算法与计算复杂性课程(7)概率算法
- 格式:pdf
- 大小:331.92 KB
- 文档页数:54
算法设计与分析课程教学大纲【适用专业】计算机科学与技术【课时】理论课时:32【学分】 2【课程性质、目标和要求】《算法设计与分析》是计算机科学与技术专业的专业课。
无论是计算科学还是计算实践,算法都在其中扮演着重要角色。
本课程的教学目的是讲授在计算机应用中常常遇到的实际问题的解法,讲授设计和分析各种算法的基本原理、方法和技术,培养学生对算法复杂性进行正确分析的能力。
课程基本要求是⑴掌握算法分析的基本概念和理论。
⑵掌握算法设计技术和分析算法以及算法复杂性。
【教学时间安排】本课程计 2 学分,理论课时32, 学时分配如下:【教学内容要点】第一章算法引论一、学习目的要求1.了解算法的计算复杂性分析方法2.理解算法分析的基本理论3.掌握算法分析的基本概念二、主要教学内容1. 算法的基本概念2. 表达算法的抽象机制3. 采用Java语言与自然语言相结合的方式描述算法的方法4. 算法的计算复杂性分析方法第二章递归与分治策略一、学习目的要求1.理解典型范例中递归与分治策略应用技巧2.掌握递归与分治策略3.掌握数学归纳法证明算法正确性方法二、主要教学内容1. 递归的概念2. 分治法的基本思想3. 二分搜索技术4. 大整数的乘法5. Strassen阵乘法6. 棋盘覆盖7. 合并排序8. 快速排序9. 线性时间选择10. 最接近点对问题11. 循环赛日程表第三章动态规划一、学习目的要求1.理解典型范例中动态规划算法的设计思想2.掌握动态规划算法的基本要求以及算法的设计要点二、主要教学内容1. 矩阵连乘问题2. 动态规划算法的基本要素3. 最长公共子序列4. 最大子段和5. 凸多边形最优三角剖分6. 多边形游戏7. 图像压缩8. 电路布线9. 流水作业调度10. 0—l背包问题11. 最优二叉搜索树12. 动态规划加速原理三、课堂讨论选题1. 最长公共子序列2. 0—l背包问题第四章贪心算法一、学习目的要求1.了解贪心算法的理论基础及基本要素2. 理解典型范例中贪心算法的设计思想3. 掌握贪心算法的设计要点二、主要教学内容1. 活动安排问题2. 贪心算法的基本要素3. 最优装载4. 哈夫曼编码5. 单源最短路径6. 最小生成树7. 多机调度问题8. 贪心算法的理论基础三、课堂讨论选题1. 最优装载2. 单源最短路径第五章回溯法一、学习目的要求1.理解回溯法的效率分析方法2.掌握回溯法的算法框架和应用技巧二、主要教学内容1. 回溯法的算法框架2. 装载问题3. 批处理作业调度4. 符号三角形问题5. n后问题6. 0—l背包问题7. 最大团问题8. 图的m着色问题9. 旅行售货员问题10. 圆排列问题11. 电路板排列问题12. 连续邮资问题13. 回溯法的效率分三、课堂讨论选题1. 0—l背包问题2. 图的m着色问题第六章分支限界法一、学习目的要求1.理解分支限界法的基本思想2.掌握典型范例中分支限界法的应用技巧二、主要教学内容1. 分支限界法的基本思想2. 单源最短路径问题3. 装载问题4. 布线问题5. 0-1背包问题6. 最大团问题7. 旅行售货员问题8. 电路板排列问题9. 批处理作业调度三、课堂讨论选题1. 0-1背包问题2. 批处理作业调度第七章概率算法一、学习目的要求1.理解概率算法的基本思想2.掌握典型范例中概率算法的应用技巧二、主要教学内容1. 随机数2. 数值概率算法3. 舍伍德算法4. 拉斯维加斯算法5. 蒙特卡罗算法第八章 NP完全性理论一、学习目的要求1.了解P类与NP类问题2.了解典型的NP完全问题二、主要教学内容1. 计算模型2. P类与NP类问题3. NP完全问题4. 一些典型的NP完全问题第九章近似算法一、学习目的要求1.掌握近似算法的基本思想2.掌握常用近似算法的应用二、主要教学内容1. 近似算法的性能2. 顶点覆盖问题的近似算法3. 旅行售货员问题近似算法4. 集合覆盖问题的近似算法5. 子集和问题的近似算法第十章算法优化策略一、学习目的要求1.掌握算法优化策略2.掌握算法优化的基本方法二、主要教学内容1. 算法优化策略的比较与选择2. 动态规划加速原理3. 问题的算法特征4. 优化数据结构5. 优化搜索策略【教学(实验)内容要点】算法设计与分析实验是算法设计与分析课的一个实践性教学环节。
如何迅速计算复杂的概率问题概率问题在数学和统计学中扮演着重要的角色,但是对于一些复杂的概率问题,我们可能会感到头疼。
然而,有一些技巧和方法可以帮助我们迅速计算复杂的概率问题。
本文将介绍一些这样的方法,以帮助您更好地解决概率问题。
一、理解问题的要求在解决任何概率问题之前,我们首先需要清楚地理解问题的要求。
我们需要弄清楚问题中涉及到的事件、概率和相关的条件。
通过仔细阅读问题,理解问题的核心要求,可以帮助我们更好地解决问题。
二、使用基本的概率公式对于一些简单的概率问题,我们可以使用基本的概率公式来计算。
例如,如果我们要计算一个事件发生的概率,可以使用下面的公式:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A中有利的结果的个数,n(S)表示样本空间中的总结果数。
通过使用这个公式,我们可以计算出事件发生的概率,从而解决一些简单的概率问题。
三、使用排列组合对于一些涉及到顺序和组合的概率问题,我们可以使用排列组合的方法来解决。
排列指的是从一组元素中选取一部分元素的顺序排列的方法;组合指的是从一组元素中选取一部分元素的组合方式。
例如,如果我们要计算从10个不同的球中选取3个球的排列数,可以使用排列公式:P(n,r) = n! / (n-r)!其中,P(n,r)表示从n个元素中选取r个元素的排列数,!表示阶乘。
同样地,如果我们要计算从10个不同的球中选取3个球的组合数,可以使用组合公式:C(n,r) = n! / (r!(n-r)!)通过使用排列组合的方法,我们可以快速计算出一些涉及到顺序和组合的概率问题。
四、使用条件概率和贝叶斯定理在一些复杂的概率问题中,我们可能需要考虑到条件概率和贝叶斯定理。
条件概率是指在发生了某个事件的条件下,另一个事件发生的概率。
贝叶斯定理是一个重要的概率公式,可以用于计算在给定一些条件下的事件发生的概率。
条件概率和贝叶斯定理可以帮助我们解决一些复杂的概率问题,尤其是当涉及到多个事件和条件时。
1、概率算法:允许算法在执行的过程中随机的选择下一个计算步骤。
2、在多数情况下,当算法在执行过程中面临一个选择是:随机性选择常比最优选择省时,因此概率算法可在很大程度上降低算法复杂性。
3、概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完全不同的效果(所需时间或计算结果)。
4、概率算法包括:▪数值概率算法:求解数值问题的近似解,精度随计算时间增加而不断提高▪舍伍德算法:消除算法最坏情形行为与特定势力之间的关联性,并不提高平均性能,也不是刻意避免算法的最坏情况行为▪拉斯维加斯算法:求解问题的正确解,但可能找不到解▪蒙特卡罗算法:求解问题的准确解,但这个解未必正确,且一般情况下无法有效判定正确性5、随机数:随机数在概率算法设计中扮演着十分重要的角色。
在现实计算机上无法产生真正的随机数,因此在概率算法中使用的随机数都是一定程度上随机的,即伪随机数。
6、线性同余法是产生伪随机数的最常用的方法。
7、数值概率算法:通常用于数值问题的求解中,求解数值问题的近似解,精度随计算时间增加而不断提高例如:设有一半径为r的圆及其外切四边形。
向该正方形随机地投掷n个点。
设落入圆内的点数为k。
由于所投入的点在正方形上均匀分布,因而所投入的点落入圆内的概率为224rr∏。
所以当n足够大,4kn∏=程序一:double Darts(int n){ // 用随机投点法计算π值static RandomNumber dart; int k=0;for (int i=1;i <=n;i++) {double x=dart.fRandom(); double y=dart.fRandom(); if ((x*x+y*y)<=1) k++;}return 4*k/double(n);}计算定积分,同样的道理可以阐述到10()I f x dx=⎰表示曲线以下面积,那么落入曲线下面积的概率为()11000{()}()f xrP y f x dydx f x dx≤==⎰⎰⎰,即可知I mn≈8、舍伍德算法:设A 是一个确定性算法,当它的输入实例为x 时所需的计算时间记为tA(x)。
算法的计算复杂性概念
计算复杂性是一个相当普遍的概念,用来衡量算法的复杂程度及其所需要的计算和存储资源。
它指出了通过解决一个特定问题所需要的资源数量和时间,是计算机科学领域中应用非常广泛的计算时间和空间复杂度理论。
计算复杂性的基本思想是:给定的算法的运行时间,由其所执行的基本步骤的重复次数决定。
这些步骤机会包括读写输出、内存操作、比较和逻辑判断等。
每一次的重复,都会消耗算法所需的资源。
算法的运行时间,在某程度上可以用消耗的资源数量来衡量。
计算复杂性概念被用来衡量算法空间和时间复杂度,以及评价算法效率,它是一种定量量度。
运行时间和空间复杂度由大O表示法来表示,Big O表示法在数学里描述函数增加量的时候,使用主要步骤多少来表示算法的复杂程度。
算法中最耗时的基本步骤是核心步,而计算复杂性可以衡量算法的效率,并评估算法的运行性能。
计算复杂性的概念历经多年,今天已经成为计算机科学领域的核心技术,深受计算性能分析专家、软件开发者和算法设计者的重视。
它不仅能够帮助识别算法效率的关键瓶颈,而且能够用精准的度量标准来比较两个算法的性能,帮助推进算法的改进,提高计算性能。
因此计算复杂性是一个极为重要的计算机科学概念,它能够用精确的方式衡量算法的复杂程度,用于评估算法的性能,以及帮助算法设计者和开发者识别算法缺陷并进行改进。