高频功率放大器的制作与调试
- 格式:doc
- 大小:1.83 MB
- 文档页数:17
高频谐振功率放大器的基本工作原理高频谐振功率放大器是一种常用于无线通信和射频系统中的放大器,其基本工作原理是通过谐振电路和功率放大器的相互配合来实现信号的放大。
本文将介绍高频谐振功率放大器的基本构成和工作原理。
一、高频谐振功率放大器的构成高频谐振功率放大器主要由三个部分组成:输入谐振电路、功率放大电路和输出谐振电路。
输入谐振电路是用来接收输入信号并将其滤波、匹配到功率放大器的。
它通常由电容和电感组成的谐振回路构成,能够选择性地传输特定频率的信号。
功率放大电路是用来放大输入信号的。
它通常采用晶体管或管子放大器等器件,通过输入电压的调节来实现信号的放大,同时也可以调节放大器的增益和输出功率。
输出谐振电路是用来匹配和传输已放大的信号到输出负载的。
它通常也由谐振回路组成,能够将功率放大后的信号传输到负载上。
二、高频谐振功率放大器的工作原理高频谐振功率放大器的工作原理基于谐振电路的特性和功率放大器的线性放大特性。
首先,输入信号经过输入谐振电路后,可以选择性地通过特定频率的谐振回路,其他频率的信号会被滤波掉。
这样就能保证只有特定频率的信号能够进入功率放大器进行放大。
然后,经过谐振回路的输入信号进入功率放大电路。
功率放大电路通常采用线性放大器,其输入电压的大小决定了输出信号的放大倍数。
通过调节输入电压的大小,就可以实现对输出信号的放大程度的控制。
最后,放大后的信号经过输出谐振电路,并传输到输出负载上。
输出谐振回路起到了匹配和传输的作用,能够将功率放大后的信号有效地传输给负载。
三、高频谐振功率放大器的优势高频谐振功率放大器具有以下优势:1. 高效性:通过谐振电路的匹配和能量传输,以及功率放大器的线性放大特性,高频谐振功率放大器能够实现高效率的信号放大,提高系统的整体效能。
2. 稳定性:谐振回路能够选择性地传输特定频率的信号,并且能够稳定地工作在谐振状态下,使得输出信号的幅度和频率更加稳定。
3. 可调性:通过调节输入信号的电压,可以实现对输出信号的放大倍数和功率的可调。
高频功率放大器设计高频功率放大器是一种用于增加高频信号功率输出的电子设备,主要应用于通信、雷达、无线电、电视和音频等领域。
设计高频功率放大器需要考虑功率放大、频率响应、线性度等因素,下面我将详细介绍高频功率放大器的设计步骤。
首先,设计高频功率放大器需要确定所需的功率输出范围。
根据应用要求,可以计算出所需的输出功率,并根据这个值来选择合适的功率放大器类型,如B级、C级或D级等。
其次,选择合适的放大器架构。
目前常用的高频功率放大器架构有共射极、共基极和共集极,根据具体的应用需求选择适合的架构。
然后,根据设定的频率范围来选择合适的放大器工作频带。
高频功率放大器的频率响应是一个非常重要的指标,需要保证在所需的频率范围内具有良好的线性度和稳定性。
接下来,设计放大器的输入和输出匹配网络。
输入和输出匹配网络需要根据放大器的输入和输出特性来设计,以实现最大功率传输和防止信号的反射。
然后,根据应用需求选择合适的功率管或晶体管。
功率管或晶体管的选择需要考虑其工作频率、输出功率和效率等因素,同时要注意功率管或晶体管的稳定性和可靠性。
在设计过程中需要进行仿真和测试。
使用电磁仿真软件可以模拟和分析放大器的性能,如增益、幅度、相位等。
同时,还需要进行实际的电路板制作和搭建实验平台,进行实际的测试和调试工作。
最后,对设计的高频功率放大器进行优化和改进。
根据实际测试结果,可以进一步调整电路参数和组件选择,以提高功率放大器的性能和稳定性。
总结起来,高频功率放大器设计需要考虑功率输出范围、放大器架构、频率响应、输入输出匹配网络、功率管选型等因素。
通过仿真和测试来验证设计的性能,并进行优化改进。
高频功率放大器的设计是一个复杂而重要的工作,需要结合理论知识和实践经验,才能得到满足应用需求的高性能放大器。
高频功率放大器的基本原理(一)高频功率放大器的基本原理1. 什么是高频功率放大器高频功率放大器是一种用于增强高频信号幅度的电子设备。
它通常用于无线通信、雷达、高频电视和天线系统等领域。
高频功率放大器可以将低功率的高频信号放大到足够大的功率,以便传输和处理。
2. 高频功率放大器的工作原理高频功率放大器的工作原理可以简单分为三个步骤:放大输入信号、增加信号的功率和输出放大后的信号。
2.1 放大输入信号高频功率放大器的第一个任务是放大输入信号。
它通常使用晶体三极管(BJT)或场效应晶体管(FET)作为放大器的关键元件。
这些元件根据输入信号的幅度和频率变化进行放大操作。
2.2 增加信号的功率放大后的信号仍然可能是低功率的,因此高频功率放大器的下一个任务是增加信号的功率。
这一步骤通常通过使用功率放大器级联来实现。
级联多个放大器可以将信号功率从较低级别逐步增加到所需的功率级别。
2.3 输出信号在增加信号的功率之后,高频功率放大器将输出放大后的信号。
这个信号可以被用于进一步的处理或传输。
输出信号的幅度将取决于放大器的设计和配置。
3. 高频功率放大器的关键考虑因素在设计高频功率放大器时,需要考虑一些关键因素来确保性能和稳定性。
3.1 频率响应高频功率放大器应该能够在指定的频率范围内提供稳定的放大。
对于不同的应用,频率范围和响应要求会有所不同。
3.2 功率输出高频功率放大器应该能够提供足够的功率输出,以满足特定应用的需求。
功率输出的大小通常由设备和系统的要求来确定。
3.3 效率高频功率放大器的效率是指输入功率与输出功率之间的比率。
高效率的放大器能够最大限度地利用输入能量,减少能量浪费。
3.4 线性度高频功率放大器的线性度是指输出信号与输入信号之间的线性关系。
较好的线性度可以保持输入信号的准确度和完整性。
3.5 稳定性高频功率放大器的稳定性是指在各种工作条件下保持良好的性能。
它应该能够在不出现振荡或失真的情况下工作。
丙类高频功率放大器实验报告一、实验目的1.了解和熟悉丙类放大器、高频功率放大器及其工作原理;2.掌握丙类高频功率放大器电路的设计和调试方法;3.实现一个丙类高频功率放大器的设计和调试。
二、实验原理1.丙类放大器丙类放大器是一种功率放大器,其输出信号的一个部位接近正弦波而另一部分则大约失真。
丙类放大器又称为开关放大器,工作原理如下:(1)若输入的信号为负半周期,管子导通,输出便接近0V;(2)若输入信号为正半周期,管子截止,输出电压取决于负载电路。
(3)由于丙类放大器的输出电压只在正半周期时才产生,故功率效率可达90%以上,但其输出信号存在失真,因此丙类放大器多用于功率放大应用中。
2.高频功率放大器高频功率放大器的特点是恢复时间低,速度快、功率输出大,其主要应用在收音机、电视机、雷达、电子计算机等电子设备中,其原理如下:高频功率放大器具有放大频率宽、能量转换效率高、输入输出匹配好、频率稳定性好、体积小、功率大等特点。
其主要应用在无线通信、信号干扰、雷达和通信等电子设备中。
三、设计内容1.电路图设计高频功率放大器电路调试原理如下:(1)采用驱动单一管子的电路,以避免传输相位问题,同时减少了对驱动器电路的要求。
(2)采用变压器耦合方式,从低频端口把信号发送到功率放大器,减少了对驱动信号源的要求。
(3)采用反馈电路,对稳定性及主动去谐增益方面起到较好的作用。
2.实验步骤(1)根据所设计的电路图,依据实际元器件参数选择合适型号、参数元器件进行组装,拼装好整个高频放大器的主板电路。
(2)在采用反馈电路的前提下,测试电路器件的频率特性,应适当减小反馈电压以提高增益。
(3)根据反馈电路实验条件测量出高频功率放大器的输出功率、增益、谐波失真等有关参数,得出实验结果。
四、实验结果及分析高频功率放大器的实验结果及分析如下:1.功率输出本次实验所测试电路的功率输出可达到40W的功率输出。
2.增益本次实验所测试电路的增益为30dB左右,符合预期结果。
《通信电子线路》实验报告实验名称:高频功率放大器一、实验环境Multisim 14.0二、实验目的1、进一步了解Multisim仿真步骤,熟练操作获取波形2、仿真验证高频功率放大器原理,观察高频功率放大器工作在过压、临界、和欠压状态的波形三、实验原理和设计高频功率放大器工作在三极管截止区,导通角小于90度,属于丙类放大器。
故三极管输出波形为尖顶余弦脉冲序列(临界或欠压)或是凹顶余弦脉冲序列(过压),信号经过选频网络后,能够恢复指定频率的波形信号。
原理图如图2.1所示。
图2.1输出电流Ic和Vce 关系曲线,如图2.2图2.2四、实验步骤1,按照原理图连接电路。
2,计算电路谐振频率,画出幅频响应和相频响应。
3,选择合适的电源电压值,使三极管发射结反偏,集电结反偏。
4,调节基极偏置电压源、信号源幅度、并联回路电阻值和集电极电源,观察输出电压Vc 、输出电流ic波形,判断电路状态五、实验结果及分析1、并联谐振回路的幅频响应和相频响应,如图4.1所示图4.1并联谐振回路谐振频率为11.56MHz,与电路参数计算相吻合。
其0.707带宽为15.65MHz2、输入信号改为f= 11,56MHz,计算频谱如图4.2.1所示图4.2.1输出信号频谱如图4.2.2所示图4.2.23、观察时域波形。
调节参数Vbb= 0.7V反偏,Vi = 0.9Vrms,Vcc = 10V,波形如图4.3.1所示图4.3.1根据三极管特性,发射极反偏时,电流信号Ib需克服Vbb和Vbz才能导通,所以Ib和Ic应为尖顶余弦脉冲。
但是仿真出波形为完整余弦脉冲,不符合理论。
可能的原因有,三极管导通电压参数与理论值差异较大,发射结反偏程度低。
三极管模型不符合实际特性,无截止区。
调节Vbm,使Vi = 1.0V,其余参数不变,观察时域波形,如图4.3.2输出电压Vc产生失真,可能因放大倍数等参数不合适导致。
图4.3.2波形出现尖顶余弦脉冲,电路为欠压状态,导通角2θ=(202.6-188.6)ns * 11.56Mhz*360°= 58.26°,半导通角θ= 29.13°信号电压,ic的频谱如图4.3.3所示图4.3.3继续增大信号电压至1.2V,波形如图4.3.4图4.3.4观察输出波形Ic,类似出现了凹顶余弦脉冲,所以电路处于过压状态,半导通角θ= 28°输入输出信号频谱如图4.3.5.1和4.3.5.2所示图4.3.5.1图4.3.5.2六、小结本次实验验证高频功率放大器的欠压和过压状态,观察欠压状态的尖顶余弦脉冲序列和过压时的凹顶余弦脉冲序列。
实验三 丙类高频功率放大器实验一. 实验目的1.通过实验,加深对于高频谐振功率放大器工作原理的理解。
2.研究丙类高频谐振功率放大器的负载特性,观察三种状态的脉冲电流波形。
3.了解基极偏置电压、集电极电压、激励电压的变化对于工作状态的影响。
4.掌握丙类高频谐振功率放大器的计算与设计方法。
二。
预习要求:1.复习高频谐振功率放大器的工作原理及特点。
2.熟悉并分析图3所示的实验电路,了解电路特点。
三.电路特点及实验原理简介在高频范围内为获得足够大的高频输出功率,必须采用高频放大器,高频功率放大器主要用于发射机的未级和中间级,它将振荡产生的信号加以放大,获得足够高频功率后,再送到天线上辐射出去。
另外,它也用于电子仪器作未级功率放大器。
高频功率放大器要求效率高,输出功率大。
丙类放大器它是紧紧围绕如何提高它的效率而进行的。
高频功率放大器的工作频率范围一般为几百kHz —几十MHz 。
一般都采用LC 谐振网络作负载,且一般都是工作于丙类状态,如果要进一步提高效率,也可工作于丁类或戊类状态。
1.电路特点本电路的核心是谐振功率放大器,在此电路基础上,将音频调制信号加入集电极回路中,利用谐振功率放大电路的集电极调制特性,完成集电极调幅实验。
当电路的输出负载为天线回路时,就可以完成无线电发射的任务。
为了使电路稳定,易于调整,本电路设置了独立的载波振荡源。
2.高频谐振功率放大器的工作原理参见图1。
谐振功率放大器是以选频网络为负载的功率放大器,它是在无线电发送中最为重cR L要、最为难调的单元电路之一。
根据放大器电流导通角的范围可分为甲类、乙类、丙类等类型。
丙类功率放大器导通角θ<900,集电极效率可达80%,一般用作末级放大,以获得较大的功率和较高的效率。
图1中,Vbb 为基极偏压,Vcc为集电极直流电源电压。
为了得到丙类工作状态,Vbb应为负值,即基极处于反向偏置。
u b为基极激励电压。
图2示出了晶体管的转移特性曲线,以便用折线法分析集电极电流与基极激励电压的关系。
实验三高频功率放大器实验一、实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。
2.掌握输入激励电压,集电极电源电压及负载变化对放大器工作状态的影响。
3.通过实验进一步了解调幅的工作原理。
二.实验内容1.观察高频功率放大器丙类工作状态的现象,并分析其特点;2.测试丙类功放的调谐特性;3.测试负载变化时三种状态(欠压、临界、过压)的余弦电流波形;4.观察激励电压、集电极电压变化时余弦电流脉冲的变化过程;5.观察功放基极调幅波形。
三.实验步骤1.实验准备在实验箱主板上装上幅度调制与无线发射模块,接通电源即可开始实验。
2.测试前置放大级输入、输出波形高频信号源频率设置为6.3MHZ,幅度峰-峰值300mV左右,用铆孔线连接到1P05,用示波器测试1P05和1TP07的波形的幅度,并计算其放大倍数。
由于该级集电极负载是电阻,没有选频作用。
3.激励电压、电源电压及负载变化对丙类功放工作状态的影响激励电压U b 对放大器工作状态的影响1K03置“右侧”。
保持集电极电源电压E c =5V左右(用万用表测1TP08直流电压, 1W05 逆时针调到底),负载电阻R L =10KΩ 左右(1K04置“右侧”,用万用表测1TP11电阻, 1W6 顺时针调到底,然后1K04置“左侧”)不变。
高频信号源频率1.9MHZ左右,幅度200mv(峰—峰值),连接至功放模块输入端(1P05)。
示波器CH1接1P08,CH2接1TP09。
调整高频信号源频率,使功放谐振即输出幅度(1TP08)最大。
改变信号源幅度,即改变激励信号电压U b ,观察1TP09电压波形。
信号源幅度变化。
欠压临界过压弱过压如果波形不对称,应微调高频信号源频率,如果高频信号源是DDS信号源,注意选择合适的频率步长档位(2)集电极电源电压E c 对放大器工作状态的影响保持激励电压U b (1P05电压为200mv峰—峰值)、负载电阻R L =10KΩ 不变(1W6顺时针调到底),改变功放集电极电压E c (调整1W5电位器,使E c 为5—10V变化),观察1TP09电压波形。
实验报告课程名称:高频电子线路实验指导老师:韩杰、龚淑君成绩:__________________ 实验名称:高频功率放大器实验类型:验证型实验同组学生姓名:_一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的1、了解高频功率放大器的主要技术指标——输出功率、中心频率、末级集电极效率、稳定增益或输入功率、线性动态范围等基本概念,掌握实现这些指标的功率放大器基本设计方法,包括输入、输出阻抗匹配电路设计,回路及滤波器参数设计,功率管的安全保护,偏置方式及放大器防自激考虑等。
2、掌握高频功率放大器选频回路、滤波器的调谐,工作状态(通角)的调整,输入、输出阻抗匹配调整,功率、效率、增益及线性动态范围等主要技术指标的测试方法和技能。
二、实验原理高频功率放大器实验电路原理图如下图图1所示。
电路中电阻、电容元件基本上都采用贴片封装形式。
放大电路分为三级,均为共射工作,中心频率约为10MHz。
图1 高频功率放大器第一极(前置级)管子T1采用9018或9013,工作于甲类,集电极回路调谐于中心频率。
第二级(驱动级)管子T2采用3DG130C,其工作状态为丙类工作,通角可调。
通角在45°~60°时效率最高。
调整R W1时,用示波器在测试点P2可看到集电极电流脉冲波形宽度的变化,并可估测通角的大小。
第二级集电极回路也调谐于中心频率。
第三级(输出级)管子T3也采用3DG130C,工作于丙类,通角调在60°~70°左右。
输出端接有T形带通滤波器和π型阻抗变换器,具有较好的基波选择性、高次谐波抑制和阻抗匹配性能。
改变短路器开关K1~K4可观看滤波器的失谐状态,为保证T3管子安全,调整时应适当降低电源电压或减小激励幅度。
改变K5、K6可影响T3与51Ω负载的匹配状态。
1 引言
Protel99SE是应用于Windows9X/2000/NT操作系统下的EDA设计软件,采用设计库管理模式,可以进行联网设计,具有很强的数据交换能力和开放性及3D模拟功能,是一个32位的设计软件,可以完成电路原理图设计,印制电路板设计和可编程逻辑器件设计等工作,可以设计32个信号层,16个电源--地层和16个机加工层[1]。
通信电子电路是通信工程的专业课程。
在无线电广播和通信的发射机中,为了获得大功率的高频信号,必须采用高频功率放大器。
高频功率放大器按工作频带的宽窄,可分为窄带高频功率放大器和宽带高频功率放大器。
窄带高频功率放大器以LC并联谐振回路作负载,因此又把它称为谐振功率放大器。
宽带高频功率放大器以传输线变压器为负载,因此又把它称为非谐振功率放大器[2]。
实习的目的是掌握通信电子电路的实际开发所需的技术,培养动手能力,观察能力,分析和解决实际问题的能力,巩固、加深理论课知识,增加感性认识,进一步加深对通信电子电路应用的理解,提高对电路制造调试能力和系统设计能力。
提高对常见电路故障的分析和判断能;培养学生严肃认真、实事求是的科学态度,理论联系实际的工作作风和辩证思维能力。
1.1 实习目的和要求
(1)掌握高频功率放大器的发射系统电路和接收系统电路的基本组成,理解各个单元模块的工作原理,和调试方法。
(2)学习PROTEL软件的使用方法,掌握电路印刷板的设计与开发方法。
用Protel99SE 绘制高频功率放大器的电路原理图,印刷电路板PCB。
(3)掌握实际电路的制作技术与焊接工艺。
学习电子焊接的基本工艺、操作和元件的基本识别方法。
(4)实践操作,制作电路模块,将电路原理图转换为现实中的电路板并焊接定性。
并调试电路板,查找排线路故障。
(5)通过实习掌握通信电子电路的实际开发,并培养自己的动手能力,观察能力,分析和解决实际问题的能力,巩固、加深理论课知识,增加感性认识,进一步加深对通信电子电路应用的理解,提高对电路制造调试能力和系统设计能力。
提高对常见电路故障的分析和判断能;培养学生严肃认真、实事求是的科学态度,理论联系实际的工作作
风和辩证思维能力。
1.2 实习地点
长沙理工大学云塘校区:综合实验楼4-1,4-2,理科楼B-310
1.3 实习单位和部门
长沙理工大学计通学院
1.4 实习内容
高频功率放大器的制作与调试
2 基本原理
高频功率放大器研究的主要问题是如何获得高效率,大功率输出。
在低频功率放大器中,为提高效率,往往采用乙类(或甲乙类)推挽放大器;而在高频功率放大器中,则常工作在丙类,以求得到比乙类更高的效率。
高频功率放大器常用的有源器件有晶体管与真空管。
输出功率在千瓦以下的功率管常采用晶体管或VMOS场效应管,而对于千瓦以上的功率管主要采用真空管。
高频谐振功率放大器的主要特性是工作于大信号的非线性状态。
数学描述是非线性微分方程。
二阶以上非线性微分方程的求解目前还很困难,因此工程上还普遍采用古典的近似分析方法[2]。
本设计是一款AB类功高频率放大器,作为参考电路是具有一定代表性电路。
可以设计不同的电路来完成实习制作。
本电路特点,工作带宽1~50MHz,12V低电压供电。
L1在FT37-43磁环上,用ф0.3双线绕5圈而成,绕制方法是先把双线拧在一起,然后在磁环上均匀绕5圈而成,取同相点和另一绕组的异相点接在一起做中间点。
L2在FT50-61的磁环上用ф0.6线绕15圈制成。
无极性电容一律采用陶瓷电容,电解电容一律采用旦质电容。
1S1588用来做温度补偿,在制作时一定要把二极管紧贴在三极管散热翼上[3]。
3 设计流程
3.1 原理图设计。