塔机附墙设计计算说明书
- 格式:docx
- 大小:137.77 KB
- 文档页数:8
QTZ400塔式 起重机附墙校核验算一、附墙外载荷计算 1.塔机自重产生的倾翻弯矩m N 4511707.16m kg 716.451170⋅=⋅=自M2.吊重产生的倾翻弯矩m N 4175000⋅=吊M3.塔机倾翻弯矩m N 16.8686707⋅=M4.风载集中载荷计算N 41.55230=WII F5.风压系数21N/m 5.557=⋅=q k q h塔身上的线载荷N/m 67.447803.05.557q '=⨯=⋅=A q设定风载荷沿垂直于起重臂方向,附墙平面X 方向的载荷由倾翻弯矩产生,Y 方向的载荷由风载荷产生。
附墙计算时按工程简化计算,即只考虑最上面的3道附墙。
附墙载荷计算简图如右图所示:二、附墙X 方向载荷计算0=∑M ;0221=⋅-⋅+-L F L F M0=∑F ;0321=+-FF F02=θ0-222=⋅∆δR222216262L EI M L L LEI L M =⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅=∆ EIL EI L X L L EI L X 48482431223322222==⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛⋅=δ 52.3257518016.868670733222=⨯==∆=L M R δ N 52.325751222=⋅=R X FN 60.271459221=+=LLF M F N 92.54291123=-=F F F故附墙X 方向的载荷最大值为325751.52N 。
三、附墙Y 方向的载荷计算0=∑M02q 21212=⋅-⋅+-⋅-L F L F L l F WII0=∑F0q 321=--+-L F F F F WII02=θ0-222=⋅∆δR⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅⋅=∆l F l L EI L L L L L L L LEI L l L L LEI L l F WII W 3q 23q 854822224EI 2L q 262q 21262222323222222EIL EI L X L L EI L X 48482431223322222==⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⋅=δ 86.1761368016.868670733222=⨯==∆=L M R δ N 86.176136222=⋅=R X FN 81.1395632q 21221=⋅++⋅=L LF l l F F WII N 26.154477q 2q 123=-+⋅++=F l L F F F WII四、塔身扭矩由计算说明书可查到塔身回转扭矩为m N 99.340035⋅=M 五、附着装置各撑杆内力计算 附着装置计算简图如下图所示:由于附着装置为四撑杆超静定结构,因此列力法方程:01111=∆+∆=∆P∑⋅⋅=∆EAl N N ii iP P 1 1211111X EAlN X i i ⋅⋅=⋅=∆∑δN 111==N NN 2645sin 60sin 32-=-==N N对C 点简化力矩:014=-⋅=∑M L N MP CN 69.16092514==L MN P 对B 点简化力矩:02245=⋅-+⋅+⋅=∑L N M L F L F MP WII X BN 12.3919532452=+⋅+⋅=L ML F L F N WII X P对A 点简化力矩:0342345=⋅-⋅-+⋅+⋅=∑L N L N M L F L F MP P WII X AN 56.189091234453=⋅-+⋅+⋅=L L N M L F L F N P WII X PEAEA l N N i i iP P 35.24641971-=⋅⋅=∆∑EAEA l N i i 24.31211=⋅=∑δ 56.788791111=∆=δPXN 56.788791=NN78.29534556.788792612.3919531222=⨯-=⋅+=X N N N P N22.9248456.788792656.1890911333=⨯-=⋅+=X N N N P N25.23980556.78879169.1609251444=⨯+=⋅+=X N N N P六、附墙杆结构验算 1)附墙杆参数附墙杆材料选用Q235角钢组成的格构柱。
塔吊附着计算塔机安装位置至建筑物距离超过使用说明规定,需要增长附着杆或附着杆与建筑物连接的两支座间距改变时,需要进行附着的计算。
主要包括附着杆计算、附着支座计算和锚固环计算。
一、支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
附着式塔机的塔身可以视为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:风荷载标准值应按照以下公式计算W k=W0×μz×μs×βz其中 W0——基本风压(kN/m2),按照《建筑结构荷载规范》(GBJ9)的规定采用:W0= 0.55kN/m2;μz——风荷载高度变化系数,按照《建筑结构荷载规范》(GBJ9)的规定采用:μz=2.340;μs——风荷载体型系数:U s=0.065;βz——高度Z处的风振系数,βz=0.70风荷载的水平作用力N w=W k×B×K s其中 W k——风荷载水平压力,W k=0.059kN/m2B——塔吊作用宽度,B=1.50mK s——迎风面积折减系数,K s=0.20经计算得到风荷载的水平作用力 q=0.02kN/m风荷载实际取值 q=0.02kN/m塔吊的最大倾覆力矩 M=1000kN.m计算结果: N w=107.477kN二、附着杆内力计算计算简图:计算单元的平衡方程为:其中:三、第一种工况的计算塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。
将上面的方程组求解,其中θ从0-360循环,分别取正负两种情况,分别求得各附着最大的轴压力和轴拉力:杆1的最大轴向压力为:139.88 kN杆2的最大轴向压力为:89.06 kN杆3的最大轴向压力为:43.98 kN杆1的最大轴向拉力为:122.71 kN杆2的最大轴向拉力为:30.50 kN杆3的最大轴向拉力为:112.70 kN四、第二种工况的计算塔机非工作状态,风向顺着起重臂,不考虑扭矩的影响。
塔机附着验算计算书塔机附着验算计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《钢结构设计规范》GB50017-2003一、塔机附着杆参数塔机型号QTZ40(浙江建机)塔身桁架结构类型型钢塔机计算高度H(m) 30 塔身宽度B(m) 1.6 起重臂长度l1(m) 57 平衡臂长度l2(m) 12.9 起重臂与平衡臂截面计算高度h(m) 1.06 工作状态时回转惯性力产生的扭矩标准值T k1(kN·m)60工作状态倾覆力矩标准值M k(kN·m) 60 非工作状态倾覆力矩标准值M k'(kN*m)60附着杆数四杆附着附墙杆类型Ⅰ类附墙杆截面类型格构柱塔身锚固环边长C(m) 1.8附着次数N 4附着点1到塔机的横向距离a1(m) 9.5 点1到塔机的竖向距离b1(m) 9.5 附着点2到塔机的横向距离a2(m) 5.7 点2到塔机的竖向距离b2(m) 5.7 附着点3到塔机的横向距离a3(m) 5.7 点3到塔机的竖向距离b3(m) 5.7 附着点4到塔机的横向距离a4(m) 9.5 点4到塔机的竖向距离b4(m) 9.5 工作状态基本风压ω0(kN/m2) 0.2 非工作状态基本风压ω0'(kN/m2) 1塔身前后片桁架的平均充实率α00.35第N次附着附着点高度h1(m)附着点净高h01(m)风压等效高度变化系数μz工作状态风荷载体型系数μs非工作状态风荷载体型系数μs'工作状态风振系数βz非工作状态风振系数βz'工作状态风压等效均布线荷载标准值q sk非工作状态风压等效均布线荷载标准值q sk'第1次附着9 9 0.65 1.95 1.95 1.977 1.977 0.269 1.347第2次附着15 6 0.734 1.95 1.95 1.901 1.963 0.293 1.51第3次附着20 5 0.738 1.95 1.95 1.825 1.934 0.282 1.496第4次附25 5 0.751 1.95 1.95 1.798 1.944 0.283 1.53 着悬臂端30 5 0.774 1.95 1.95 1.79 1.945 0.29 1.578 Array塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.79×0.774×1.95×0.2×0.35×1.06=0.16kN/m2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.16×572-1/2×0.16×12.92=246.607kN·m集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(60+246.607)=275.946kN·m3、附着支座反力计算计算简图塔身上部第一附着点(塔身悬臂支承端)的支承反力最大,应取该反力值作为附着装置及建筑物支承装置的计算载荷。
塔机附墙设计计算说明书一、工程概述本工程位于惠南镇中心位置,东南面临南汇中学体育场,在体育场的西北角有一信号塔,距小区5号楼南外墙皮约20米左右,东北面临近复旦大学太平洋金融学院,南侧临拱北路,西侧临观海路。
本项目总用地面积平方米,总建筑面积平方米(含保温建筑面积)。
地上总建筑面积平方米(含保温建筑面积),包含4栋15层高层住宅,5栋16层高层住宅,2栋11层高层住宅,1栋5层多层住宅,3栋6层的多层住宅,1栋2层的商业配套用房及高层住宅群房的配套公建,地下总建筑面积平米。
本工程8#楼和9#楼合用安装一台南通惠尔建设机械有限公司出厂的QTZ63型(5510型)塔式起重机,臂长为58米,塔吊设置在9号楼东侧,(图1)安装高度超过使用说明书规定的最大独立高度,需进行附墙锚固,楼层高度为,塔机最大安装高度约为53m,设置有2道附墙,如图2所示。
生产厂家在使用说明书中标明了建筑物外墙与塔吊中心的距离在左右,但由于该工程建筑物表面结构及工程施工工艺等因素的影响,塔吊安装后,塔吊中心距离建筑物外墙。
所采用的附墙杆件的长度以及与建筑物间的夹角,与原说明书的规定有所不同。
为了保证塔吊安全使用,我们对附墙杆件及其连接件作了稳定性及强度验算。
图1 22号楼1#塔吊布置图图2 塔吊附墙示意图二、编制依据本方案编制主要依据为:GB/T 13752-1992《塔式起重机设计规范》、GB 50017《钢结构设计规范》、GB/T 3811-2008 《起重机设计规范》和永发QTZ63型塔式起重机使用说明书。
三、设计方案1.原说明书要求按照产品安装使用说明书:附着架由四根撑杆和一套环梁等组成,它主要是把塔机固定在建筑物的柱子上,起着依附作用。
(见图3)图3 原附着架示意图2.改进设计方案根据现场实际情况,塔机中心到连接点距离为米。
设计方案如图4所示。
图4 塔吊附墙杆设置图四、计算说明1.计算附墙架对塔身的支反力假设塔身为一连续梁结构(见图5),以此进行结构的受力分析,可用力法求出附墙受力。
塔吊附墙长度
摘要:
一、塔吊附墙长度的定义和作用
二、塔吊附墙长度的计算方法
三、塔吊附墙长度的注意事项
四、结论
正文:
塔吊附墙长度是指塔吊在建筑物上附着时,从塔吊中心点到建筑物墙面的垂直距离。
这个长度对于塔吊的安全使用和建筑物的结构安全至关重要。
塔吊附墙长度的计算方法主要取决于建筑物的结构、塔吊的类型和施工要求。
一般来说,计算塔吊附墙长度的基本公式为:附墙长度= 建筑物高度- 塔吊顶部离地面高度。
在实际操作中,还需要考虑到塔吊臂的长度、建筑物的形状和尺寸等因素。
在确定塔吊附墙长度时,需要注意以下几点:
1.确保塔吊附墙长度符合相关安全规定和标准,避免因过长或过短而导致的安全事故。
2.考虑建筑物的承载能力,防止因塔吊附墙长度不当导致建筑物结构受损。
3.根据施工进度和实际情况,适时调整塔吊附墙长度,以提高施工效率。
总之,塔吊附墙长度的合理计算和调整对于确保施工安全和提高施工效率具有重要意义。
晋江宝龙城市广场塔机附墙杆设计计算书编制人:审核人:编制单位:厦门中环建建设集团有限公司编制时间: 2013年8月16日塔式起重机附墙杆设计计算书本计算书主要依据施工图纸及以下规范及参考文献编制:《塔式起重机设计规范》(GB/T13752-1992)、《建筑结构荷载规范》(GB50009-2001)、《建筑安全检查标准》(JGJ59-2011)、《建筑施工手册》、《钢结构设计规范》(GB50017-2003)等编制。
塔机安装位置至附墙或建筑物距离超过使用说明规定时,需要增设附着杆,附着杆与附墙连接或者附着杆与建筑物连接的两支座间距改变时,必须进行附着计算。
主要包括附着支座计算、附着杆计算、锚固环计算。
一、工程概况1、工程名称:晋江宝龙城市广场3#地块2、工程地点:晋江市青阳街道陈村片区长兴路以北3、使用单位:中建海峡建设发展有限公司厦门分公司4、设计单位:厦门中建建建设集团有限公司5、塔机的安装高度:6、出厂编号:7、备案证号:二、塔机风荷载计算1、风荷载标准值计算垂直于塔机表面上的风载荷标准值k W ,应按下式计算:0z 8.0w W z s k μμβ=式中0.8为风压修正系数。
一般塔机在工程上的使用时间为2~3年,按30年一遇的基本风压计算已属安全(国家现行行业标准《建筑施工扣件式钢管脚手架安全技术规范》JGJ130规定按30年一遇的基本风压计算,且乘以0.7修正系数。
)本规程取50年一遇的基本风压w0,同时考虑风荷载的风振动力作用传至基础时将会削弱,故此对风压折减修正。
式中: z β------风振系数; s μ------风载荷体型系数; z μ------风压等效高度变化系数; 0w ------基本风压(2/m kN )。
2、独立塔机工作状态时风荷载计算工作状态时塔机风荷载的等效均布线荷载标准值按下列公式计算:H A W q k sk /= BH A 0α=式中:sk q ——塔机工作状态时,风荷载的等效均布线荷载标准值(kN/m ); 0w ——塔机工作状态时,基本风压值取0.20 kN/m 2; A ——塔身单片桁架结构迎风面积(m 2); 0α——塔身前后片桁架的平均充实率; B ——塔身桁架结构宽度(m ); H ——塔机独立状态下计算高度(m )。
塔吊附墙验算计算书塔机附着验算计算书本文的计算依据为《塔式起重机混凝土基础工程技术标准》/T187-2019和《钢结构设计标准》GB-2017.一、塔机附着杆参数塔机型号为QTZ63(TC5610)-中塔身桁架结构类型,计算高度为98m,起重臂长度为56m,起重臂与平衡臂截面计算高度为1.06m。
塔身宽度为1.6m,平衡臂长度为12.9m。
工作状态时扭矩标准值Tk1为269.3kN·m,包含风荷载。
非工作状态下不平衡自重引起的倾覆力矩标准值Mk'为1940kN·m(反向),工作状态下不平衡自重引起的倾覆力矩标准值Mk为1720kN·m。
附着杆数为四杆附着,附墙杆截面类型为格构柱,附墙杆类型为Ⅰ类,塔身锚固环边长为1.8m。
二、风荷载及附着参数附着次数为2,附着点1到塔机的横向距离为5m,附着点2到塔机的横向距离为2.2m,附着点3到塔机的横向距离为2.2m,附着点4到塔机的横向距离为2.2m。
工作状态基本风压ω为0.2kN/m,塔身前后片桁架的平均充实率α为0.35.点1到塔机的竖向距离为2m,点2到塔机的竖向距离为4.8m,点3到塔机的竖向距离为3.2m,点4到塔机的竖向距离为3.2m。
非工作状态基本风压ω'为0.35kN/m。
工作状态和非工作状态的风压等效高、工作状态和非工作状态的附着点高度、附着点净高、工作状态风压等效均布荷载等参数均有具体数值,这里不再赘述。
285.472kN时,支座6处附墙杆内力计算如下:考虑塔机产生的扭矩由支座6处的附墙杆承担,因此需要计算支座6处锚固环的截面扭矩T。
根据扭矩组合标准值T kTk1269.3kN·m,可得到T的值。
同时考虑塔身承受双向的风荷载和倾覆力矩及扭矩,需要将水平内力Nw计算出来。
根据计算简图和塔机附着示意图、平面图,可以得到α和β的值,并用力法计算各杆件轴力。
最终得到支座6处附墙杆的水平内力Nw20.5RE285.472kN。
塔机附着验算计算书一、塔机附着杆参数二、风荷载及附着参数附图如下:塔机附着立面图三、工作状态下附墙杆内力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×1.695×1.206×1.95×0.2×0.35×1.06=0.237kN/m 2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.237×572-1/2×0.237×12.92=365.287kN·m 集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(270+365.287)=571.758kN·m3、附着支座反力计算计算简图剪力图得:R E=77.975kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座4处锚固环截面内力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。
4、附墙杆内力计算支座4处锚固环的截面扭矩T k(考虑塔机产生的扭矩由支座4处的附墙杆承担),水平内力N w=20.5R E=110.273kN。
计算简图:塔机附着示意图塔机附着平面图α1=arctan(b1/a1)=53.241°α2=arctan(b2/a2)=46.353°α3=arctan(b3/a3)=46.353°α4=arctan(b4/a4)=53.241°β1=arctan((b1-c/2)/(a1+c/2))=46.185°β2=arctan((b2+c/2)/(a2+c/2))=46.185°β3=arctan((b3+c/2)/(a3+c/2))=46.185°β4=arctan((b4-c/2)/(a4+c/2))=46.185°四杆附着属于一次超静定结构,用力法计算,切断T4杆并代以相应多余未知力X1=1。
8#(B3)塔吊附墙杆设计1、第三道附墙1.1支座反力计算附着式塔机的塔身可以简化为一个带悬臂的刚性支撑连续梁,其内力及支座反力计算如下:风荷载标准值应按照以下公式计算:ωk=ω0×μz×μs×βz= 0.400×1.170×1.790×0.700 =0.586 kN/m2;其中ω0──基本风压(kN/m2),按照《建筑结构荷载规范》(GBJ9)的规定采用:ω0 = 0.400 kN/m2;μz──风压高度变化系数,按照《建筑结构荷载规范》(GBJ9)的规定采用:μz = 1.790 ;μs──风荷载体型系数:μs = 1.170;βz──高度Z处的风振系数,βz = 0.700;风荷载的水平作用力:q = W k×B×K s = 0.586×1.700×0.200 = 0.199 kN/m;其中 W k──风荷载水平压力,W k= 0.586 kN/m2;B──塔吊作用宽度,B= 1.700 m;K s──迎风面积折减系数,K s= 0.200;实际取风荷载的水平作用力 q = 0.199 kN/m;塔吊的最大倾覆力矩:M = 1743.000 kN·m;弯矩图变形图剪力图计算结果: N w = 121.6407kN ;1.2 附着杆内力计算计算简图:计算单元的平衡方程:ΣF x=0T1cosα1+T2cosα2-T3cosα3=-N w cosθΣF y=0T1sinα1+T2sinα2+T3sinα3=-N w sinθΣM0=0T1[(b1+c/2)cosα1-(α1+c/2)sinα1]+T2[(b1+c/2)c osα2-(α1+c/2)sinα2]+T3[-(b1+c/2) cosα3+(α2-α1-c/2)sinα3]=M w其中:α1=arctan[b1/a1] α2=arctan[b1/(a1+c)] α3=arctan[b1/(a2- a1-c)]第一种工况的计算:塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。
塔吊附墙计划书一、项目背景随着建筑行业的发展,塔式起重机(常称为塔吊)在建筑施工中扮演着重要的角色。
塔吊作为一种起重装置,常常用于在建筑现场进行货物的起卸,其高度和臂长的特点使得其具备较大的作业范围。
然而,在一些狭小的工地或是靠近建筑物的狭窄空间内使用塔吊存在一定的困难,此时需要借助附墙塔吊来解决这个问题。
附墙塔吊是一种特殊设计的塔吊,其特点是安装在建筑物的墙上,能够利用墙体支撑来减轻基础的压力,并提供更灵活的施工空间。
针对这一需求,本文档将详细介绍塔吊附墙的使用计划,并说明其操作流程、安全措施以及施工风险的预防措施。
二、使用计划1. 建筑施工前准备在使用塔吊附墙进行建筑施工前,需要进行以下准备工作: - 根据施工需要选择合适的附墙塔吊型号,并进行购买或租赁; - 对建筑物墙面进行检查,确保墙面结构可以承受塔吊的重量; - 准备相关手续和安全证书,确保施工的合法性和安全性; - 配备专业操作人员,并进行培训,确保其对附墙塔吊的操作技能熟练。
2. 塔吊附墙操作流程塔吊附墙操作流程包括以下几个步骤: 1. 安装塔吊: - 将塔吊组装至预定位置,并固定到墙体上; - 调整塔吊的水平度,保证其稳定性。
2.配置安全设备:–安装塔吊安全防护装置,如防护网等,保障周围人员的安全;–设置塔吊限位装置,防止超载或超范围使用。
3.安全检查:–检查塔吊及附属设备的工作状态,确保其正常运行;–检查操作人员是否熟悉塔吊的操作规程和紧急停机程序。
4.正式操作:–由专业操作人员进行塔吊的起重作业;–遵守作业手册中的操作规程和安全要求。
3. 安全措施为确保塔吊附墙的安全使用,需要采取以下安全措施: - 按照操作手册要求进行定期检查和维护,确保塔吊的正常运行; - 落实安全防护措施,设置警示标示并摆放警示牌,确保周围人员的安全; - 注意天气变化,避免在恶劣天气条件下操作;- 提供清晰的指导标识和操作手册,确保操作人员正确操作。
一、附墙支撑布置附墙支撑设三道。
第一道设于离地33m处,第二道设于63m处,第三道设于70m处。
每道支撑有三根支撑杆,即AC杆,BC杆,及A,D杆,各杆与墙面的夹角大于见相应规定。
二、附墙支撑内力计算1、荷载取值:塔机在33米处设置第一道支撑,当塔机升至70米时需要在63米处设置第二道支撑。
此时塔机在风力作用下第一道支撑承受最大荷载。
最大风力:按10级强风考虑,风速达28.4m/s(通常南京地区按9级强风考虑)。
塔机处于非工作状态。
作用于附墙支撑横向水平力P=17.019T。
2、附墙支撑内力计算:(1)假定塔吊标准节通过附墙架与附墙支撑相连附墙架的刚度很大。
计算不计其变形刚体考虑。
为了计算方便,A,D杆与AC杆,与墙的预埋件不在一处,因AA,距离很近,近似看做同一点,因而将AD杆代替A,D杆。
(2)内力计算切断BC杆,代替轴向拉力NBC(拉为正),其y方向为yBC,x方向为xBC。
对A点取矩为0。
①ΣMA=0-YBC·(5.8348+6.135)-P·(8.07026+1.000)=0YBC=-9.07026*P/11.97=-0.75775PNBCSinα1=yBC得NBC=yBC/Sinα1=-0.75775·P/Sin55.4370=-0.92016PXBC=yBC/tgα1=-0.75775·P/tg55.437=-0.5220P②切断AD杆,用NAD代替(拉为正),其y方向为yAD,x方向为xAD,对C点取力矩为0。
ΣMC=0+yAD(6.13501)-xAD(8.470)-P·1.0=0又因为yAD=tgα2*xAD代入上式得xAD(tgα2×6.13501-8.470)=PxAD(tg63.51×6.13501-8.470)=P xAD=P/(12.3105-8.470)=P/3.8405=0.26038PyAD=tg63.51×0.26038P=0.5224PNAD=yAD/Sinα2=0.5224P/Sin63.51=0.5837P③切断AC杆代以NAC,在y方向yAC,x方向为xAC,对整个塔机平面取平衡体Σx=0-XAD-XAC+XBC+P·Cos4.5886=0-0.26038P-XAC+(-0.5220)P+P·0.9968=0XAC=-0.260389-0.5220P+0.9968P=0.2144PΣy=0-yAD-yAC-yBC+p·Sin4.5886=0-0.5224p-yAC-(-0.755775)P+0.08P=0yAC=0.3154PNA=yAC/Sin54.0834=0.3154P/0.8099=0.3894P以上计算结果列图。
QTZ5513塔吊附着计算一、塔吊情况:塔吊采用广西建工集团建筑机械制造有限公司生产的QTZ80(QTZ5513)型塔吊。
该塔吊标准节中心与建筑物附着点的距离为6.76米,根据建筑物的实际结构现初步确定附墙的附着方案,该方案采用3根拉杆对塔吊进行附着,附着杆与建筑物梁面上的连接钢板(厚20)用双面贴角焊缝焊接,焊缝高度hf=10,焊缝长度320,联接钢板通过8根Φ22钢筋固定在建筑物上,其附着位置参见下图。
二、编制依据:《QTZ80塔式起重机说明书》广西建工集团建筑机械制造有限责任公司;《塔式起重机设计规范》(GB/T13752-1992);《建筑结构荷载规范》(GB50009-2001);《建筑安全检查标准》(JGJ59-99);《建筑施工手册》;《钢结构设计规范》(GB50017-2003)等编制。
三、塔吊附墙杆结构图1、拉杆1结构图:2、拉杆2结构图:3、拉杆3结构图:四、附墙杆内力计算1、支座力计算塔机按照说明书与建筑物附着时,最上面一道附着装置的负荷最大,因此以此道附着杆的负荷作为设计或校核附着杆截面的依据。
附着式塔机的塔身可以视为一个带悬臂的刚性支撑连续梁,其支座反力计算结果如下:①、工作状态:水平力 Nw=190.276 kN,扭矩 Mw=129 kN∙m②、非工作状态:水平力 Nw=205.526 kN2、附墙杆内力力计算①、计算简图:②、计算单元的平衡方程为:T1[(b1 +c/2)cosα1-(a1+c/2)sinα1]+ T2[(b2 +c/2)cosα2- (a2+c/2)sinα2]+ T3[- (b3 +c/2)cosα3+ (a3 -a1 -c/2)sinα3]=M w其中:α1=60°,α2=52°,α3=60°③、工作状态计算塔机满载工作,风向垂直于起重臂,考虑塔身在最上层截面的回转惯性力产生的扭矩和风荷载扭矩。
将上面的方程组求解,其中从0-360循环,分别取正负两种情况,分别求得各附着杆最大的轴压力和轴拉力:杆1的最大轴向压力为:262 kN杆2的最大轴向压力为:189.6 kN杆3的最大轴向压力为:216.2 kN杆1的最大轴向拉力为:262 kN杆2的最大轴向拉力为:189.6 kN杆3的最大轴向拉力为:216.2 kN④、非工作状态计算塔机非工作状态,风向顺着起重臂,不考虑扭矩的影响。
X X区安置小区工程2#塔吊Q T Z80(T C T5512)塔吊附着方案编制单位:广西建工集团建筑机械制造有限责任公司目录一、工程概况: 01、工程项目情况: 02、参建单位概况: 03、塔吊情况: 0二、编制依据: (1)三、塔吊附墙杆结构图 (2)1、拉杆1结构图: (2)2、拉杆2结构图: (3)3、拉杆3结构图: (4)四、附墙杆内力计算 (5)1、支座力计算 (5)2、附墙杆内力力计算 (5)五、附墙杆强度及稳定性验算 (7)1、附墙杆1验算 (7)2、附墙杆2验算 (8)3、附墙杆3验算 (9)4、附墙杆对接焊缝强度验算 (10)5、附墙杆连接耳板焊缝强度验算 (11)六、塔吊附墙杆连接强度计算 (11)七、附着设计与施工的注意事项 (13)一、工程概况:1、工程项目情况:XX安置小区工程总建筑面积约为378890.1㎡(其中地上建筑面积为305876㎡,地下建筑面积为73014㎡);地下1层,地上共有23个单体,16F-23F;建筑高度为52.8m-77.6m。
本工程11#、13#为民用二类建筑,其它为民用二类建筑,钢筋混凝土框剪结构。
质量标准为合格,且不少于3幢创泉州市优质工程。
本工程共使用10台塔吊,选用安装的塔吊为广西建工集团建筑机械制造有限责任公司生产出厂的QTZ80型(8部)和QTZ6015型(2部)塔吊塔式起重机。
2#塔吊QTZ80塔身中心到建筑物距离约5.22米。
2、参建单位概况:工地名称:XX安置小区工程建设单位:XX房地产开发有限公司勘查单位:XX市水电工程勘察院设计单位:XX市城市规划设计研究院监理单位:XX监理有限公司施工单位: XX集团总公司工地地址:XX交汇处3、塔吊情况:2#塔吊采用广西建工集团建筑机械制造有限公司生产的QTZ80(TCT5512)型塔吊。
该塔吊标准节中心与建筑物附着点的距离为5220,根据建筑物的实际结构现初步确定附墙的附着方案,该方案采用3根拉杆对塔吊进行附着,附着杆与建筑物梁面上的连接钢板(厚20)用双面贴角焊缝焊接,焊缝高度h f=12,焊缝长度350,联接钢板通过8根Φ22钢筋固定在建筑物上,其附着位置参见下图。
塔吊附墙计算书塔吊附墙计算书主要用于计算塔吊与建筑物墙壁之间的力学关系。
以下是一份示例的塔吊附墙计算书的内容:1. 塔吊基本信息:- 塔吊型号:__________- 最大起重力矩:__________ kN.m- 靶标高度:__________ m- 安装位置相对建筑物的水平距离:__________ m- 安装位置相对建筑物的垂直高度差:__________ m2. 建筑物信息:- 墙壁材料:__________- 墙壁厚度:__________ m- 墙壁高度:__________ m- 墙壁宽度:__________ m3. 力学计算:a. 悬臂杆件计算:- 计算塔吊与建筑物墙壁的水平距离:__________ m- 计算塔吊与建筑物墙壁的垂直高度差:__________ m- 计算塔吊与建筑物墙壁之间的直线距离:__________ m- 计算塔吊与建筑物墙壁之间的水平力:__________ kN- 计算塔吊与建筑物墙壁之间的垂直力:__________ kNb. 基础计算:- 塔吊基础的尺寸:__________ m x __________ m- 塔吊基础的面积:__________ m²- 塔吊基础的所承受的总载荷:__________ kN- 建筑物墙壁所能承受的最大压力:__________ kN/m²- 塔吊基础所承受的压力:__________ kN/m²- 塔吊基础的安全系数:__________4. 结论:- 塔吊安装位置是否满足安全要求:__________- 若不满足安全要求,需采取的措施:__________注意:以上仅为示例内容,具体的塔吊附墙计算书需要根据实际的工程要求进行设计和填写。
在进行任何工程计算和设计之前,请务必咨询专业工程师的意见。
QTZ80塔机附墙撑杆计算书附墙撑杆计算说明:1、将附墙撑杆支座简化为铰支座。
2、整个附墙撑杆的自重在垂直方向作为均布载荷处理。
3、撑杆水平方向考虑作用均布风载荷。
4、根据水平与垂直两个方向所产生的弯矩,取最大弯矩值验算撑杆整体稳定性。
一、设计参数附墙撑杆轴向力 N 1800Kg撑杆自重 W=4*G1*L+4*G2*L1*n 171.10 KgG1 0.05 Kg/cmG2 0.01 Kg/cm 撑杆主弦杆长度 L 677.6 cm 撑杆缀条长度 L1 54.5 cmn 13.5二、载荷计算撑杆均布载荷 q G=W/L 0.25 Kg/cm 撑杆自重引起的弯矩 M y= q G*L2/2 57969.66 Kg.cm 标准风压值qⅡ0.0025 Kg/cm2撑杆风压高度修正系数 K h 1撑杆风载体形系数 c 1.4撑杆高宽 h 24 cm 撑杆轮廓面积 F=Fx=Fy=ΦL*h 6504.96 cm2撑杆挡风系数Φ0.4风载荷 W f= qⅡ*K h*c*F 22.76736 Kg撑杆风载荷 q f=W f/L 0.0336 Kg/cm 作用在撑杆上的风载荷引起的弯矩Mx=q f*L2/2 7713.582 Kg.cm 三、撑杆截面参数撑杆主弦杆为L63*5角钢,由表查得:主弦杆面积 A1 6.14 cm2主弦杆总面积 A=4* A1 24.57 cm2单肢惯性矩 I x0 23.17 cm4i x 1.94 cmi y0 1.25 cmz0 1.74 cm撑杆缀条为L30*3角钢,由表查得:缀条面积 A1 1.749 cm2主弦杆总面积 A=4*A1 6.996 cm2单肢惯性矩 I x0 1.46 cm4i x 0.91 cmi y0 0.59 cmz0 0.85cm撑杆横截面几何特性I x=I y=4*﹝I x0+A1*(h/2-z0)2﹞2679.32cm4I r=(I x/A)1/2 10.44cm四、撑杆稳定性计算按垂直方向验算撑杆整体稳定性撑杆长细比λx=L/r 64.89〔λ〕 120.00λx<〔λ〕 OK四肢格构构件换算长细比λhx=λhy=〔λx2+40*(A/A1x)〕1/2 67.02偏心率ε1=(M y/N)*(A*(h/2+z0)/I y) 0.30由表查偏心受压构件的稳定系数Φpg 0.50撑杆整体稳定性验算σ=N/Φpg*A 1465.08Kg/cm2〔σ〕 1700Kg/cm2σ<〔σ〕 OK五、单肢稳定性验算省略计算注:QTZ63塔机附墙撑杆计算书(四撑杆)因与QTZ80差别不大且小于QTZ80,故计算略。
塔机附着验算计算书本计算运用软件为:品茗安控信息技术生产。
本工程为珠江御景花园工程;工程建设地点位于省市。
由中建四局建设。
建筑物为10#楼,地上33层,预计110米高,故设计塔机计算高度为140米,塔机型号为QTZ80(TC5710),省建设机械集团制造。
根据现场实际情况,设有5道附墙。
本计算书主要依据施工图纸及以下规及参考文献编制:《塔式起重机设计规》(GB/T13752-1992)、《建筑结构荷载规》(GB50009-2001)、《建筑安全检查标准》(JGJ59-99)、《建筑施工手册》、《钢结构设计规》(GB50017-2003)等编制。
塔机安装位置至附墙或建筑物距离超过使用说明规定时,需要增设附着杆,附着杆与附墙连接或者附着杆与建筑物连接的两支座间距改变时,必须进行附着计算。
主要包括附着支座计算、附着杆计算、锚固环计算。
注意:所设置附墙撑杆类型、尺寸、安装高度等应严格按照此计算书中给出的相应数据制造,安装。
如有改动,此计算书作废,必须重新进行计算、验算。
附墙因不按此计算书制造、安装而产生的安全事故,本验算单位概不负责。
一、塔机附着杆参数二、风荷载及附着参数塔机附着立面图三、工作状态下附墙杆力计算1、在平衡臂、起重臂高度处的风荷载标准值q kq k=0.8βzμzμsω0α0h=0.8×2.21×1.92×1.95×0.2×0.35×1.06=0.491kN/m 2、扭矩组合标准值T k由风荷载产生的扭矩标准值T k2T k2=1/2q k l12-1/2q k l22=1/2×0.491×572-1/2×0.491×12.92=756.776kN·m 集中扭矩标准值(考虑两项可变荷载控制的组合系数取0.9)T k=0.9(T k1+ T k2)=0.9×(270+756.776)=924.098kN·m3、附着支座反力计算计算简图剪力图得:R E=106.756kN在工作状态下,塔机起重臂位置的不确定性以及风向的随机性,在计算支座6处锚固环截面力时需考虑塔身承受双向的风荷载和倾覆力矩及扭矩。
塔吊附墙计算书.doc(完整版)编制单位:编制⼈:审核⼈:编制时间:⽬录⼀、塔吊附墙概况⼆、塔吊附墙杆受⼒计算三、结构柱抗剪切验算四、附墙杆截⾯设计和稳定性强度验算⼀、塔吊附墙概况本⼯程结构⾼度53.4 m,另加桅杆15⽶,总⾼度68.4⽶。
本⼯程采⽤FO/23B塔吊,塔吊采⽤固定式现浇砼基础,基础埋设深度-5.35m,塔⾝设两道附墙与结构柱拉结:塔⾝升到12标准节时,设第⼀道附墙于第6标准节(结构标⾼23.47⽶),塔吊升到第17标准节时,设第⼆道附墙于第14标准节(结构标⾼42.8⽶),然后加到第23标准节为⽌。
在加第⼆道附墙之前,第⼀道附墙以上有17-6=11个标准节,⽽第⼆道附墙以上塔⾝标准节数最多为23-14=9节,因此,第⼆道附墙设置之前第⼀道附墙受⼒最⼤。
本计算书将对第⼀道附墙进⾏受⼒计算和构造设计。
为简化计算和偏于安全考虑,第⼆道附墙将采⽤与第⼀道附墙相同的构造形式。
本⼯程计划使⽤⾦环项⽬使⽤过的塔吊附墙杆。
根据塔吊与结构的位置关系,附墙杆夹⾓较⼩,附墙杆与结构柱连接的予埋件分别采⽤不同的形式。
本计算书主要包括四个⽅⾯内容:附墙杆及⽀座受⼒计算,结构柱抗剪切及局部受压验算,附墙杆予埋件锚筋设计,附墙杆型号选⽤。
⼆、塔吊附墙杆受⼒计算(⼀)、塔吊附墙内⼒计算,将对以下两种最不利受⼒情况进⾏:1、塔机满载⼯作,起重臂顺塔⾝x-x轴或y-y轴,风向垂直于起重臂(见图1);2、塔机处于⾮⼯作状态,起重臂处于塔⾝对⾓线,风向由起重臂吹向平衡臂(见图2)。
对于第⼀种受⼒状态,塔⾝附墙承担吊臂制动和风⼒产⽣的扭矩和附墙以上⾃由⾼度下塔⾝产⽣的⽔平剪⼒。
对于第⼆种受⼒状态,塔⾝附墙仅承受附墙以上⾃由⾼度下塔⾝产⽣的⽔平剪⼒。
以下分别对不同受⼒情况进⾏计算:(⼆)、对第⼀种受⼒状态,附墙上⼝塔⾝段⾯内⼒为:弯矩:M=164.83(T.m)剪⼒:V=3.013(T)扭矩:T=12(T.m),则:1、当剪⼒沿x-x轴时(见图a),由∑M B=0,得T+V*L1 -L B0’*N1=0即: N1=(T+ V*L1)/ L B0’=(12+3.013*3.65)/5.932=3.88(T)通过三⾓函数关系,得⽀座A反⼒为:R AY= N1*sin52.3426=3.88*sin52.3426=2.84(T)R Ax= N1*cos52.3426=3.88* cos52.3426=2.64(T)由∑M C=0,得N3*L G0’+T+V*0.8=0’=-(12+3.013*0.8)/0.966=-14.92(T)由∑M0’=0,得 N2*L C0’-(T+V*L6)=0即:N2 =(T+ V*L6)/ L C 0’=(12+3.013*0.027)/0.98=12.33(T)由⼒平衡公式∑N i=0,得R AY+R BY=0和-R AX-R BX +V =0,故R BY= -R AY =-2.84(T)(负值表⽰⼒⽅向与图⽰相反,以下同) R BX = -R AX +V =-2.64+12.33=9.48(T)2、当剪⼒沿y-y轴时(见图b),由∑M B=0,得T-(V*L4+L B0’*N1)=0即: N1=(T-V*L4)/ L B0’=(12-3.013*4.5)/5.932通过三⾓函数关系,得⽀座A反⼒为:R AY= N1*sin52.3426=-0.263*sin52.3426=-0.171(T)R Ax= N1*cos52.3426=-0.263* cos52.3426=-0.2(T)由∑M C=0,得N3*L C0’+T+V*0.8=0’=-(12+3.013*0.8)/0.98=-14.91(T)由∑M0’=0,得 N2*L C0’-(T+V*L5)=0即:N2 =(T+ V*L5)/ L G 0’=(12+3.013*0.2)/0.966=13.05(T)由静⼒平衡公式∑N i=0,得R AY +R BY+V =0和R AX+ R BX =0,故R BY= -(R AY +V)=-(-3.16+12)=-8.84(T)R BX = -R AX =2.93(T)(⼆)、对第⼆种受⼒状态(⾮⼯作状态),附墙上⼝塔⾝段⾯内⼒为:弯矩:M=191.603(T.m)剪⼒:V=10.036(T),剪⼒沿塔⾝横截⾯对⾓线,对图c,由∑M B=0,得V*L BH +L B0’*N1=0即: N1=-V*L BH/ L B0’=-10.036*0.6/5.932=-1.015(T)通过三⾓函数关系,得⽀座A反⼒为:R AY= -N1*sin52.3426=-1.015*sin52.3426=-0.8(T)R Ax= -N1*cos52.3426=-1.015* cos52.3426=-0.62(T)由∑M C=0,得N3*L0’C+ V* L C0=0即:N3=- V* L C0/ L C0’=-10.036*1.132/0.98=-11.6(T)由∑M0’=0,得 N2*L C0’-V*L7=0即:N2 = V*L7/ L C 0’=10.036*0.17/0.98由⼒平衡公式∑N i=0,得R AY +R BY+V*cos450=0和-R AX-R BX +V*sin450 =0,故R BY= -R AY- V*cos450 =0.8-10.036*cos450=-6.3(T)R BX = -R AX +V* sin450 ==0.62+10.036*sin450=7.79(T)对图d,由∑M B=0,得V*L BG +L B0’*N1=0即: N1=-V*L BG/ L B0’=-10.036*5.67/5.932=-9.6(T)由∑M C=0,得N3*0+ V* L C0=0,即N3=0通过三⾓函数关系,得⽀座A反⼒为:R AY = N 1*sin52.3426=-9.6*sin52.3426=-7.6(T )R Ax = -N 1*cos52.3426=-9.6* cos52.3426=-5.87(T )由静⼒平衡公式,得R AY +R BY +V*sin450=0和R AX +R BX +V*cos450 =0,故R BY =-R AY -V*sin450=7.6-10.036*cos450=0.5(T )R BX =-R AX -V*sin450=-5.87-10.036*sin450=-13(T )根据如上计算,附墙杆件和⽀座受⼒最⼤值见下表:三、结构柱抗剪切和局部压⼒强度验算附墙埋件受⼒⾯积为470×470,锚固深度按450计算,最⼩柱断⾯为700×700,柱⼦箍筋为,由上⾯的计算结果可知,⽀座最⼤拉⼒(压⼒)为(R BX 2+R BY 2)1/2=(13 2+0.52)1/2=13.01T=130.1KN 。
编制单位:编制人:审核人:编制时间:目录一、塔吊附墙概况二、塔吊附墙杆受力计算三、结构柱抗剪切验算四、附墙杆截面设计和稳定性强度验算一、塔吊附墙概况本工程结构高度53.4 m,另加桅杆15米,总高度68.4米。
本工程采用FO/23B塔吊,塔吊采用固定式现浇砼基础,基础埋设深度-5.35m,塔身设两道附墙与结构柱拉结:塔身升到12标准节时,设第一道附墙于第6标准节(结构标高23.47米),塔吊升到第17标准节时,设第二道附墙于第14标准节(结构标高42.8米),然后加到第23标准节为止。
在加第二道附墙之前,第一道附墙以上有17-6=11个标准节,而第二道附墙以上塔身标准节数最多为23-14=9节,因此,第二道附墙设置之前第一道附墙受力最大。
本计算书将对第一道附墙进行受力计算和构造设计。
为简化计算和偏于安全考虑,第二道附墙将采用与第一道附墙相同的构造形式。
本工程计划使用金环项目使用过的塔吊附墙杆。
根据塔吊与结构的位置关系,附墙杆夹角较小,附墙杆与结构柱连接的予埋件分别采用不同的形式。
本计算书主要包括四个方面内容:附墙杆及支座受力计算,结构柱抗剪切及局部受压验算,附墙杆予埋件锚筋设计,附墙杆型号选用。
二、塔吊附墙杆受力计算(一)、塔吊附墙内力计算,将对以下两种最不利受力情况进行:1、塔机满载工作,起重臂顺塔身x-x轴或y-y轴,风向垂直于起重臂(见图1);2、塔机处于非工作状态,起重臂处于塔身对角线,风向由起重臂吹向平衡臂(见图2)。
对于第一种受力状态,塔身附墙承担吊臂制动和风力产生的扭矩和附墙以上自由高度下塔身产生的水平剪力。
对于第二种受力状态,塔身附墙仅承受附墙以上自由高度下塔身产生的水平剪力。
以下分别对不同受力情况进行计算:(二)、对第一种受力状态,附墙上口塔身段面内力为:弯矩:M=164.83(T.m)剪力:V=3.013(T)扭矩:T=12(T.m),则:1、当剪力沿x-x轴时(见图a),由∑M B=0,得T+V*L1 -L B0’*N1=0即: N1=(T+ V*L1)/ L B0’=(12+3.013*3.65)/5.932=3.88(T)通过三角函数关系,得支座A反力为:R AY= N1*sin52.3426=3.88*sin52.3426=2.84(T)R Ax= N1*cos52.3426=3.88* cos52.3426=2.64(T)由∑M C=0,得N3*L G0’+T+V*0.8=0’=-(12+3.013*0.8)/0.966=-14.92(T)由∑M0’=0,得 N2*L C0’-(T+V*L6)=0即:N2 =(T+ V*L6)/ L C 0’=(12+3.013*0.027)/0.98=12.33(T)由力平衡公式∑N i=0,得R AY+R BY=0和-R AX-R BX +V =0,故R BY= -R AY =-2.84(T)(负值表示力方向与图示相反,以下同) R BX = -R AX +V =-2.64+12.33=9.48(T)2、当剪力沿y-y轴时(见图b),由∑M B=0,得T-(V*L4+L B0’*N1)=0即: N1=(T-V*L4)/ L B0’=(12-3.013*4.5)/5.932=-0.263(T)通过三角函数关系,得支座A反力为:R AY= N1*sin52.3426=-0.263*sin52.3426=-0.171(T)R Ax= N1*cos52.3426=-0.263* cos52.3426=-0.2(T)由∑M C=0,得N3*L C0’+T+V*0.8=0’=-(12+3.013*0.8)/0.98=-14.91(T)由∑M0’=0,得 N2*L C0’-(T+V*L5)=0即:N2 =(T+ V*L5)/ L G 0’=(12+3.013*0.2)/0.966=13.05(T)由静力平衡公式∑N i=0,得R AY +R BY+V =0和R AX+ R BX =0,故R BY= -(R AY +V)=-(-3.16+12)=-8.84(T)R BX = -R AX =2.93(T)(二)、对第二种受力状态(非工作状态),附墙上口塔身段面内力为:弯矩:M=191.603(T.m)剪力:V=10.036(T),剪力沿塔身横截面对角线,对图c,由∑M B=0,得V*L BH +L B0’*N1=0即: N1=-V*L BH/ L B0’=-10.036*0.6/5.932=-1.015(T)通过三角函数关系,得支座A反力为:R AY= -N1*sin52.3426=-1.015*sin52.3426=-0.8(T)R Ax= -N1*cos52.3426=-1.015* cos52.3426=-0.62(T)由∑M C=0,得N3*L0’C+ V* L C0=0即:N3=- V* L C0/ L C0’=-10.036*1.132/0.98=-11.6(T)由∑M0’=0,得 N2*L C0’-V*L7=0即:N2 = V*L7/ L C 0’=10.036*0.17/0.98=1.74(T)由力平衡公式∑N i=0,得R AY +R BY+V*cos450=0和-R AX-R BX +V*sin450 =0,故R BY= -R AY- V*cos450 =0.8-10.036*cos450=-6.3(T)R BX = -R AX +V* sin450 ==0.62+10.036*sin450=7.79(T)对图d,由∑M B=0,得V*L BG +L B0’*N1=0即: N1=-V*L BG/ L B0’=-10.036*5.67/5.932=-9.6(T)由∑M C=0,得N3*0+ V* L C0=0,即N3=0通过三角函数关系,得支座A反力为:R AY = N 1*sin52.3426=-9.6*sin52.3426=-7.6(T )R Ax = -N 1*cos52.3426=-9.6* cos52.3426=-5.87(T )由静力平衡公式,得R AY +R BY +V*sin450=0和R AX +R BX +V*cos450 =0,故R BY =-R AY -V*sin450=7.6-10.036*cos450=0.5(T )R BX =-R AX -V*sin450=-5.87-10.036*sin450=-13(T )根据如上计算,附墙杆件和支座受力最大值见下表: AB 杆 BC 杆 BD 杆 A 支座 B 支座R AX R AY R BX R BYN1=-9.6t N2=13.05tN3=-14.92t 7.6t 5.87t -13t 0.5t 三、结构柱抗剪切和局部压力强度验算附墙埋件受力面积为470×470,锚固深度按450计算,最小柱断面为700×700,柱子箍筋为φ10@200,由上面的计算结果可知,支座最大拉力(压力)为(R BX 2+R BY 2)1/2=(13 2+0.52)1/2=13.01T=130.1KN 。
塔机附墙设计计算说明书
一、工程概述
本工程位于惠南镇中心位置,东南面临南汇中学体育场,在体育场的西北角有一信号塔,距小区5号楼南外墙皮约20米左右,东北面临近复旦大学太平洋金融学院,南侧临拱北路,西侧临观海路。
本项目总用地面积55103.4平方米,总建筑面积133288.98平方米(含保温建筑面积)。
地上总建筑面积101191.19平方米(含保温建筑面积),包含4栋15层高层住宅,5栋16层高层住宅,2栋11层高层住宅,1栋5层多层住宅,3栋6层的多层住宅,1栋2层的商业配套用房及高层住宅群房的配套公建,地下总建筑面积32097.79平米。
本工程8#楼和9#楼合用安装一台南通惠尔建设机械有限公司出厂的QTZ63型(5510型)塔式起重机,臂长为58米,塔吊设置在9号楼东侧,(图1)安装高度超过使用说明书规定的最大独立高度,需进行附墙锚固,楼层高度为45.6m,塔机最大安装高度约为53m,设置有2道附墙,如图2所示。
生产厂家在使用说明书中标明了建筑物外墙与塔吊中心的距离在4.0m左右,但由于该工程建筑物表面结构及工程施工工艺等因素的影响,塔吊安装后,塔吊中心距离建筑物外墙8.997m。
所采用的附墙杆件的长度以及与建筑物间的夹角,与原说明书的规定有所不同。
为了保证塔吊安全使用,我们对附墙杆件及其连接件作了稳定性及强度验算。
图1 22号楼1#塔吊布置图
图2 塔吊附墙示意图
二、编制依据
本方案编制主要依据为:GB/T 13752-1992《塔式起重机设计规范》、GB 50017《钢结构设计规范》、GB/T 3811-2008 《起重机设计规范》和永发QTZ63型塔式起重机使用说明书。
三、设计方案
1.原说明书要求
按照产品安装使用说明书:附着架由四根撑杆和一套环梁等组成,它主要是把塔机固定在建筑物的柱子上,起着依附作用。
(见图3)
图3 原附着架示意图
2.改进设计方案
根据现场实际情况,塔机中心到连接点距离为8.997米。
设计方案如图4所示。
图4 塔吊附墙杆设置图
四、计算说明
1.计算附墙架对塔身的支反力
假设塔身为一连续梁结构(见图5),以此进行结构的受力分析,可用力法求出附墙受力。
实际使用中,塔机最上面的一道附墙受力最大,因为该道附墙节点力除由M引起的附墙受力外,还有承受由塔机悬臂端风
载及旋转件的离心水平惯性力在悬臂根部引起的水平切力F w 及下部塔身的水平风载。
图5 塔机附着受力分析简图
其中
Z M ——倾覆力矩 2P ——水平荷载 1)风荷载计算
根据GB/T 13572-92《塔式起重机设计规范》和GB/T 3811-2008《起重机设计规范》
式中:W F ——作用在塔式起重机上和物品上的风荷载;
W C ——风力系数; W p ——计算风压;
A ——垂直风向的迎风面积;()21220.1ηφ=+= A A A m L ——塔身风载计算高度;36= L m q ——单位长度风荷载。
(1)工作状态
其中:()()=1.71 1.710.7772 3.021η+=⨯+=W C 根据充实率0.184ϕ=查表得出0.7772η=
解出1421= q N m
(2)非工作状态 2)支反力求解
M Z
Z X
Y
(1)工作状态
根据图5受力分析简图和表1,并结合力学计算可以得出
工作状态下:
2
102.077 =
R kN
工
(2)非工作状态
根据图5受力分析简图和表1,并结合力学计算可以得出
非工作状态下:
2
192.286 =
R kN
非工
2.附墙杆内力计算
附着以上的塔吊结构是基本暴露在建筑物之上的,而风载荷的方向是随着风向在变化的,且塔机可以在工况和非工况下作360°回转,因此塔机上的不平衡力矩、横向力、风载荷等对塔身而言是变化的,水平方向的合作用力是可变的,为安全计算取其最大值计算。
假设合作用力为2
R',方向如下图所示。
选取第二道附墙结构为受力分析对象,由力法可求出杆件的最大轴向内力。
图7 受力分析图
1)工作状态
工作状态时,塔身承受扭矩和支反力的作用。
2102.077
==
R R kN
工,0360
θ
≤<
以上的计算过程将θ从0到360循环,解得每个杆件的最大轴压力,最大轴拉力。
2)非工作状态
非工作状态时,塔身只承受支反力的作用。
2192.286'== R R kN 非工,0360θ≤<
同理可以求出每个杆件在非工作状态下的最大轴向拉力和压力。
表3 非工作状态下杆件受力情况
3.附墙杆结构验算 1)附墙杆参数
附墙杆材料选用Q235角钢组成的格构柱。
由于长度太大,将杆件分为2段,段与段之间采用高强螺栓连接,见附墙示意图。
其中主弦杆(∟63×63×6mm )、腹杆(∟40×40×4mm )、主弦杆间距300×300mm 。
与建筑物之间用销轴联接。
截面图如图7所示。
图7 附墙杆截面
材料安全系数:=1.48n 工作 截面尺寸:300mm×300mm
主弦杆型钢:∟63×63×6 单位重量:5.72kg/m
单个角钢截面面积:7.29cm 2
腹杆型钢:∟40×40×4 单位重量:2.420kg/m
总截面面积:A = 4×7.29 = 29.16cm 2 惯性矩:
其中:04
27.12z I cm = 030
15 1.7813.222
a z cm =
-=-= 抗弯模量:3max
393.7I I
W cm y a
=
=
=
回转半径:13.36i cm =
= 杆长:110399= L mm 29024= L mm 38279
= L mm 2)杆件分析
杆1为最长杆且杆1为受力最大的杆,因此需对杆1进行校核。
(1)整体稳定性
a .风荷载 22.0= B A m 由0.4ω=、0.4η=可得 取 C W =2.431 P W = 1100Pa
所以 2.4311100 1.122995==⨯⨯= W W W F C P A N b .附墙杆总重量: 杆1:约400kg ; c .稳定系数ϕ 查表得:0.700ϕ= 杆1所受应力为: (2)单肢稳定性
杆3:单肢所受的力:()()
1017789842222=
++= --y x
M N M N N a z a z 式中:N ——轴心所受的力;011243.6== N F kN ,
a ——格构柱的宽度;300= a mm
z ——单个角钢的回转半径;17.8z mm =
单肢长度:01500= l mm 回转半径:0117.8= i mm
单肢截面积:201729= A mm 由01
0101
28λ=
= l mm i 查表得稳定系数010.966ϕ= 因此:[]01
10101
110.6σσϕ=
= ≤N MPa A 非工作 结构稳定性符合安全要求。
(3)调节丝杆处的调节孔验算
调节丝杆材料为调质的45#钢,两端用M100螺栓连接。
图8 调节丝杆示意图
a .调节丝杆孔校核 丝杆孔如图8所示
其中:A ——截面面积;23409.478= A mm b .螺栓强度校核 丝杆采用M100螺栓连接 螺栓的拉伸强度[]W
l l s
F A σσ=
≤ 其中: W F ——最大轴向拉力;243.6= W F kN
s A ——螺栓公称应力截面积;24220.16= s A mm
[]l σ——螺栓材料的许用拉应力。
[]202.91.7
s
l MPa σσ=
=
丝杆结构设计性符合安全要求。
(4)连接端销轴的验算 销轴的直径60= d mm
销轴剪切应力2163Q
d
τπ=
⋅ (港口起重机设计规范 公式1-6-45) 其中:Q ——销轴受到的最大剪力;22121.8== Q F kN 拉
d ——销轴的直径;60= d mm
连接处结构设计性符合安全要求。
(5)焊缝的验算
杆件与耳片均为Q235钢,杆件和耳片连接采用角焊缝,焊条E43,焊缝质量为三级,焊缝焊脚尺寸8= f h mm ,杆件的最大轴力取最大值
219.9= N kN ,焊缝长度为400= w l mm ;2160= w t f N mm 其中:N ——轴心拉力、压力或剪力;219.9= N kN
w l ——角焊缝的计算长度,对每条焊缝取其实际长度减去2f h ;
400= w l mm
e h ——角焊缝的计算厚度,对直角焊缝等于0.7
f h ,f h 为焊脚尺
寸。
0.7 5.6== e f h h mm
βf ——正面角焊缝的强度设计值增大系数;对承受静力荷载和间接承受动力荷载的结构, 1.22β=f ;对直接承受动力荷载的结构,
1.0β=f 。
焊缝设计符合安全要求。
结论:塔吊附墙杆设计符合安全要求!。