五年级下册第二单元 因数和倍数
- 格式:doc
- 大小:29.50 KB
- 文档页数:6
一、倍数与因数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。
例如:6是倍数、3和2是因数。
(×)改正:6是3和2的倍数,3和2是6的因数。
练习:(1)8×5=40,()和()是()的因数,()是()和()的倍数。
(2)因为36÷9=4,所以()是()和()的倍数,()和()是()的因数。
(3)在18÷6=3中,18是6的(),3和6是()的()。
(4)在14÷7=2中,()能被()整除,()能整除(),()是()的倍数,()是()的因数。
(5)若A÷B=C(A、B、C都是非零自然数),则A是B的()数,B是A的()数。
(6)如果A、B是两个整数(B≠0),且A÷B=2,那么A是B的,B是A的。
(7)判断并改正:因为7×6=42,所以42是倍数,7是因数。
()因为15÷5=3,所以15和5是3的因数,5和3是15的倍数。
()5是因数,15是倍数。
()甲数除以乙数,商是15,那么甲数一定是乙数的倍数。
()(8)甲数×3=乙数,乙数是甲数的()。
A、倍数B、因数C、自然数【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。
例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。
因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。
是错误的说法。
练习:(1)有5÷2=2.5可知()A、5能被2除尽B、2能被5整除C、5能被2整除D、2是5的因数,5是2的倍数(2)36÷5=7……1可知()A、5和7是36的因数B、5能整除36C、36能被5除尽D、36是5的倍数(3)属于因数和倍数关系的等式是()A、2×0.25=0.5B、2×25=50C、2×0=0【知识点3】没有前提条件确定倍数与因数例如:36的因数有()。
《倍数和因数》数学说课稿12篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!《倍数和因数》数学说课稿12篇《倍数和因数》数学说课稿1一、说目标《因数和倍数》是人教版义务教育教科书小学数学五年级下册第二单元内容,是小学阶段数与代数部分最重要的知识之一、也是在学生初步认识整数的基础上,探究其性质。
五年级下册数学第二单元知识点整理(因数和倍数)1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。
如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。
5、自然数按因数的个数来分:质数、合数、1、0四类。
质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1:只有1个因数。
“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4,连续的两个质数是2、3。
因数和倍数的教案(推荐13篇)因数和倍数的教案第1篇教学内容:人教版小学数学五年级下册第二单元第5第6页《因数与倍数》教材分析:整除概念是贯穿这部分教材的一条主线。
签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。
因此,教材中删去了“整除”的数学化定义,而是借助整除的模式a×b=c 直接引出因数和倍数的概念。
学情分析:因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的奇数、偶数、质数、合数等概念的理解也是水到渠成。
要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。
数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
教学目标:1.学生掌握找一个数的因数,倍数的方法。
2.学生能了解一个数的因数是有限的,倍数是无限的;能熟练地找一个数的因数和倍数。
3.培养学生的观察能力。
教学重点:掌握找一个数的因数和倍数的方法。
教学难点:能熟练地找一个数的因数和倍数。
教学准备:多媒体课件教学过程:一、自主探索1、出示书上主题图,学生列出乘法算式2×6=12,在这里,2和6是12的因数。
12是2的倍数,也是6的倍数。
(教师板书因数,倍数)2、出示书中主题图,学生列出乘法算式。
3×4=12,能试着说一说谁是谁的因数,谁是谁的倍数吗?学生口答,巩固因数和倍数的含义?3、两个数在什么情况下才能说是因数和倍数关系?能不能说3是因数,12是倍数?为什么?学生发表自己的见解。
五年级下册数学因数与倍数的知识点一、因数的概念与性质在数学中,我们经常会用到因数和倍数的概念。
因数指的是能够整除某个数的数,而倍数是指某个数的整数倍。
因数和倍数在数学运算中起着重要的作用。
1.1 因数的定义因数是能够整除某个数的数。
例如,4是12的因数,因为12 ÷ 4 = 3,能够整除。
同时,12也是自身的因数,因为12 ÷ 12 = 1,也能够整除。
1.2 因数的性质(1)每个数都至少有两个因数,即1和它本身。
例如,5的因数是1和5,因为5 ÷ 1 = 5 和 5 ÷ 5 = 1。
(2)除数一定是它的因数,因为如果一个数能被另一个数整除,那么这个数就是被除数的因数。
例如,8 ÷ 2 = 4,所以2是8的因数。
(3)一个数的因数是有限的,不能无限增大。
例如,12的因数是1、2、3、4、6和12,而不是无限的。
二、因数与倍数的关系因数和倍数之间有着密切的联系。
了解因数和倍数之间的关系,对于数学运算和解题非常有帮助。
2.1 最大公因数两个或多个数的最大公因数指的是能够同时整除这些数的最大正整数。
例如,8和12的最大公因数是4,因为它们的公因数有1、2、4,但没有更大的公因数。
2.2 最小公倍数两个或多个数的最小公倍数指的是能够同时被这些数整除的最小正整数。
例如,4和6的最小公倍数是12,因为它们的公倍数有12、24,但没有更小的公倍数。
三、因数与倍数在数学运算中的应用因数和倍数在数学运算中经常会被使用到,下面举几个实际问题来说明其应用。
3.1 判断因数通过判断一个数是否为另一个数的因数,可以帮助我们确定两个数之间的整除关系以及其特性。
例如,我们可以通过判断一个数是否是偶数的因数,来确定该数是否为偶数。
3.2 求最大公因数当我们需要求两个或多个数的最大公因数时,可以利用因数的性质,列出所有可能的因数,并找出其中的最大值。
通常使用的方法有列举法、分解质因数法等。
人教版五年级下册数学第二单元知识点易错点汇总一、倍数与因数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。
例如:6是倍数、3和2是因数。
(×)改正:6是3和2的倍数,3和2是6的因数。
(1)若A÷(A、B、C都是非零自然数),则A是B的()数,B是A的()数。
(2)如果A、B是两个整数(B≠0),且A÷B=2,那么A是B 的,B是A的。
(3)甲数×3=乙数,乙数是甲数的()。
A、倍数B、因数C、自然数【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。
例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。
因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。
是错误的说法。
练习:(1)有5÷2=2.5可知()A、5能被2除尽B、2能被5整除C、5能被2整除D、2是5的因数,5是2的倍数(2)36÷5=7……1可知()A、5和7是36的因数B、5能整除36C、36能被5除尽D、36是5的倍数(3)属于因数和倍数关系的等式是()A、2×0.25=0.5B、2×25=50C、2×0=0【知识点3】没有前提条件确定倍数与因数例如:36的因数有()。
确定一个数的所有因数,我们应该从1的乘法口诀一次找出。
如:1×36=36、2×18=36、3×12=36、4×9=36、6×6=36因此36的所有因数为:1、2、3、4、6、9、12、18、36重复的和相同的只算一个因数。
一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。
例如:7的倍数()。
确定一个数的倍数,同样依据乘法口诀,如:1×7=7、2×7=14、3×7=21、4×7=28、5×7=35……还有很多。
第二单元因数与倍数知识要点一、因数和倍数的关系【知识点1】在整数除法里,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
两个条件:整数除法,商是整数而没有余数。
因数与倍数之间的关系是相互的,不能单独存在。
只能说谁是谁的因数,谁是谁的倍数。
不能说谁是因数,谁是倍数。
例如:12÷2=6 2和6是12的因数,12是2和6的倍数。
【知识点2】在研究因数和倍数的时候,必须是在整数除法里。
例如:15÷2.5=6 2.5和6是15的因数,15是2.5和6的倍数。
( ╳ ) 这句话是错误的。
【知识点3】确定一个数的所有因数,让这个数做被除数,除数从1开始写除法算式,写到算式重复就写全,从小到大写下除数和商。
例如:24的因数有()。
24÷1=2424÷2=1224÷3=824÷4=624÷6=4 重复了24的因数有:1、2、3、4、6、8、12、24。
【知识点4】确定一个数的倍数,就用这个数分别乘1、2、3、4、5……所得的乘积就是要求的倍数。
如:1×7=72×7=143×7=214×7=285×7=35……7的倍数有:7、14、21、28、35、42……【知识点5】一个数的因数的个数是有限的,一个数的最小因数是1,最大的因数是它本身。
例如:7的最小因数是1,最大的因数是7。
【知识点6】一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
例如:7的最小的倍数是7,没有最大的倍数。
【知识点7】关于因数和倍数的一些概念性问题1、1是任何整数(0除外)的因数。
也是任何整数(0除外)的最小因数。
2、一个数的因数最少有1个,这个数是1。
除1以外的任何整数至少有两个因数(0除外)3、一个数的因数都小于等于它本身,一个数的倍数都大于等于它本身。
★4、一个数的最小倍数 = 一个数的最大因数 = 这个数★5、如果a和b都是c的倍数,那么a-b和a+b一定也是c的倍数。
五年级下册第二单元因数和倍数
一、教学内容
1.因数和倍数
2. 2、5、3的倍数的特征
3.质数和合数
二、教学目标
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象能力。
三、编排特点
1.精简概念,减轻学生记忆负担。
(1)不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
(2)不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
(3)公因数、最大公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
2.注意体现数学的抽象性。
数论知识本身具有抽象性。
学生到了高年级也应注意培养其抽象思维。
四、具体编排
1.因数和倍数
因数和倍数的概念:
过去:用b÷a=n表示b能被a整除,b÷n=n 表示b能被n整除。
现在:用na=b直接引出因数和倍数的概念。
(1)用2×6=12给出因数和倍数的概念。
(2)用3×4=12进一步巩固上述概念。
(3)让学生利用因数和倍数的概念自主发现12的其他因数。
(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。
(5)说明本单元的研究范围。
注意以下几点:
(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。
(2)因数和倍数是一对相互依存的概念,不能单独存在。
(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。
(4)注意区分“倍数”与前面学过的“倍”的联系与区别。
例1:一个数的因数的求法
(1)可用不同的方法求出18的因数(列出积是18的乘法算
式或列出被除数是18的除法算式),但应引导学生有序思考。
(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。
一个数的因数的特点:
(1)最大因数是其自身,最小因数是1。
(2)因数个数有限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
例2:一个数的倍数的求法
(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。
(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。
做一做
与例1结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征做准备。
一个数的倍数的特点:
(1)最小倍数是其自身,没有最大的倍数。
(2)因数个数无限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
2.2、5、3的倍数的特征
因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排
3的倍数的特征。
本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。
2的倍数的特征
(1)从生活情境“双号”引入。
(2)观察2的倍数的个位数,总结出2的倍数的特征。
(3)介绍奇数和偶数的概念。
(4)可让学生随意找一些数进行验证,但不要求严格的证明。
5的倍数的特征
(1)编排方式与2的倍数的特征类似。
(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。
3的倍数的特征
(1)强调自主探索,让学生经历观察――猜想――推翻猜想――再观察――再猜想――验证的过程。
(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。
(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。
3.质数和合数
质数和合数的概念:
(1)根据20以内各数的因数个数把数分成三类:1、质数、
合数。
(2)可任出一个数,让学生根据概念判断其为质数还是合数。
例1:找100以内的质数
(1)方法多样。
可以根据质数的概念逐个判断,也可用筛法。
(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。
五、教学建议
1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。
从因数和倍数的含义去理解其他的相关概念。
要练说,得练看。
看与说是统一的,看不准就难以说得好。
练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。
在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记
硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
2.要注意培养学生的抽象思维能力。
一般说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。