名师解读 一般步骤可简化为“一去”,即去分母化分式方程为整式 方程;“二解”,即解整式方程;“三验”,即验根;“四答”,即写出答案.
知识点一 知识点二 知识点三
知识点三 分式方程的应用 列分式方程解应用题的基本思路. (1)审:了解已知量与未知量各是什么; (2)设:设出未知数; (3)找:找出相等关系,列出分式方程; (4)解:解这个分式方程; (5)验:检验,看方程的解是否满足方程和符合题意; (6)答:写出答案. 名师解读 列分式方程解应用题的关键是用分式表示一些基本的 数量关系,列分式方程解应用题一定要验根,还要保证其结果符合 实际意义.
15.3 分式方程
知识点一 知识点二 知识点三
知识点一 分式方程的定义 分母中含未知数的方程叫做分式方程. 名师解读 理解分式方程要注意,所给的式子必须具备三个特 征:(1)含有分母;(2)分母中含有未知数;(3)是方程.
知识点一 知识点二 知识点三
知识点二 分式方程的解法 (1)解分式方程的基本思路是将分式方程化为整式方程,具体做法 是“去分母”,即方程两边乘最简公分母,这也是解分式方程的一般方 法. (2)解分式方程的一般步骤:
拓展点一 拓展点二 拓展点三 拓展点四
解两边分别通分,得(������-45)-(������������-3) = (������-25)-(������������-1). 当分子为零,即 5-x=0 时, 解得 x=5; 当分子不为零,而分母相等时,得 (x-4)(x-3)=(x-2)(x-1),解得 x=52, 检验:x=5,x=52时,各分母都不为 0. 故 x=5,x=52都是原分式方程的解.
C.m>-94
D.m>-94且 m≠-34
解析:去分母得 x+m-3m=3x-9,整理得 2x=-2m+9,解得 x=-2���2���+9.