木星的质量约为地球质量的多少倍吗?列式为: .【探索新知】知识点一单项式除以单项式1、根据单项式乘以单项法则及除法与乘法两种运算互逆计算:()▪2a=8a3;8a3÷2a=( )3xy▪( )=5x3y ;5x3y÷3xy=( )( )▪3ab2=12a3b2x312a3b2x3÷3ab2=( )2、归纳法则:单项式相除,(1)系数相除,作为;(2)同底数幂相除,作为商的;(3)对于只在被除式里含有的字母,连同它的作为。
【运用新知】例1 计算:(1)28x4y2÷7x3y (2)-5a5b3c÷15a4b(3)(2x2y)3·(-7xy2)÷14x4y3(4)5(2a+b)4÷(2a+b)2【探索新知】知识点二多项式除以单项式1、根据多项式乘以单项法则及除法与乘法两种运算互逆计算:m▪()= am+bm ;(am+bm)÷m=()()▪a= a2+ab ; (a2+ab)÷a=()2xy▪()=4x2y+2xy2 (4x2y+2xy2)÷2xy=( ).2、归纳法则:多项式除以多项式,先把这个多项式的,再把所得的商。
整式的除法(基础)【学习目标】1. 会进行单项式除以单项式的计算.2. 会进行多项式除以单项式的计算. 【要点梳理】要点一、单项式除以单项式法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只有被除式里含有的字母,则连同它的指数作为商的一个因式.要点诠释:(1)法则包括三个方面:①系数相除;②同底数幂相除;③只在被除式里出现的字母,连同它的指数作为商的一个因式.(2)单项式除法的实质即有理数的除法(系数部分)和同底数幂的除法的组合,单项式除以单项式的结果仍为单项式.要点二、多项式除以单项式法则多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加.即()am bm cm m am m bm m cm m a b c ++÷=÷+÷+÷=++要点诠释:(1)由法则可知,多项式除以单项式转化为单项式除以单项式来解决,其实质是将它分解成多个单项式除以单项式.(2)利用法则计算时,多项式的各项要包括它前面的符号,要注意符号的变化. 【典型例题】类型一、单项式除以单项式1、计算:(1)342222(4)(2)x y x y ÷; (2)2137323m n m m n xy z x y x y z +⎛⎫÷÷- ⎪⎝⎭;(3)22[()()]()()x y x y x y x y +-÷+÷-; (4)2[12()()][4()()]a b b c a b b c ++÷++.【思路点拨】(1)先乘方,再进行除法计算.(2)、(3)三个单项式连除按顺序计算.(3)、(4)中多项式因式当做一个整体参与计算. 【答案与解析】解:(1)342222684424(4)(2)1644x y x y x y x y x y ÷=÷=. (2)2137323m n m m n xy z x y x y z +⎛⎫÷÷- ⎪⎝⎭21373211()()()3m m m n n x x x y y y z z +⎡⎤⎛⎫=÷÷-÷÷÷÷÷ ⎪⎢⎥⎝⎭⎣⎦21432n xy z -=-.(3)22[()()]()()x y x y x y x y +-÷+÷-222()()()()x y x y x y x y =+-÷+÷- 2()()x y x y x y =-÷-=-.(4)2[12()()][4()()]a b b c a b b c ++÷++2(124)[()()][()()]a b a b b c b c =÷+÷++÷+3()33a b a b =+=+.【总结升华】(1)单项式的除法的顺序为:①系数相除;②相同字母相除;③被除式中单独有的字母,连同它的指数作为商的一个因式.(2)注意书写规范:系数不能用带分数表示,必须写成假分数. 举一反三: 【变式】计算:(1)3153a b ab ÷; (2)532253x y z x y -÷;(3)2221126a b c ab ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (4)63(1010)(210)⨯÷⨯. 【答案】解:(1)33202153(153)()()55a b ab a a b b a b a ÷=÷÷÷==. (2)532252323553(53)()()3x y z x y x x y y z x yz -÷=-÷÷÷=-. (3)22222201111()()332626a b c ab a a b b c ab c ac ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-÷-=-÷-÷÷== ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. (4)63633(1010)(210)(102)(1010)510⨯÷⨯=÷÷=⨯.2、(泾阳县校级月考)金星是太阳系九大行星中距离地球最近的行星,也是人在地球上看到的天空中最漂亮的一颗星.金星离地球的距离为4.2×107千米,从金星射出的光到达地球需要多少时间?(光速为3.0×105千米/秒)【答案与解析】 解:t=秒,答:从金星射出的光到达地球需要1.4×102秒.【总结升华】本题考查了同底数幂的除法法则,关键是利用时间=路程÷速度这一公式,此题比较简单,易于掌握. 类型二、多项式除以单项式3、计算(1)254311222x x x x ⎛⎫⎛⎫++÷ ⎪ ⎪⎝⎭⎝⎭ ;(2)()()32271833x x x x -+÷-.【思路点拨】直接利用多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加计算.【答案与解析】解:(1)254311222x x x x ⎛⎫⎛⎫++÷ ⎪ ⎪⎝⎭⎝⎭54325242323211224111124424482x x x x x x x x x x x x x⎛⎫=++÷ ⎪⎝⎭=÷+÷+÷=++(2)()()32271833x x x x -+÷-()()()32227318333961x x x x x x x x =÷--÷-+÷-=-+-【总结升华】本题考查多项式除以单项式的运算,熟练掌握运算法则是解题的关键,要注意符号的处理.4、计算:(1)324(67)x y x y xy -÷; (2)42(342)(2)x x x x -+-÷-; (3)22222(1284)(4)x y xy y y -+÷-; (4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭. 【答案与解析】解:(1)32432423(67)(6)(7)67x y x y xy x y xy x y xy x y x -÷=÷+-÷=-. (2)42(342)(2)x x x x -+-÷-42[(3)(2)][4(2)][(2)(2)]x x x x x x =-÷-+÷-+-÷-33212x x =-+. (3)22222(1284)(4)x y xy y y -+÷-222222212(4)(8)(4)4(4)x y y xy y y y =÷-+-÷-+÷-2321x x =-+-(4)232432110.3(0.5)36a b a b a b a b ⎛⎫--÷- ⎪⎝⎭22322432110.3(0.5)(0.5)(0.5)36a b a b a b a b a b a b ⎛⎫⎛⎫=÷-+-÷-+-÷- ⎪ ⎪⎝⎭⎝⎭22321533ab a b =-++.【总结升华】(1)多项式除以单项式是转化为单项式除以单项式来解决的.(2)利用法则计算时,不能漏项.特别是多项式中与除式相同的项,相除结果为1.(3)运算时要注意符号的变化. 举一反三:【高清课堂399108 整式的除法 例5】 【变式1】计算:(1)23233421(3)2(3)92xy x x xy y x y ⎡⎤--÷⎢⎥⎣⎦; (2)2[(2)(2)4()]6x y x y x y x +-+-÷. 【答案】解: (1)原式223239421922792x yx x x y y x y ⎛⎫=-÷ ⎪⎝⎭52510428(927)93x y x y x y x xy =-÷=-. (2)原式2222[44(2)]6x y x xy y x =-+-+÷2222(4484)6x y x xy y x =-+-+÷ 2(58)6x xy x =-÷5463x y =-. 【变式2】(滕州市校级月考)计算:[(3a+b )2﹣b 2]÷3a. 解:[(3a+b )2﹣b 2]÷3a,=(9a 2+6ab+b 2﹣b 2)÷3a,=(9a 2+6ab )÷3a, =3a+2b 【巩固练习】一.选择题1. 下列计算结果正确的是( )A .2334222x y xy x y -⋅=- B .222352x y xy x y -=-C .4232874x y x y xy ÷= D .()()2323294a a a ---=-2. 423287a b a b ÷的结果是 ( ) A.24abB.44a bC. 224a bD. 4ab3.(下城区二模)下列运算正确的是( ) A .(a 3﹣a )÷a=a 2 B .(a 3)2=a 5 C .a 3+a 2=a 5 D .a 3÷a 3=14. 如果□×3ab =23a b ,则□内应填的代数式是( )A.abB.3abC.aD.3a5.下列计算正确的是( ). A.()13n n x y z +-÷()13n n x y z +- =0B.()()221510532x y xy xy x y -÷-=- C.x xy xy y x 216)63(2=÷- D.231123931)3(x x x x xn n n +=÷+-++ 6. 太阳的质量约为2.1×2710t ,地球的质量约为6×2110t ,则太阳的质量约是地球质量的( )A.3.5×610倍 B.2.9×510倍 C.3.5×510倍 D.2.9×610-倍 二.填空题7. 计算:()()22963a b ab ab -÷=_______. 8. 2xy •(______)=26x yz -. 9. 计算()()34432322396332x y x y x y x y x y xy -+÷=-+-.10.直接写出结果:(1)()()35aa -÷-=_______;(2)()24a a -÷-=_______;(3)1042x x x ÷÷=_______; (4)10n ÷210n -=_______;(5)()3mm aa ÷=_______;(6)()()21nn y x x y --÷-=_______.11.(成都校级月考)(﹣a 6b 7)÷= .12.学校图书馆藏书约3.6×410册,学校现有师生约1.8×310人,每个教师或学生假期平均最多可以借阅______册图书. 三.解答题13.(陇西县期末)(1)计算:()2÷(﹣)2(2)计算:(x 2y ﹣xy 2﹣y 3)(﹣4xy 2).14. 先化简,再求值:()()()23242622532a a a a a ⎡⎤⋅-÷÷-⎢⎥⎣⎦,其中a =-5. 15.天文学上常用太阳和地球的平均距离 1.4960×810千米作为一个天文单位,已知月亮和地球的平均距离约为384401千米,合多少天文单位?(用小数表示,精确到0.0001)【答案与解析】 一.选择题1. 【答案】C ;【解析】A 、2334224x y xy x y -⋅=-,所以A 选项错误;B 、两个整式不是同类项,不能合并,所以B 选项错误;D 、()()2323294a a a ---=-+,所以,D 选项错误.2. 【答案】D ;3. 【答案】D ;【解析】解:A 、(a 3﹣a )÷a=a 2﹣1,错误;B 、(a 3)2=a 6,错误;C 、a 3与a 2表示同类项,不能合并,错误;D 、a 3÷a 3=1,正确; 故选D .4. 【答案】C ;5. 【答案】D ; 【解析】()13n n xy z +-÷()13n n xy z +- =1;()()221510532x y xy xy x y-÷-=-+;21(36)612x y xy xy x -÷=-. 6. 【答案】C ;【解析】(2.1×2710)÷(6×2110)=0.35×610=3.5×510. 二.填空题7. 【答案】32a b -; 8. 【答案】3xz -;【解析】26x yz -÷2xy =3xz -. 9. 【答案】23xy -;10. 【答案】(1)2a ;(2)-2a ;(3)4x ;(4)100;(5) 2ma ;(6) ()1n x y +- ;【解析】(6)()()()()21211nn n n n y x x y x y x y --++-÷-=-=-.11.【答案】﹣3a 2b 5; 【解析】解:(﹣a 6b 7)÷=,故答案为:﹣3a 2b 5. 12.【答案】20册;【解析】3.6×410÷(1.8×310)=20. 三.解答题 13.【解析】 解:(1)()2÷(﹣)2=×=;(2)(x 2y ﹣xy 2﹣y 3)(﹣4xy 2)=﹣3x 3y 3+2x 2y 4+xy 5.14. 【解析】解:原式=()61264594a a a a -÷÷ =6444a a -÷ =2a -当a =-5时,原式=-25. 15.【解析】解:由题意得:384401÷1.4960×810≈0.0026(个天文单位) 答:月亮和地球的平均距离约为0.0026个天文单位.。
初二数学整式的除法知识点总结①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
希翼同学们认真学习上面的知识点,相信老师对整式的除法知识点的总结一定能很好的匡助同学们的学习的。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希翼同学们很好的掌握下面的.内容。
水平的数轴称为 x 轴或者横轴,竖直的数轴称为 y 轴或者纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④ 原点重合①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;普通情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希翼同学们都能考试成功。
《农田里的数学除数是两位数的除法》四年级数学上册教学反思今天我讲了:除数是两位数的除法,感觉教学效果不太好,反思教学过程,感悟颇多。
早就听有经验的老师说过,这堂课不太好上,学生们接受的要慢一些,今天看来确实有一定的难度,本来教学设计就有点生硬、过程无趣,学生迟迟找不到感觉和好的方法,惟独一步一步慢慢引导。
除数是两位数的除法,是小学生学习整数除法的最后阶段,教学重点是确定商的.书写位置,除的顺序及试商的方法,匡助学生解决笔算的算理;难点就是试商。
课上我先让学生回顾除数是一位数除法的计算过程,孩子们能够说出要先从最高位开始除起,最高位不够除,就要看前两位,除到哪一位就把商写在哪一位。
在学习除数是两位数的除法的笔算时,学生已经有了口算的基础,在试商时,学生按老师要求先把想的内容写下来,例如: 24560=?想: 604=240,240 最接近 245,所以商试 4。
人教版数学八年级上册15.3.2《整式的除法》教案一. 教材分析《整式的除法》是人教版数学八年级上册第15章第三节的一部分,主要内容包括单项式除以单项式、多项式除以单项式以及多项式除以多项式的运算方法。
这一节内容在数学学习中占据重要地位,是学生进一步学习函数、不等式等数学知识的基础。
通过本节内容的学习,学生能够掌握整式除法的基本运算方法,提高运算能力,并为后续学习打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了整式的加减、乘法等基本运算,具备一定的数学基础。
但学生在进行整式除法运算时,容易出错,对除法运算的理解不够深入。
因此,在教学过程中,需要关注学生的学习困难,通过具体例子引导学生理解整式除法的运算规律,提高学生的运算能力。
三. 教学目标1.知识与技能目标:使学生掌握整式除法的基本运算方法,能够熟练地进行整式除法运算。
2.过程与方法目标:通过自主探究、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学学习的成就感。
四. 教学重难点1.重点:整式除法的基本运算方法。
2.难点:理解整式除法的运算规律,能够灵活运用整式除法解决实际问题。
五. 教学方法采用“引导探究法”和“合作交流法”,教师引导学生通过观察、分析、归纳等方法,发现整式除法的运算规律,培养学生的问题解决能力。
同时,鼓励学生进行合作交流,分享学习心得,提高学生的沟通能力。
六. 教学准备1.教师准备:教师需熟练掌握整式除法的运算方法,了解学生的学习情况,准备相关教学素材。
2.学生准备:学生需预习整式除法相关内容,了解基本概念,准备参与课堂讨论。
七. 教学过程1.导入(5分钟)教师通过一个简单的例子,引导学生回顾整式的加减、乘法运算,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示整式除法的例子,引导学生观察、分析,发现整式除法的运算规律。
学生通过自主探究,总结整式除法的基本方法。
整式的类型题包括但不限于以下几种:
1. 整式的加减:这类题目通常涉及到合并同类项、去括号等基本运算,需要熟练掌握整式的运算法则。
2. 整式的乘法:包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式等类型,需要掌握乘法分配律和结合律。
3. 整式的除法:通常涉及到单项式除以单项式、多项式除以单项式等,需要掌握除法的基本运算和变形。
4. 整式的化简求值:这类题目通常涉及到整式的加减、乘除等基本运算,需要熟练掌握运算法则和代数式的变形技巧。
5. 整式的因式分解:将一个多项式表示为几个整式的积的形式,需要掌握因式分解的基本方法和技巧。
6. 整式的幂的运算:包括幂的乘方、积的乘方等,需要掌握幂的运算法则和运算性质。
7. 整式的混合运算:这类题目通常涉及到加减、乘除、乘方等基本运算,需要熟练掌握运算顺序和运算法则。
以上是常见的整式类型题目,通过练习这些题目,可以加深对整式概念的理解,提高整式运算的能力。
《整式的除法》教学反思《整式的除法》教学反思1整式的除法只要求单项式除以单项式、多项式除以单项式,并且结果都是整式。
重点是单项式除以单项式,而多除以单项式则通过转化为单项式除以单项式来计算。
1、单项式除以单项式法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
注意(1)数字系数:相除(2)相同字母:同底数幂相除(3)只在被除式里出现的幂:不变2、多项式除以单项式法则:先把这个多项式的每一项除以这个单项式,再把所得的商相加。
即:(a+b+c)÷m=a÷m+b÷m+c÷m(m≠0)3、尽量让学生到黑板上板演,从中找到他们在解题过程中暴露的问题,及时得到纠正。
本节综合性较强,内容看似简单,其实学生存在的问题很多。
《整式的除法》教学反思2教学不应仅仅传授课本上的知识内容,而应该在传授知识内容的同时,注意对学生综合能力的培养。
在本节课中,教师并没有直接将运算法则告诉学生,而是由学生利用已有知识探究得到。
在探究过程中,学生的数学思想得到了进一步的拓展,学生的综合能力得到了进一步的提高。
当然一节课的提高并不显著,但只要坚持这种方式方法,最终会有一个美好的结果。
在教学中,有意识、有计划的设计教学活动,引导学生体会单项式乘法与单项式除法之间的联系与区别,感受数学的整体性,不断丰富学生的解题策略,提高解决问题的能力。
在课堂教学中应当把更多时间交给学生。
本节课中计算法则的探究,例题的讲解,习题的完成,知识的总结尽可能的全部由学生完成,教师所起的作用是点拨,评价和指导。
这样做,可以更好的体现以学生为中心的教学思想,能更好的提高学生的综合能力。
《整式的除法》教学反思3这个学期,我就《整式的除法》上了一节公开课,教材选自人教版八年级上§15.3的教学内容。
完成教学后,结合多次的实施情况和老师们的研讨,我萌发了一点思考。
整式的除法—单项式除以单项式学案一、重点:单项式除以单项式的法则与应用二、难点:正确计算单项式除以单项式三、教学过程(一) 预习检测(1)224____a a = (2)2____36xy x y =(3)25____(410)610⨯⨯=⨯ (4)乘法和______互为逆运算;______和减法互为逆运算;对照(1)(2)(3)题,填空(5)2____24a a ÷= (6)263____x y xy ÷= (7)52(610)(410)_____⨯÷⨯=(二)由以上练习,我们可以得出单项式除以单项式的法则:单项式相除,把_______________________________________________,对于________________________________,则______________________________________;(三)例2(课本P161)计算(1)423287x y x y ÷ (2)534515a b c a b -÷练习一:计算(1)310(5)ab ab ÷-=( ÷ )( ÷ )( ÷ )=______________; (2)22286a b ab -÷=( ÷ )( ÷ )( ÷ )=______________; (3)242221(3)x y x y -÷-=( ÷ )( ÷ )( ÷ )=______________; (4)85(610)(310)⨯÷⨯=( ÷ )( ÷ )=______________;从上面的练习可以得到单项式除以单项式的符号确定法则是:_______________________; 练习二:下列计算是否正确?如果不正确,指出错误原因并加以改正 (1) (2)(3) (4)练习三:完成同步P85精炼2、3、4(四)补充P162 例2计算(3)43322384()2x y z x y x yz ÷-(注意:同级运算按_________的顺序进行)练习四:计算(1)432322382()2a b c a b a bc ÷-(2)2234239()2x y x y x y ∙÷-(五)补充P162例2计算(4)()86232112()2x y x y -÷- 复习运算顺序:先算_________再算_________ 最后算______。