材料分析测试方法 第二章 X射线衍射概要
- 格式:ppt
- 大小:4.82 MB
- 文档页数:76
实验一 X射线衍射仪的结构与测试方法一、实验目的1、掌握X射线衍射的基本原理;2、了解X射线衍射仪的基本结构和操作步骤;3、掌握X射线衍射分析的样品制备方法;4、了解X射线的辐射及其防护方法二、实验原理根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。
每一种结晶物质都有各自独特的化学组成和晶体结构。
没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。
当X射线波长与晶体面间距值大致相当时就可以产生衍射。
因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。
其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。
所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。
三、实验设备丹东方圆仪器有限公司的D2700型X射线粉末衍射仪一台;玛瑙研体一个;化学药品或实际样品若干(Li4Ti5O12)。
四、实验内容1、采用玛瑙研体研磨样品,在玻璃样品架上制备一个合格试验样品;2、选择合适的试验参数,获得XRD图谱一张;3、理解样品、测试参数与XRD图谱特征的关系。
五、实验步骤1、开机1)打开总电源2)启动计算机3)将冷却水循环装置的机箱上的开关拨至运行位置,确认冷却水系统运行,水温正常(19—22℃);4)按下衍射仪ON绿色按键打开衍射仪主机开关5)启动高压部分(a)必须逐渐提升高压,稳定后再提高电流。
电压不超过40kV,管电流上限是40mA,一般为30mA。
(b)当超过4天未使用X光管时,必须进行光管的预热。
在25kV高压,预热10分钟;30kV,预热5分钟;35kV,预热5分钟。
(c)预热结束关机后,至少间隔30分钟以上方可再次开机实验。
6)将制备好的样品放入衍射仪样品台上;7)关好衍射仪门.2、样品测试1)在电脑上启动操作程序2)进入程序界面后,鼠标左键点击“测量”菜单,再点击“样品测量”命令,进入样品测量命令3)等待仪器自检完成后,设定好右边的控制参数;4)鼠标左键点击“开始测量”,保存输出文件;5)此时仪器立即开始采集数据,并在控制界面显示;(a)工作电压与电流:一般设为40kV,40mA;(b)扫描范围:起始角度>5°,终止角度<80°;(c)步进角度:推荐0.02°,一般在0.02—0。
现代材料分析方法2X射线衍射分析(ok)第2章X-ray diffraction analysis2威尔姆·康拉德·伦琴3.1 X-射线基本概念3.1.1 X射线实验技术的发展历程描;透视检查X射线断层成像(CT)扫描工业上的非破坏性材料的检查;科学研究:63.2 X射线的产生凡是高速运动的电子流或其他高能辐射流(γ射线、X射线、中子流等)被突然减速时均能放出X射线。
检测系统等。
8X射线管是X射线机最重要的部件之一。
目前常见的X射线管均为封闭式X射线管如下图所示。
9NAGO(耐固)旋转阳极X射线管波纹陶瓷X射线管11高速电子轰击阳极靶,一部分能量转化为X射线,大部分能量转化为热能,使阳极靶温度急剧升高。
因此,必须对阳极靶进行冷却,目前主要采用循环水冷却。
为解决阳极靶过热并提高其发射功率,人们采用了使阳极靶高速旋转的方法,不断改变电子束轰击的位置,使阳极靶面热量有充分时间散发,以达到提高X射线管发射功率并解决阳极靶过热问题。
斑,X射线从焦斑区域发出。
焦斑的形状对X射线衍射图样的形状、清晰度和形状及聚焦罩所决定。
一般封闭式X射10 为得到有较小的焦点和较强的X射线强度,总是在与靶面成当在与焦斑的短边相垂直的方向处,可得到表观面积为lmm15上海光源工程173.2.3 X射线谱由常规X射线管发出的X射线束并不是单一波长的辐射,而是随波长而变化的关系曲线(如图所示),称为X射线谱。
即强度随波长连续变化的连续谱和波长一定、强度很大的特征谱叠加而成。
特征谱只有当管电压超过一定值V k (激发电压)时才会产生;特征谱与X射线管的工作条件无关,只取决于光管阳极靶的材料,即不同的阳极靶材料具有其特定的特征谱线,因此又将此特征谱线称之为标识谱,即可以来标识物质元素。
X射线连续谱的强度随着X射线管的管电压增加而增大,而最大强度所对应的波长变小,最短波长界限减小。
183.2.4 特征X射线为电子为屏The complete range of possible electron transitions that give rise to K,L, and M characteristic X-rays.) = 1.5406 埃20式中:怎么读?223.3 晶体空间点阵与晶体结构3.3.1 空间点阵25从周期性排列的基元中抽象出二维布喇菲格子293.4 X射线的衍射原理X射线衍射学以X射线在晶体中的衍射现象为基础,而衍射可归结为两个方面的问题:(1)衍射方向——干涉线的位置;323.4.1 劳厄方程干涉加强、形成衍射的条件为:)亖旐旌——衍射条件衍射线将分布在以原子列为轴,以α′角为半顶角的一系列圆锥面上,每一个劳厄方程是确定衍射方向的基本方程。
X射线衍射分析X射线衍射分析(X-ray Diffraction, XRD)是一种重要的材料分析技术,用于研究晶体的结构和性质。
它利用X射线的特征衍射现象,通过测量和分析样品对X射线的衍射图案,可以确定样品的晶胞、晶体结构、晶格常数等信息。
X射线衍射分析最早由德国物理学家Wilhelm Conrad Röntgen于1895年发现,并因此获得了1901年的诺贝尔物理学奖。
从那时起,X射线衍射分析在材料科学、物理学、化学等领域得到了广泛应用。
在X射线衍射实验中,样品首先被放置在样品支架上,然后被照射一束特定的X射线。
当X射线通过样品时,由于样品的晶体结构,它们将被散射成不同的角度。
探测器可以记录这些衍射角度和强度,并将其转换为衍射图谱。
通过分析衍射图谱,可以确定样品的晶体结构和晶胞参数。
这是因为每个晶体都有一组特定的晶胞参数,如晶格常数、晶体类别、晶胞形状等等。
根据衍射角度和衍射强度之间的关系,可以计算出这些晶胞参数。
除了确定晶体结构外,X射线衍射分析还可以用于确定晶体的物理性质,如晶格常数的变化、晶体的缺陷、晶体的应力情况等等。
通过对衍射图谱进行进一步的分析和计算,可以得到这些信息。
X射线衍射分析在材料科学中具有广泛的应用。
它可以用于研究各种不同类型的材料,如金属、陶瓷、液晶、聚合物等等。
通过确定晶体结构和物理性质,可以帮助科学家和工程师设计新的材料,改进现有材料的性能,解决材料失效问题等等。
总而言之,X射线衍射分析是一种重要的材料分析技术,通过测量和分析样品对X射线的衍射图案,可以确定样品的晶胞、晶体结构、晶格常数等信息。
它在材料科学、物理学、化学等领域具有广泛的应用,对于研究和开发新型材料具有重要意义。
X射线衍射在材料分析中的应用和原理摘要:本文概要介绍了X射线衍射分析的基本原理及先关理论,提及了X射线衍射的各种方法,主要对X射线衍射分析技术的应用进行了叙述。
关键词:X射线衍射分析布拉格方程X射线衍射仪衍射花样前言X射线衍射分析(X-Ray Diffraction,简称XRD),顾名思义是利用晶体对入射的X射线形成衍射,对晶体物质进行内部原子在空间分布状况等结构信息分析的方法。
1. X射线衍射分析基本原理1.1 X射线及其获得X射线同无线电波、可见光、紫外光等一样,本质上均属于电磁波,区别在于彼此占据不同波长范围。
与所有基本粒子一样,X射线具有波粒二相性,由于其波长较短,大约在10-8~ 10-10cm之间,它的粒子性往往表现突出,故X射线可以视为一束具有一定能量的光量子流。
进行X射线衍射分析首先需得获得稳定的X射线,通常利用一种类似热阴极二极管的装置,用一定材料制作的板状阳极(靶)和阴极(灯丝)密封于一个真空玻璃-金属管壳内,阴极通电加热,在两极间加以直流高压(几KV-10KV),则阴极产生大量热电子,其在高压电场作用下飞向阳靶,在与阳极撞击瞬间产生X射线(包括连续和特征/标识X射线谱),其基本电气线路如下图。
图1X射线产生基本电气线路1.2 X射线衍射分析基本原理X射线与物质相遇时,会产生一系列效应,这是X射线应用的基础。
X射线在传播途中,与晶体中束缚较紧的电子相遇时,将发生经典散射。
晶体由大量原子组成,每个原子又有多个电子。
各电子锁产生的经典散射会相互干涉,使在某些方向被加强,另一些方向被削弱。
电子散射线干涉的总结果即为X射线衍射的本质。
由于电磁波散射干涉的矢量性,分析不难得知并不是每个方向都能获得衍射。
将晶体看成由平行的原子面组成,晶体的衍射亦当是由原子面的衍射线叠加而得,叠加的衍射线中大部分被抵消,只有一些得到加强,这些保留下来的衍射线可看成晶体中某些原子面对X射线的“反射”。
在将衍射看成反射的基础上,科学家最终导出结论:在某个方向上散射线互相加强的条件即产生X射线衍射条件是X射线与晶体之间需满足布拉格方程:2d sinθ=nλd——晶面间距;n——反射级数;θ——掠射角/布拉格角;λ——入射波长其导出条件如下图所示。
X射线衍射分析法X射线衍射分析法是一种广泛应用于材料科学领域的非破坏性分析方法,它通过对材料中X射线的衍射模式进行研究,可以得到材料的结晶结构信息、晶体学参数以及晶体缺陷等重要信息。
X射线衍射技术已经成为材料科学研究中不可或缺的重要手段,被广泛应用于金属材料、半导体材料、无机晶体、有机晶体等材料的研究和分析中。
X射线衍射的原理是利用入射X射线借助晶体的晶格结构,发生衍射现象,通过测量样品中出射X射线的衍射角度和衍射强度,可以确定晶体的晶格常数、晶体结构、晶体取向和晶体缺陷等信息。
X射线衍射仪是一种专门用于进行X射线衍射分析的仪器,根据不同的应用需求,可以选择适合的X射线衍射仪进行实验。
X射线衍射分析法主要包括粉末衍射分析法和单晶衍射分析法两种常用的方法。
粉末衍射分析法适用于多晶材料或粉末材料的结构研究,可以获得晶体的空间点群、晶胞参数、结晶度等信息;单晶衍射分析法则适用于单晶材料的结构研究,可以获得晶体的真实结构信息,包括晶体的空间对称性、原子位置等详细信息。
X射线衍射分析法具有许多优点,如非破坏性、高灵敏度、高分辨率、快速测量和可定量分析等特点,因此在材料科学研究领域得到广泛应用。
在金属材料研究中,X射线衍射分析可以用于评估金属的晶体结构和相变行为;在半导体材料研究中,X射线衍射分析可以用于研究半导体晶体的缺陷结构和掺杂效应;在生物晶体学研究中,X射线衍射分析可以用于解决生物大分子的三维结构等问题。
在进行X射线衍射分析时,需要注意一些实验参数的选择和控制,以确保实验结果的准确性和可靠性。
在进行粉末衍射实验时,需要选择合适的X射线波长、样品旋转角度、测量范围和样品制备条件等参数;在进行单晶衍射实验时,需要控制晶体的取向和衍射仪的校准等条件。
总的来说,X射线衍射分析法是一种非常有价值的材料结构分析方法,可以为材料科学研究提供重要的结晶学信息。
随着仪器技术的进步和应用领域的拓展,X射线衍射分析方法将在材料科学研究中发挥愈发重要的作用,为解决材料科学领域的难题提供宝贵的帮助。