电力电子硬开关与软开关技术
- 格式:pdf
- 大小:2.09 MB
- 文档页数:30
开关电源软开关技术原理简介开关电源是现代电子设备中常见的电源供应方式之一,具有高效率、小体积、轻便等优点。
而软开关技术作为一种先进的电源开关技术,被广泛应用于开关电源中,以提高其性能和可靠性。
本文将对软开关技术的原理进行简要介绍。
软开关技术是一种在开关电源中用于控制开关管导通和关断的技术。
传统的硬开关技术存在开关管开关速度慢、开关过程中会产生电压和电流的冲击等问题,而软开关技术则通过合理的控制开关管的导通和关断时机,以减小开关过程中的冲击,提高开关效率。
软开关技术主要包括零电压开关技术(ZVS)和零电流开关技术(ZCS)。
其中,ZVS技术是通过在开关管导通和关断时将电压降至零来实现的,而ZCS技术是通过在开关管导通和关断时将电流降至零来实现的。
在软开关技术中,ZVS技术是较为常见的一种。
其原理是利用谐振电路使得开关管在导通和关断时电压降至零,以减小开关过程中的电压冲击。
具体来说,当开关管导通时,谐振电路中的电容器充电,使得电压逐渐增加;而当开关管关断时,谐振电路中的电感器释放能量,使得电压逐渐降低,直至降至零。
通过合理设计谐振电路的参数和控制开关管的导通和关断时机,可以实现零电压开关,减小开关过程中的电压冲击。
与ZVS技术相比,ZCS技术在某些场合下更为适用。
ZCS技术的原理是利用谐振电路使得开关管在导通和关断时电流降至零,以减小开关过程中的电流冲击。
具体来说,当开关管导通时,谐振电路中的电感器储存能量,使得电流逐渐增加;而当开关管关断时,谐振电路中的电容器释放能量,使得电流逐渐降低,直至降至零。
通过合理设计谐振电路的参数和控制开关管的导通和关断时机,可以实现零电流开关,减小开关过程中的电流冲击。
总的来说,软开关技术通过合理控制开关管的导通和关断时机,以减小开关过程中的冲击,提高开关效率。
ZVS技术和ZCS技术是软开关技术中常用的两种实现方式。
在实际应用中,软开关技术可以提高开关电源的效率和可靠性,减小对其他电子元器件的损伤,同时也有利于降低电磁干扰和提高整体系统的抗干扰能力。
电力电子系统的软开关技术应用电力电子系统是现代电力系统中一种重要的组成部分,在能量转换和电力控制方面发挥着关键的作用。
然而,传统的硬开关技术存在着一些问题,如能量损耗大、温升高、开关速度慢等。
为了克服这些问题,软开关技术应运而生。
本文将介绍电力电子系统中软开关技术的应用。
一、软开关技术概述软开关技术是通过控制电流和电压的相位和频率来实现开关过程的一种技术。
相较于硬开关技术,软开关技术具有以下优点:能量损耗小、温升低、开关速度快、抗干扰能力强等。
软开关技术在电力电子系统中得到了广泛的应用和推广。
二、软开关技术在电力电子系统中的应用1. 可逆变器可逆变器是一种电力电子系统,用于将直流电转换为交流电。
传统的硬开关技术在可逆变器中存在能量损耗大、谐波干扰大的问题。
而软开关技术可以有效解决这些问题,提高可逆变器的性能和效率。
2. 无线电频率功率放大器无线电频率功率放大器是一种用于放大和调节无线电频率信号的设备。
传统的硬开关技术在功率放大器中会产生较大的谐波干扰和电磁干扰。
而软开关技术可以通过精确地控制开关时间和频率,减少谐波干扰,并提高功率放大器的效率。
3. 交流输电系统交流输电系统是通过变压器将电能从发电站输送到用户的系统。
传统的硬开关技术在交流输电系统中存在能量损耗大和电流调节精度低的问题。
软开关技术可以通过控制开关的相位和频率,实现电流和电压的精确调节,提高交流输电系统的效率和稳定性。
4. 电动汽车充电系统电动汽车充电系统是将电能传输到电动汽车中进行充电的系统。
传统的硬开关技术在电动汽车充电系统中存在能量损耗大和充电速度慢的问题。
而软开关技术可以减少能量损耗,并通过提高充电器的开关速度,实现快速充电。
三、软开关技术的发展趋势随着电力电子系统的不断进步和发展,软开关技术也在不断发展和完善。
未来,软开关技术将更加智能化和自动化,能够根据实际情况自行调节开关时间和频率,以提高电力电子系统的性能和效率。
此外,软开关技术还有望应用于更多的领域,如光伏发电系统、风力发电系统等。
什么是电力电子中的软开关技术?在当今的电力电子领域,软开关技术正扮演着越来越重要的角色。
那么,究竟什么是软开关技术呢?要理解软开关技术,我们首先得从电力电子电路中的开关说起。
在传统的电力电子电路中,开关的开通和关断过程往往不是理想的。
当开关开通时,电流会从零逐渐上升;而当开关关断时,电压会从零逐渐上升。
这种非理想的开关过程会导致开关损耗的产生。
开关损耗主要包括导通损耗和开关过程中的损耗。
导通损耗是由于开关在导通状态下存在一定的电阻,电流通过时会产生功率损耗。
而开关过程中的损耗则更为复杂,在开关开通和关断的瞬间,电压和电流会有重叠的时间段,这期间会产生较大的功率损耗,并且还会引起电磁干扰等问题。
为了降低这些损耗,提高电力电子装置的效率和性能,软开关技术应运而生。
软开关技术的核心思想是让开关在电压或电流为零的时候进行开通或关断,从而减少甚至消除开关过程中的损耗。
具体来说,软开关技术可以分为零电压开关(Zero Voltage Switching,ZVS)和零电流开关(Zero Current Switching,ZCS)两种类型。
零电压开关是指在开关开通前,其两端的电压已经降为零,这样在开通瞬间就不会有电压和电流的重叠,从而大大降低了开通损耗。
实现零电压开关的常见方法是在开关两端并联一个电容,利用电路中的电感和电容的谐振,使得开关两端的电压在开通前降为零。
零电流开关则是在开关关断前,通过电路的设计让流过开关的电流先降为零,从而避免了关断时电压和电流的重叠,降低了关断损耗。
通常通过在开关支路串联电感来实现零电流关断。
软开关技术的实现需要依靠合理的电路拓扑结构和控制策略。
常见的软开关电路有准谐振电路、零开关 PWM 电路和零转换 PWM 电路等。
准谐振电路是最早出现的软开关电路之一,它利用电感和电容的谐振来实现软开关,但存在着电压和电流应力大、工作频率不固定等缺点。
零开关 PWM 电路在准谐振电路的基础上进行了改进,通过引入辅助开关,实现了恒定频率的控制,同时降低了电压和电流应力。
电力电子软开关技术综述摘要:电力电子软开关技术是一种应用于电力电子系统的关键技术,具有提高系统性能、降低开关损、增强系统可靠性的优点。
本文对电力电子软开关技术的应用现状和发展趋势进行了综述,探讨了不同软开关技术的优缺点,并提出了未来的研究方向。
引言:电力电子软开关技术是一种新型的电力电子变换技术,旨在减少开关器件的开关损,提高系统效率,同时降低系统噪声和电磁干扰。
随着电力电子技术的不断发展,软开关技术已成为研究热点之一。
本文旨在对电力电子软开关技术的应用现状和发展趋势进行综述,以推动该技术的进一步发展。
电力电子软开关技术的基本概念是利用电容或电感等储能元件实现开关器件的软化。
通过合理控制开关器件的导通和关断时间,以及储能元件的充放电过程,可以实现开关器件在导通和关断过程中的损耗最小化。
电力电子软开关技术的实现方法主要包括谐振变换、准谐振变换、多脉冲变换等。
虽然软开关技术具有降低开关损、提高效率等优点,但也会导致系统复杂度增加、成本提高等问题。
电力电子软开关技术在电力系统中的应用主要包括电力电子变换器、直流输电、柔性交流输电等方面。
其中,电力电子变换器是最为广泛的应用之一,可以用于电源、负载、储能等设备的控制和调节。
在控制策略方面,软开关技术可以用于改善系统的性能和稳定性,例如在PWM控制中引入软开关技术可以降低系统的谐波含量。
在设备制造方面,软开关技术也被广泛应用于各种电力电子设备中,例如开关电源、不间断电源等。
随着电力电子技术的不断发展,电力电子软开关技术的未来发展趋势主要包括以下几个方面:新型电力电子软开关技术的研发:随着技术的不断进步,将会有更多新型的电力电子软开关技术出现,例如更为高效的软开关技术、新型的谐振变换技术等。
这些新型的软开关技术将会在更广泛的领域得到应用,例如新能源、智能电网等领域。
集成化和模块化:未来电力电子软开关技术将更加注重集成化和模块化,通过将多个器件和电路集成在一起,实现更高效、更可靠、更小型化的电力电子系统。
1 引言开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开元件的占空比来调整输出电压。
开关电源的构成框图如图1所示,它由输入电路、变换电路、输出电路和控制电路等组成。
功率变换是其核心部分,主要由开关电路和变压器组成。
为了满足高功率密度的要求,变换器需要工作在高频状态,开关晶体管要采用开关速度高、导通和关断时间短的晶体臂,最典型的功率开关晶体管有功率晶体管(CTR)、功率场效应管(MOSFET)和绝缘型双极型晶体管(IGBT)等3种。
控制方式分为脉宽调制、脉频调制、脉宽和频率混合调制等3种,其中最常用的是脉宽调制(PWM)方式。
图1 开关电源构成框图从60年代开始得到发展和应用的DC-DC PWM功率变换技术是一种硬开关技术。
为了使开关电源在高频状态下也能高效率地运行,国内外电力电子界和电源技术界自70年代以来,不断研究开发高频软开关技术。
软开关和硬开关波形比较如图2所示。
图2 软开关和硬开关波形从图可以看出,软开关的特点是功率器件在零电压条件下导通(或关断),在零电流条件下关断(或导通)。
与硬开关相比,软开关的功率器件在零电压、零电流条件下工作,功率器件开关损耗小。
与此同时, du/dt和di/dt大为下降,所以它能消除相应的电磁干扰(EMI)和射频干扰(RFI),提高了变换器的可靠性。
同时,为了减小变换器的体积和重量,必须实现高频化。
要提高开关频率,同时提高变换器的变换效率,就必须减小开关损耗。
减小开关损耗的途径就是实现开关管的软开关,因此软开关技术软开关技术已经成为是开关变换技术的一个重要的研究方向。
本文对软开关和硬开关的工作特性进行比较,并对软开关技术进行了详细阐述。
2 硬开关的工作特性图3是开关管开关时的电压和电流波形。
开关管不是理想器件,因此在开关管开关工作时,要产生开通损耗和关断损耗,统称为开关损耗(Switching Loss)。
开关频率越高,总的开关损耗越大,变换器的效率就越低。
软硬开关方式的定义
软硬开关是电子设备中常用的两种开关方式。
软开关指的是通过软件
控制电路的开关状态,而硬开关则是通过物理装置来实现电路的开闭。
软开关方式通常使用微处理器或其他可编程逻辑器件来控制电路的状态。
这种方式可以使电路更加灵活,可以根据需要随时改变电路的状态。
例如,在计算机系统中,软开关可以用于控制CPU和其他重要组件的电源状态,以达到节能和延长寿命的目的。
相比之下,硬开关方式则更加简单和直接。
它通常采用机械装置或固
态继电器等物理部件来实现电路的开闭。
这种方式不需要任何软件支持,因此在一些对稳定性要求较高的场合中得到广泛应用。
例如,在
工业自动化领域中,硬开关被广泛应用于控制各种工业设备和机器人等。
总体而言,软硬开关各有优缺点,在不同场合下选择合适的方式可以
提高系统可靠性和效率。
硬开关:1.开关损耗大。
开通时,开关器件的电流上升和电压下降同时进行;关断时,电压上升和电流下降同时进行。
电压、电流波形的交叠产生了开关损耗,该损耗随开关频率的提高而急速增加。
2.感性关断电尖峰大。
当器件关断时,电路的感性元件感应出尖峰电压,开关频率愈高,关断愈快,该感应电压愈高。
此电压加在开关器件两端,易造成器件击穿。
3.容性开通电流尖峰大。
当开关器件在很高的电压下开通时,储存在开关器件结电容中的能量将以电流形式全部耗散在该器件内。
频率愈高,开通电流尖峰愈大,从而引起器件过热损坏。
另外,二极管由导通变为截止时存在反向恢复期,开关管在此期间内的开通动作,易产生很大的冲击电流。
频率愈高,该冲击电流愈大,对器件的安全运行造成危害。
4.电磁干扰严重。
随着频率提高,电路中的di/dt和dv/dt增大,从而导致电磁干扰(EMI)增大,影响整流器和周围电子设备的工作。
软开关:上述问题严重阻碍了开关器件工作频率的提高。
近年来开展的软开关技术研究为克服上述缺陷提供了一条有效的途径。
和硬开关工作不同,理想的软关断过程是电流先降到零,电压在缓慢上升到断态值,所以关断损耗近似为零。
由于器件关断前电流已下降到零,解决了感性关断问题。
理想的软开通过程是电压先降到零,电流在缓慢上升到通态值,所以开通损耗近似为零,器件结电容的电压亦为零,解决了容性开通问题。
同时,开通时,二极管反向恢复过程已经结束,因此二极管方向恢复问题不存在。
硬开关是指在固有的周期下进行开关,而软开关则不同,是利用了振荡作用,在电压和电流为零时使开关管打开和关闭,这样大大减少了在开关管上的损耗,提高了效率。
1 引言开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开元件的占空比来调整输出电压。
开关电源的构成框图如图1所示,它由输入电路、变换电路、输出电路和控制电路等组成。
功率变换是其核心部分,主要由开关电路和变压器组成。
为了满足高功率密度的要求,变换器需要工作在高频状态,开关晶体管要采用开关速度高、导通和关断时间短的晶体臂,最典型的功率开关晶体管有功率晶体管(CTR)、功率场效应管(MOSFET)和绝缘型双极型晶体管(IGBT)等3种。
控制方式分为脉宽调制、脉频调制、脉宽和频率混合调制等3种,其中最常用的是脉宽调制(PWM)方式。
图1 开关电源构成框图从60年代开始得到发展和应用的DC-DC PWM功率变换技术是一种硬开关技术。
为了使开关电源在高频状态下也能高效率地运行,国内外电力电子界和电源技术界自70年代以来,不断研究开发高频软开关技术。
软开关和硬开关波形比较如图2所示。
图2 软开关和硬开关波形从图可以看出,软开关的特点是功率器件在零电压条件下导通(或关断),在零电流条件下关断(或导通)。
与硬开关相比,软开关的功率器件在零电压、零电流条件下工作,功率器件开关损耗小。
与此同时, du/dt和di/dt大为下降,所以它能消除相应的电磁干扰(EMI)和射频干扰(RFI),提高了变换器的可靠性。
同时,为了减小变换器的体积和重量,必须实现高频化。
要提高开关频率,同时提高变换器的变换效率,就必须减小开关损耗。
减小开关损耗的途径就是实现开关管的软开关,因此软开关技术软开关技术已经成为是开关变换技术的一个重要的研究方向。
本文对软开关和硬开关的工作特性进行比较,并对软开关技术进行了详细阐述。
2 硬开关的工作特性图3是开关管开关时的电压和电流波形。
开关管不是理想器件,因此在开关管开关工作时,要产生开通损耗和关断损耗,统称为开关损耗(Switching Loss)。
开关频率越高,总的开关损耗越大,变换器的效率就越低。
1 引言开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开元件的占空比来调整输出电压。
开关电源的构成框图如图1所示,它由输入电路、变换电路、输出电路和控制电路等组成。
功率变换是其核心部分,主要由开关电路和变压器组成。
为了满足高功率密度的要求,变换器需要工作在高频状态,开关晶体管要采用开关速度高、导通和关断时间短的晶体臂,最典型的功率开关晶体管有功率晶体管(CTR)、功率场效应管(MOSFET)和绝缘型双极型晶体管(IGBT)等3种。
控制方式分为脉宽调制、脉频调制、脉宽和频率混合调制等3种,其中最常用的是脉宽调制(PWM)方式。
图1 开关电源构成框图从60年代开始得到发展和应用的DC-DC PWM功率变换技术是一种硬开关技术。
为了使开关电源在高频状态下也能高效率地运行,国内外电力电子界和电源技术界自70年代以来,不断研究开发高频软开关技术。
软开关和硬开关波形比较如图2所示。
图2 软开关和硬开关波形从图可以看出,软开关的特点是功率器件在零电压条件下导通(或关断),在零电流条件下关断(或导通)。
与硬开关相比,软开关的功率器件在零电压、零电流条件下工作,功率器件开关损耗小。
与此同时, du/dt和di/dt大为下降,所以它能消除相应的电磁干扰(EMI)和射频干扰(RFI),提高了变换器的可靠性。
同时,为了减小变换器的体积和重量,必须实现高频化。
要提高开关频率,同时提高变换器的变换效率,就必须减小开关损耗。
减小开关损耗的途径就是实现开关管的软开关,因此软开关技术软开关技术已经成为是开关变换技术的一个重要的研究方向。
本文对软开关和硬开关的工作特性进行比较,并对软开关技术进行了详细阐述。
2 硬开关的工作特性图3是开关管开关时的电压和电流波形。
开关管不是理想器件,因此在开关管开关工作时,要产生开通损耗和关断损耗,统称为开关损耗(Switching Loss)。
开关频率越高,总的开关损耗越大,变换器的效率就越低。
简单科普下开关电源软开关技术
经常在发烧友论坛上看到大神分享各种电源,就想学着做个LLC开关电源。
看到一个据说很热门的软开关技术,就在网上查阅各种资料,不查不知道,原来开关电源软开关技术,还有那幺多的学问。
开关电源不仅可以有硬开关、软开关,软开关中又分为电压型、电流型等...
所以,今天打算给大家简单科普下开关电源软开关技术。
一、硬开关和软开关
硬开关
开关过程中电压和电流均不为零,出现了重叠。
电压、电流变化很快,波形出现明显得过冲,导致开关噪声。
图1 硬开关的开关过程。