X射线衍射物相分析
- 格式:pdf
- 大小:826.32 KB
- 文档页数:10
实验一 X射线衍射仪的结构与测试方法一、实验目的1、掌握X射线衍射的基本原理;2、了解X射线衍射仪的基本结构和操作步骤;3、掌握X射线衍射分析的样品制备方法;4、了解X射线的辐射及其防护方法二、实验原理根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。
每一种结晶物质都有各自独特的化学组成和晶体结构。
没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。
当X射线波长与晶体面间距值大致相当时就可以产生衍射。
因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。
其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。
所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。
三、实验设备丹东方圆仪器有限公司的D2700型X射线粉末衍射仪一台;玛瑙研体一个;化学药品或实际样品若干(Li4Ti5O12)。
四、实验内容1、采用玛瑙研体研磨样品,在玻璃样品架上制备一个合格试验样品;2、选择合适的试验参数,获得XRD图谱一张;3、理解样品、测试参数与XRD图谱特征的关系。
五、实验步骤1、开机1)打开总电源2)启动计算机3)将冷却水循环装置的机箱上的开关拨至运行位置,确认冷却水系统运行,水温正常(19—22℃);4)按下衍射仪ON绿色按键打开衍射仪主机开关5)启动高压部分(a)必须逐渐提升高压,稳定后再提高电流。
电压不超过40kV,管电流上限是40mA,一般为30mA。
(b)当超过4天未使用X光管时,必须进行光管的预热。
在25kV高压,预热10分钟;30kV,预热5分钟;35kV,预热5分钟。
(c)预热结束关机后,至少间隔30分钟以上方可再次开机实验。
6)将制备好的样品放入衍射仪样品台上;7)关好衍射仪门.2、样品测试1)在电脑上启动操作程序2)进入程序界面后,鼠标左键点击“测量”菜单,再点击“样品测量”命令,进入样品测量命令3)等待仪器自检完成后,设定好右边的控制参数;4)鼠标左键点击“开始测量”,保存输出文件;5)此时仪器立即开始采集数据,并在控制界面显示;(a)工作电压与电流:一般设为40kV,40mA;(b)扫描范围:起始角度>5°,终止角度<80°;(c)步进角度:推荐0.02°,一般在0.02—0。
X射线衍射物相分析物相分析并不是一般的成份分析,一般的化学成份分析是分析组成物质的元素种类及其含量,并不涉及元素间的化学结合状态及聚集态结构,只有元素单独存在时该元素才是一个单独的物相。
物相分析是进行元素间的化学结合状态和聚集态结构的分析。
那些化学组成相同但晶型不同的物质,虽然其元素组成相同,属同种化合物,但其聚集态结构不同,属不同的物相。
已知,识别一个物质不但要知其元素组成,而且要知各元素间的化学结合状态和聚集态结构。
如只含Si和0二种元素的Si02,它有石英、方英石、鱗石英、白硅石和无定形硅胶等许多结构形态,分别属于不同物相。
而不同形态的Si02在性质上是差别很大的。
再如ZnO和Cr2O3在高温下焙烧可生成化学上稳定的尖晶石结构的ZnCr204。
但在多少温度下转化开始发生?转化程度如何?对此问题化学成份分析是很难解决的,因为在反应中化学成份并无改变。
对矿物、陶土、固熔体合金、新兴材料、多相催化剂以及混合物的分析更是如此,只知元素组成而不知物相结构是远远不够的。
X射线衍射物相分析在矿物分析中可确定物相组成以提供开发利用的方案;在冶金工业中可确定各元素的结合状态,了解热处理过程及性能的变化关系;在化学工业中可控制产品质量,确定合理的工艺流程;在材料科学中可确定材料的结构及性能,为新兴材料的开发指明方向;在理论研究中可帮助确定中间历程,研究催化反应及机理,指导新产品的合成等等。
因此,X射线衍射物相分析在许多部门和领域有着广泛的应用。
物相分析主要包括物相的定性识别,定量分析以及结构类型及晶格参数的测定。
本文主要介绍物相定性、定量分析,结构类型及晶格参数将在下一章介绍。
定性物相分析——物质的识别及鉴定定性物相分析的主要依据是衍射谱图的峰位及相对强度。
每种结晶物质都有其特定的结构参数,包括点阵类型、晶胞大小、单胞中的原子数及原子(离子或分子)的种类和位置等。
这些参数的差别必反映出衍射谱图的差别,即每种物质都有其特定的峰位及相对强度,就象人的指纹一样,可作为鉴别的依据。
摘要X射线在晶体中的衍射,实质上是大量原子散射波互相干涉的结果。
每种晶体所产生的衍射花样都是其内部原子分布规律的反映。
研究X射线衍射,可归结为衍射方向和衍射强度两方面问题。
衍射方向由晶胞大小、晶胞类型和位向等因素决定,衍射强度主要与原子类型及其在晶胞中位置有关。
本文简单介绍了X射线衍射物相定量分析的基本原理以及几种典型的分析方法,即直接对比法、内标法和外标法。
0、引言X射线衍射物相定量分析已被广泛应用于材料科学与工程的研究中。
X射线衍射物相定量分析有内标法、外标法、绝热法、增量法、无标样法、基本冲洗法和全谱拟合法等常规分析方法。
内标法、绝热法和增量法都需要在待测样品中加入参考标相并绘制工作曲线,如果样品含有物相较多,谱线较复杂,再加入参考标相会进一步增加谱线的重叠机会,给定量分析带来困难。
无标样法、基本冲洗法和全谱拟合法等分析方法,虽然不需要配制一系列内标标准物质和绘制标准工作曲线,但需要烦琐的数学计算,其实际应用也受到了一定限制。
外标法虽然不需要在样品中加入参考标相,但需要用纯的待测物质制作工作曲线,这在实际应用中也是极为不便的。
1、X射线定量物相分析的基本原理物相分析与化学分析方法不同,化学分析仅仅是获得物质中的元素组分,物相分析则是得到这些元素所构成的物相,而且物相分析还是区分相同物质同素异构体的有效方法。
X射线定量物相分析,是在已知物相类别的情况下,通过测量这些物相的积分衍射强度,来测算它们的各自含量。
多相材料中某相的含量越多,则它的衍射强度就越高。
但由于衍射强度还受其它因素的影响,在利用衍射强度计算物相含量时必须进行适当修正。
定量分析的依据,是物质中各相的衍射强度。
设试样是由n 个相组成的混合物,则其中第j 相的衍射相对强度可表示为式中(2μl )-1对称衍射即入射角等于反射角时的吸收因子,μl 试样平均线吸收系数,V 试样被照射体积,V c 晶胞体积,P 多重因子,|F|2结构因子,L p 角因子,e-2M 温度因子。
关于XRD物相定量分析X射线衍射(XRD)是一种常用的分析技术,用于确定材料的物相组成,结构和晶体学信息。
XRD物相定量分析是通过测量样品对入射X射线的散射模式来分析样品中各组分的含量。
本文将详细介绍XRD物相定量分析的原理、方法和应用。
原理:XRD物相定量分析的原理基于布拉格方程:nλ = 2d sinθ,其中n 为整数,λ为入射X射线的波长,d为晶面间距,θ为散射角。
当X射线照射到晶体上时,会与晶体内的晶面相互作用,并产生散射。
不同晶面的晶面间距会导致不同散射角和散射强度的出现。
通过测量样品的散射模式,可以确定样品中的物相组成。
方法:XRD物相定量分析的方法主要有两种:定性分析和定量分析。
1.定性分析:通过比对实验测得的散射模式与已知标准样本的散射模式,可以确定样品中的物相种类。
这种方法常用于未知样品的初步分析和相的鉴定。
2.定量分析:通过测量散射峰的强度和位置,可以确定样品中各组分的含量。
定量分析需要建立标准曲线或参考曲线,以确定散射峰的位置和强度与物相含量之间的关系。
常用的定量分析方法有内标法、峰面积法和相对比例法等。
常用仪器:进行XRD物相定量分析需要使用X射线衍射仪。
X射线衍射仪由X射线源、样品台、衍射角度测量器和X射线探测器组成。
X射线源通常使用钴、铜或铬等发射入射X射线的金属。
应用:XRD物相定量分析在材料科学、地质学、矿物学、纺织业等领域具有广泛的应用。
1.材料科学:XRD物相定量分析可以用于研究材料的结构性质,例如晶胞参数、晶体结构和晶格畸变等。
它可以用于分析晶体中的杂质、晶形和晶轴取向等信息,并对材料的性能和性质进行评估和改善。
2.地质学和矿物学:XRD物相定量分析可用于矿石和岩石中矿物的鉴定和定量分析。
它可以确定矿物的种类、含量和分布情况,进而研究地质历史和矿床形成机制。
3.纺织业:XRD物相定量分析在纺织品中的应用主要用于分析纤维结构和纤维取向。
它可以评估纤维材料的质量和性能,并优化纺织工艺。
X射线衍射物相分析开课实验室:环境资源楼105【实验目的】(1)了解Philips射线衍射仪的基本结构和工作原理;(2)基本掌握样品测试过程;(3)掌握利用衍射图进行物相分析的方法。
【基本原理】•原理概述:晶体晶面间距约为10-10m量级,与X射线波长范围(0.1-10埃)相符合,因此X射线在遇到晶体时,可能发生衍射现象,从而推测出其结构信息;•X射线与特征(或标识)X射线:X射线是一种波长很短的电磁波,穿透能力强;在用电子束轰击金属靶,如铜,产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线。
对铜靶来说,其中包含Kα1、Kα2及Kβ三种特征X射线;•X射线衍射:将具有一定波长的X射线照射到结晶性物质上时,X射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象。
但并不是所有情况下X射线都发生衍射,其必须满足的条件是布拉格方程:2d sin θ=nλ即当λ确定且n=1(一次衍射)时,则只有当θ角满足:θ=arcsin!!!"时才可发生衍射。
故根据布拉格方程,通过合理地转动样品、X光管和接收器,调整θ角,扫描一张谱图,则可以得到这一晶体样品的结构信息;•晶体X射线衍射图谱:由于每种晶体其X光衍射都有一组特定的d值,粉末线的分布是一定的;每种晶体内原子排列也是一定的,因此衍射线的相对强度也是一定的,每一个晶体都有一套特征的粉末衍射数据d-I 值,并可把它作为定性鉴定物质和物相的依据。
对晶体微观结构精细的形象变换,每种晶体结构与其X射线衍射图之间有着一一对应的关系,任何一种晶态物质都有自己独特的X射线衍射图,而且不会因为与其它物质混合在一起而发生变化,是X射线衍射法进行物相分析的依据。
规模最庞大的多晶衍射数据库是由JCPDS编篡的《粉末衍射卡片集》(PDF)。
•粉末衍射卡片索引:包括:粉末衍射卡片哈氏索引(Hanawalt),芬克索引(Fink Index)和戴维字母索引(Alphabetical Index);1、哈氏数值索引:每一种的数据在索引中占一横行,依次有:八条强谱线晶面间距数值,化学式卡片顺序号,查阅时把晶体面间距按衍射峰强弱排列成d1,d2,d3----,找到d1再找d2值,一直顺序找到第八值,从而可查的对应八强线的卡片顺序号,但也可用前三强的d值,按下列排列方式查找:d1d2d3,d2d3d1, d3d1d2,在哈氏数值索引中出现三次;2、芬克索引:也属于数值索引,不过它是以每种物质的八条强线晶面间距d作为该物质特征,芬克索引的编制是按各种物质八条强线中第一个d值的递减次序划分成组。
《现代材料微观分析方法》
实验一:X射线衍射物相分析
一、实验目的:
1. 熟悉PDF卡片和三种索引。
2.根据衍射图谱或数据,学会单物相鉴定的方法。
二、实验原理:
物相分析的原理:X射线衍射及其衍射花样
三、实验步骤:
七步法进行单物相分析
四、实验结果与分析
根据衍射图谱,进行相应的计算,得到相关的数据,然后进行标定,得到最终的标定结果(物相、卡片号、干涉面指数)。
五、实验小结
总结实验中的一些注意事项和心得体会。
X射线源为CuKα: 波长λ=0.15406 nm
α
α
α
α
α
X射线源为CuKα: 波长λ=0.15406 nm
X射线源为CuKα: 波长λ=0.15406 nm。
x射线衍射物相定量分析X射线衍射物相定量分析(XRD)是一种利用X射线技术定量分析有机物质的分析方法。
它可以准确测量有机物质中不同元素的含量,以及有机物质的物相变化。
在定量分析后,可以得出分析结果,同时也可以依据定量结果,估算出物质中各种物相的质量分数比例。
X射线衍射物相定量分析是基于X射线衍射原理进行的分析法。
当X射线照射到样品上时,样品由于具有不同的密度、厚度和晶体结构,而会产生出不同的衍射现象。
而在相同的X射线源、同一距离处,不同物相的衍射特征是不同的,它们可以被量析出来。
此外,由于各物相的晶体结构也不同,因此,其衍射带特征也不同,如果能够对晶体结构进行分析,则可以更准确地分析 X线衍射物相定量分析的结果。
X射线衍射物相定量分析技术已经广泛应用于多个领域,如生物分析、化学分析、材料科学、分子结构分析以及金属物相组成分析等。
特别是在分析多元有机物质的物相及含量时,X射线衍射物相定量分析技术能够更加准确地获取有机物质的组成结构及元素含量比例。
X射线衍射物相定量分析技术具有良好的灵敏度,可以准确测量物质中微量元素的含量,并可以精确地分析有机物质物质中多种元素的含量。
此外,X射线衍射物相定量分析技术还具有良好的适应能力,可以测量不同种类、不同形式的有机物质,从而满足不同分析要求。
X射线衍射物相定量分析技术的应用范围很广,并且在科学技术领域中发挥着重要作用,被广泛应用于药物产生、食品安全检测、精细化学品组成分析等方面。
另外,X射线衍射物相定量分析技术还可以用于工业产品的质量控制,帮助企业更好地建立质量控制体系,从而提高产品质量和生产效率。
X射线衍射物相定量分析技术可以为企业提供更为准确有效的定量分析服务,为产品的质量管理提供科学的后盾。
未来,X射线衍射物相定量分析技术将会持续被广泛应用在各个领域,以服务更多的企业及科研领域。