高速铁路牵引供电技术
- 格式:ppt
- 大小:2.48 MB
- 文档页数:59
高速铁路牵引供电关键技术分析摘要:随着铁路建设的不断推进,牵引供电技术也得以快速发展。
文章介绍了高速铁路牵引供电系统的组成,分析了高速铁路牵引供电技术的特点,并结合实际案例对高速铁路牵引供电的关键技术进行了探讨,有效保证了列车运营的稳定性和安全性。
关键词:高速铁路;牵引供电系统;接触网技术一、高速铁路牵引供电系统组成在铁路系统运行过程中,牵引供电系统为列车的正常运营提供了动力支持。
由于高速铁路列车运行密度大、车辆运行速度快、列车运行可靠性要求比较高,所以高速铁路列车设备选型和技术方案和普通铁路均有所不同。
高速铁路牵引供电系统主要可以划分为接触网和牵引变电所两个组成部分。
其中,牵引变电所主要通过牵引变压器将区域电力系统电源变压为适合电力机车运行的电压,然后利用馈线将电压引到接触网。
电力机车通过受电弓从接触网获得连续电能,为其运营提供足够的能量。
三、高速铁路牵引供电关键技术分析3.1项目背景本高速铁路工程项目为客运专线,总长度约为120km,基本是由高架线构成,最大设计速度为350km/h,最大运营速度为300km/h,沿线共设5座车站,其整个机电系统在运营速度300km/h、列车编组8辆的条件下,达到最小追踪列车间隔时间3min的综合能力目标值。
3.2牵引供电系统技术特性3.2.1可靠性牵引供电系统必须具备科学的冗余设计体系、高质量的设备与施工体系,为列车运行提供可靠的能量支持。
3.2.2可用性外界故障或内部人员疏忽引起的故障不至于导致系统的失效。
如双回路供电、接触网系统合理电分段,结构稳定、智能化继电保护控制系统。
3.2.3可维护性建立系统维修体制,牵引供电系统应保障不间断供电,采用少维护、免维修产品。
3.2.4安全性采取合适的、具有可操作性的安全管理措施避免出现安全性灾难;牵引供电系统不应产生铁路内部危害性干扰及对与其他系统的危害性相互作用的影响。
3.2.5环保和可持续性发展牵引供电系统建设应符合中国环境保护法的要求,电磁干扰、噪声指标等对人体健康及环境的影响符合相关规定,具有绿色、环保、节能的功能措施,对周边环境无污染或少污染,设备材料的使用具有可回收性和二次利用性,保证整个系统的可持续发展。
高速铁路电力牵引供电工程细部设计和工艺质量标准随着交通运输业的发展,高速铁路成为现代出行的重要交通工具。
作为高速铁路的重要组成部分,电力牵引供电系统的设计和工艺质量至关重要。
本文将对高速铁路电力牵引供电工程的细部设计和工艺质量标准进行详细说明。
文章将分别从细部设计和工艺质量标准两个方面展开阐述。
一、高速铁路电力牵引供电工程细部设计1. 设备选型在高速铁路电力牵引供电工程中,设备选型是至关重要的一环。
应选择符合国家标准、质量可靠的供电设备,以保障高速铁路牵引供电系统的安全可靠运行。
选型时应考虑设备的功率、可靠性、使用寿命等因素,确保设备能够满足高速铁路牵引供电系统的需求。
2. 设备布置设备布置应考虑高速铁路牵引供电系统的整体布局,合理安排设备的位置,保证设备之间的连接合理、便于维护检修。
还要考虑设备布置对电力线路的影响,避免设备布置对线路运行产生不利影响。
3. 线路设计在电力牵引供电系统中,电力线路的设计直接关系到系统的安全稳定运行。
应根据线路的长度、负载情况等因素进行合理设计,确保线路的输电能力和稳定性。
还要考虑线路的绝缘、接地等细节设计,以保障电力牵引供电系统的安全运行。
二、高速铁路电力牵引供电工程工艺质量标准1. 施工工艺高速铁路电力牵引供电工程的施工工艺应符合国家标准和行业规范,严格按照设计方案进行施工。
施工过程中应做好施工记录,确保工程质量的可追溯性。
还要加强对施工人员的培训,提高其技术水平,确保施工质量。
2. 设备安装在设备安装过程中,应严格按照设备安装说明进行操作,确保设备安装合理稳固。
对设备的接线、连接等细节应严格把关,杜绝因设备安装不规范而导致的安全隐患。
3. 工艺检测工程完成后,应进行工艺检测,确保高速铁路电力牵引供电系统的工艺质量符合要求。
检测内容应包括设备运行情况、线路传输质量等方面,确保系统运行稳定可靠。
通过对高速铁路电力牵引供电工程细部设计和工艺质量标准的详细阐述,可以看出,高速铁路电力牵引供电工程的设计和质量标准对系统运行安全稳定具有至关重要的意义。
高铁列车牵引供电系统技术研究引言高铁列车的快速发展一直是现代铁路交通领域的热点话题。
随着中国高铁的不断发展壮大,高铁列车的牵引供电系统技术也逐渐受到关注。
牵引供电系统是高铁列车的重要组成部分,直接影响列车的运行效率和安全性。
因此,对高铁列车牵引供电系统技术的研究具有重要意义。
一、高铁列车牵引供电系统的概述高铁列车的牵引供电系统主要包括供电设备、接触网、集电装置和牵引逆变器等组成部分。
其中,供电设备提供电能,接触网将电能传输到集电装置,集电装置将电能传输到牵引逆变器,最终驱动列车的运行。
这一系列组成部分形成了高铁列车牵引供电系统的基本框架。
二、高铁列车牵引供电系统的技术特点1. 高效节能:高铁列车的牵引供电系统采用了先进的逆变器技术,能够实现电能的高效转换,提高列车的能量利用率,降低能耗。
2. 可靠稳定:高铁列车的牵引供电系统采用了多重保护系统,能够有效防止电路故障和意外发生,保障列车的安全稳定运行。
3. 高速化:高铁列车的牵引供电系统具有快速响应的特点,能够在短时间内提供足够的动力,满足列车高速行驶的需求。
4. 环保节能:高铁列车的牵引供电系统采用了先进的节能技术,可以有效减少能源消耗,减少排放,降低对环境的影响。
三、高铁列车牵引供电系统技术研究现状目前,高铁列车牵引供电系统技术研究主要集中在以下几个方面:1. 逆变器技术:逆变器是高铁列车牵引供电系统的核心部件,目前研究主要集中在提高逆变器的转换效率、降低损耗,并不断优化逆变器控制算法,提高整个系统的性能。
2. 集电装置技术:集电装置是高铁列车与接触网之间的关键部件,目前研究主要集中在提高集电装置的接触性能、减少磨损、延长使用寿命。
3. 供电设备技术:供电设备是高铁列车牵引供电系统的重要组成部分,目前研究主要集中在提高供电设备的效率、稳定性,减少能源损耗。
四、高铁列车牵引供电系统技术研究的挑战与展望尽管高铁列车牵引供电系统技术取得了长足的进步,但仍然面临一些挑战。
高速铁路牵引供电系统的设计与应用研究随着中国高速铁路的蓬勃发展,高速铁路牵引供电系统的设计和应用也得到了越来越多的关注。
牵引供电系统是高速铁路中的关键部件,是保证列车正常运行和安全稳定的必要条件。
本文将介绍高速铁路牵引供电系统的重要性、类型、参数要求以及设计和应用研究的现状与发展趋势。
一、高速铁路牵引供电系统的重要性牵引供电系统是高速铁路的重要组成部分之一,它负责为高速列车提供电力,并通过电缆或架空线路将电能传输到列车上,实现列车的动力驱动。
因此,牵引供电系统对于高速铁路的正常运行和安全稳定起着至关重要的作用,牵引供电系统的可靠性和稳定性,直接影响高速铁路的运输效率和安全。
二、高速铁路牵引供电系统的类型根据传输电能的方式,高速铁路牵引供电系统主要分为两种类型:架空式和电缆式。
架空式牵引供电系统是利用高压架空线路输送电能,通过触网与集电装置相接触,将电能传输给列车,因此,架空式牵引供电系统需要将一定数量的铁塔分布于铁路沿线,具有传输距离远、传输功率大的特点。
电缆式牵引供电系统则是通过地下铺设电缆输送电能,电能传输的距离相对较短,当容纳量不足时,也可以与架空式牵引供电系相互关联,应用于较为复杂的地形或掩埋应用环境。
三、高速铁路牵引供电系统的参数要求高速铁路牵引供电系统的参数要求与一般的电力系统有所不同,其主要体现在以下几个方面。
(1)电压等级:现阶段我国高速铁路牵引供电系统的电压等级已经达到了交流25kV,频率50Hz的标准,这个电压等级不仅可以满足列车高速行驶的需求,还可以有效减小牵引电缆的送电损耗,实现节能减排的目的。
(2)电流特性:高速列车的牵引电流需要随速度的变化而快速调整,从而达到最佳牵引效果。
因此,高速铁路牵引供电系统的电流特性需要满足宽频、大功率、快调节等需求。
(3)环境适应能力:高速铁路是一种在车站、隧道、桥梁等环境下运行的交通系统,因此,牵引供电系统需要在复杂的环境中保持稳定可靠的运行,需要具备对环境干扰的抵抗能力和可靠的防雷性能。
浅谈高速铁路牵引供电技术杨磊摘要:本文简要结合高速铁路的供电系统的特点及要求,介绍了高速牵引供电系统关键技术、牵引供变电子系统、接触网子系统在运营维护方面需要改进和完善的技术以及牵引供电系统供电方式等方面技术。
关键字:高速铁路牵引供电技术0概述近年来,我国铁路在学习、消化、吸收世界高速铁路先进成熟技术的基础上,系统总结了多年来中国客运专线工程技术、科研试验成果,针对高速铁路的关键技术问题,又进一步开展了研究、试验、验证等的自主创新和各系统集成研究攻关。
牵引供电系统采用国内外先进的牵引供电技术,进行系统集成后,全面实现设计速度350km/h牵引供电系统的国产化,形成统一的客专技术标准体系,构建具有自主知识产权的客专牵引供电系统技术平台。
下面就高速铁路供电技术的几个方面进行简单介绍。
1高速铁路的供电系统的特点及要求⑴高速列车单台车的牵引电流及馈线电流很大,因此要求牵引供电系统有较强的供电能力。
⑵列车速度快,通过供电臂的时间短,供电臂中列车数量少,馈线电流波动大。
⑶高速铁路采用交-直-交机车功率因数高谐波含量低。
⑷列车具有再生制动功能。
⑸弓网关系成为高速成败的关键。
⑹动态特性成为决定因素。
⑺满足高速运行的弓网关系。
⑻满足可靠稳定的供电要求。
⑼满足免维护、少检修、低于自然环境侵害的要求。
⑽动车组自动过分相。
⑾供电能力适应高速度、高密度。
⑿具有综合一体化远程监控能力。
2高速牵引供电系统关键技术2.1.弓网关系与检测技术弓网关系是决定受流质量的主要因素。
应通过理论与实验研究,确定最佳的悬挂形式、零件材质,确定以硬点和压力为主要检测对象的接触网受流状态评价标准体系。
2.2.自动过分相技术牵引供电系统电分相环节是制约列车运行速度的瓶颈之一。
自动过电分相主要分为三大类:地面开关自动切换;柱上断电方案;车载自动断电过分相三类。
三种自动过电分相比较:⑴地面开关自动切换型性能指标最高,没有供电死区,速度损失最小,与线路条件无关,是未来最有发展前途的技术方案。