糖酵解特点
- 格式:docx
- 大小:15.54 KB
- 文档页数:2
精心整理在高等植物中存在着多条呼吸代谢的生化途径,这是植物在长期进化过程中,对多变环境条件适应的体现。
在缺氧条件下进行酒精发酵和乳酸发酵,在有氧条件下进行三羧酸循环和戊糖磷酸途径,还有脂肪酸氧化分解的乙醛酸循环以及乙醇酸氧化途径等(图5-2)。
图5-2植物体内主要呼吸代谢途径相互关系示意图(二)糖酵解的生理意义1.糖酵解普遍存在于生物体中,是有氧呼吸和无氧呼吸途径的共同部分。
2.糖酵解的产物丙酮酸的化学性质十分活跃,可以通过各种代谢途径,生成不同的物质(图5-4)。
图5-4丙酮酸在呼吸和物质转化中的作用3.通过糖酵解,生物体可获得生命活动所需的部分能量。
对于厌氧生物来说,糖酵解是糖分解和获取能量的主要方式。
4.糖酵解途径中,除了由己糖激酶、磷酸果糖激酶、丙酮酸激酶等所催化的反应以外,多数反应均可逆转,这就为糖异生作用提供了基本途径。
二、发酵作用生物体中重要的发酵作用有酒精发酵和乳酸发酵。
在酒精发酵(alcoholfermentation)过程中,糖类经过糖酵解生成丙酮酸。
然后,丙酮酸先在丙酮酸脱羧酶(pyruvicaciddecarboxylase)作用下脱羧生成乙醛。
CH3COCOOH→CO2+CH3CHO(5-5)乙醛再在乙醇脱氢酶(alcoholdehydrogenase)的作用下,被还原为乙醇。
CH3CHO+NADH+H+→CH3CH2OH+NAD+(5-6)在缺少丙酮酸脱羧酶而含有乳酸脱氢酶(lacticaciddehydrogenase)的组织里,丙酮酸便被NADH还原为乳酸,即乳酸发酵(lactatefermentation)。
CH3COCOOH+NADH+H+→CH3CHOHCOOH+NAD+(5-7)在无氧条件下,通过酒精发酵或乳酸发酵,实现了NAD+的再生,这就使糖酵解得以继续进行。
乙酰基转移酶(dihydrolipoyltransacetylase)、二氢硫辛酸脱氢酶(dihydrolipoicaciddehydrogenase)。
碳循环中糖酵解环节
糖酵解是碳循环中的一个重要环节,它将葡萄糖分子分解成两个分子的丙酮酸,同时产生ATP和NADH。
糖酵解通常发生在细胞质中,它分为糖的准备阶段和糖的分解阶段两个过程。
糖的准备阶段:
在这个阶段,葡萄糖被磷酸化并转化为两个分子的果糖-1,6-二磷酸。
这个过程涉及到两个关键酶,即磷酸糖异构酶和磷酸果糖激酶。
糖的分解阶段:
在这个阶段,果糖-1,6-二磷酸被分解成两个分子的丙酮酸。
这个过程涉及到一系列的酶反应,包括酵母糖解酶、丙酮酸激酶和丙酮酸羧化酶。
整个糖酵解过程产生的ATP和NADH可以进一步用于细胞的能量代谢和其他生化过程。
糖酵解是细胞呼吸的起始阶段,后续的细胞呼吸阶段将丙酮酸进一步氧化为二氧化碳和水,从而产生更多的能量。
糖酵解:葡萄糖在细胞液中,经无氧分解转变为乳酸并生成少量ATP的过程称之为糖酵解。
糖酵解亦称EMP途径。
糖酵解的反应部位:胞浆激酶:催化ATP分子的磷酸基(r-磷酰基)转移到底物上的酶称激酶,一般需要Mg2+或Mn2+作为辅因子。
哺乳类动物体内已发现有4种己糖激酶同工酶,分别称为Ⅰ至Ⅳ型。
肝细胞中存在的是Ⅳ型,称为葡萄糖激酶。
它的特点是:①对葡萄糖的亲和力很低②受激素调控底物水平磷酸化:代谢物在氧化分解过程中通过脱氢、脱水等作用使底物分子内部能量重新分布,能量集中生成高能键,然后使ADP磷酸化生成ATP的过程。
变位酶:通常将催化分子内化学集团移位的酶。
糖酵解分为两个阶段:第一阶段:由葡萄糖分解成丙酮酸,称之为糖酵解途径1、葡萄糖磷酸化为6-磷酸葡萄糖(己糖激酶)(消耗1molATP,反应不可逆)2、6-磷酸葡萄糖转变为6-磷酸果糖(磷酸葡萄糖异构酶)3、6-磷酸果糖转变为1,6-双磷酸果糖(磷酸果糖激酶)(消耗1molATP,反应不可逆)4、磷酸己糖裂解成2分子磷酸丙糖(醛缩酶)5、磷酸丙糖的同分异构化(磷酸丙糖异构酶)6、3-磷酸甘油醛氧化为1,3-二磷酸甘油酸(3-磷酸甘油醛脱氢酶)7、1,3-二磷酸甘油酸转变成3-磷酸甘油酸(磷酸甘油酸激酶)8、3-磷酸甘油酸转变为2-磷酸甘油酸(磷酸甘油酸变位(生成2molATP,反应可逆)9、2-磷酸甘油酸转变为磷酸烯醇式丙酮酸(烯醇化酶)10、磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化生成ATP(丙酮酸激酶)(生成2molATP,反应不可逆)第二阶段由丙酮酸转变成乳酸糖酵解的生理意义:①在无氧或相对缺氧的条件下,为机体提供生命活动所必需的能量。
②即使在有氧的条件下,机体有些组织也要由无氧酵解来供能,如成熟的红细胞、视网膜、肾脏髓质等。
糖酵解的特点:⑴反应部位:胞浆,参与糖酵解各反应的酶都存在于细胞浆中。
⑵糖酵解是一个不需氧的产能过程。
⑶反应全过程不可逆,其中有三步不可逆的反应方式:底物水平磷酸化终产物乳酸的去路:释放入血,进入肝脏再进一步代谢。
肌肉代谢途径肌肉代谢是指肌肉细胞内发生的一系列化学反应,以提供能量和维持肌肉功能的过程。
肌肉代谢途径主要包括磷酸化途径、糖酵解途径和脂肪氧化途径。
下面将依次介绍这三种代谢途径的特点和功能。
1. 磷酸化途径磷酸化途径是肌肉细胞最常用的能量供应途径,主要通过肌肉内能量储备物质肌酸磷酸化产生能量。
这种代谢途径不需要氧气参与,因此被称为无氧代谢。
在高强度、短时间的运动中,肌酸磷酸化能够迅速提供肌肉所需的能量。
然而,肌酸储备量有限,能够支持持续运动的时间有限,一般约为10秒至30秒。
2. 糖酵解途径糖酵解途径是通过分解葡萄糖产生能量的代谢途径。
这种代谢途径需要氧气参与,但相比于有氧代谢途径来说速度较快。
糖酵解可以将葡萄糖分解为乳酸,并释放出能量供给肌肉收缩。
当运动强度逐渐增加或运动时间延长时,糖酵解途径开始发挥主要作用。
然而,由于乳酸的堆积会导致肌肉疲劳,糖酵解途径的能力有一定的限制。
3. 脂肪氧化途径脂肪氧化途径是通过氧化脂肪酸产生能量的代谢途径。
这种代谢途径需要氧气的参与,因此也被称为有氧代谢。
相比于磷酸化途径和糖酵解途径,脂肪氧化途径的能量产生速度较慢,但是能够持续产生能量供给长时间、低强度的运动。
脂肪是肌肉的重要能量储备物质,同时也是减少体脂肪的重要来源。
除了这三种主要的肌肉代谢途径,肌肉还可以通过其他途径产生能量,例如氮化途径和蛋白质降解途径。
这些代谢途径对于肌肉的能量供给和调节具有重要意义。
肌肉代谢途径的选择与运动强度、运动时间和身体健康状况密切相关。
在不同的运动环境下,肌肉会动态调整代谢途径的选用,以满足能量需求和适应外界环境变化。
同时,通过适当的训练和营养摄入可以优化肌肉代谢途径的功能,提高运动表现和身体健康水平。
总结一下,肌肉代谢途径包括磷酸化途径、糖酵解途径和脂肪氧化途径。
每种代谢途径都有其特点和功能,根据运动类型和强度的不同会有所选择。
通过合理的训练和营养摄入,可以优化肌肉代谢途径的功能,提高运动能力和身体健康水平。
生物化学期末复习总结糖代谢一、糖酵解的概念:糖酵解:一分子葡萄糖在胞液中可裂解为两分子丙酮酸,是葡萄糖无氧氧化和有氧氧化的共同起始途径,称为糖酵解。
乳酸发酵:在不能利用氧或氧供应不足时,人体将丙酮酸在胞液中还原生成乳酸,称为乳酸发酵。
二、糖酵解的反应过程:具体过程见书P167①~⑤为酵解途径中的耗能阶段,1Glu→2ATP,2分子3-磷酸甘油醛产生⑥~⑩为产能阶段,共产生2*2=4分子A TP糖酵解总结:1、反应部位:胞浆2、是一个不需氧的产能过程3、全程有3个不可逆反应4、产能方式和数量:方式:底物水平磷酸化净生成ATP数量:从G开始2×2-2= 2ATP从Gn开始2×2-1= 3ATP5、终产物乳酸的去路:释放入血,进入肝脏再进一步代谢:分解利用,乳酸循环(糖异生)6、两次底物水平磷酸化:⑦⑩底物水平磷酸化:ADP或其他核苷二磷酸的磷酸化作用与底物的脱氢作用直接相偶联的反应过程,称为底物水平磷酸化糖酵解中参与底物水平磷酸化的酶:磷酸甘油酸激酶,丙酮酸激酶7、消耗ATP的反应:①③8、生成高能磷酸键的反应:⑥⑨含有高能磷酸键的物质:1,3-二磷酸甘油酸,磷酸烯醇式丙酮酸(PEP)9、与NADH+H+有关的反应⑥⒒无氧酵解中参与丙酮酸被还原为乳酸的NADH产生于无氧酵解第⑥步:由3-磷酸甘油醛氧化为1,3-二磷酸甘油酸的过程。
10、糖酵解的三个关键酶※:1、E1:己糖激酶2、E2:磷酸果糖激酶-13、E3: 丙酮酸激酶三、己糖激酶:哺乳类动物体内已发现有4种己糖激酶同工酶,分别称为Ⅰ至Ⅳ型。
肝细胞中存在的是Ⅳ型,称为葡萄糖激酶。
它的特点是:①对葡萄糖的亲和力很低;②受激素调控,对葡糖-6-磷酸的反馈抑制并不敏感。
它这些特性使葡萄糖激酶对于肝维持血糖稳定至关重要,只有当血糖显著升高时,肝才会加快对葡萄糖的利用,起到缓冲血糖水平的调节作用。
四、磷酸果糖激酶-1:催化的产物是反馈激活剂,体内唯一的正反馈。
糖酵解(专业知识值得参考借鉴)一概述糖类最主要的生理功能是为机体提供生命活动所需要的能量。
糖分解代谢是生物体取得能量的主要方式。
生物体中糖的氧化分解主要有3条途径:糖的无氧氧化、糖的有氧氧化和磷酸戊糖途径。
其中,糖的无氧氧化又称糖酵解(glycolysis)。
葡萄糖或糖原在无氧或缺氧条件下,分解为乳酸同时产生少量ATP的过程,由于此过程与酵母菌使糖生醇发酵的过程基本相似,故称为糖酵解。
催化糖酵解反应的一系列酶存在于细胞质中,因此糖酵解全部反应过程均在细胞质中进行。
糖酵解是所有生物体进行葡萄糖分解代谢所必须经过的共同阶段。
二反应过程糖酵解过程是从葡萄糖开始分解生成丙酮酸的过程,全过程共有10步酶催化反应。
1.葡萄糖磷酸化糖酵解第一步反应是由己糖激酶催化葡萄糖的C6被磷酸化,形成6-磷酸葡萄糖。
该激酶需要Mg2+离子作为辅助因子,同时消耗一分子ATP,该反应是不可逆反应。
2.6-磷酸葡萄糖异构转化为6-磷酸果糖这是一个醛糖-酮糖同分异构化反应,此反应由磷酸己糖异构酶催化醛糖和酮糖的异构转变,需要Mg2+离子参与,该反应可逆。
3.6-磷酸果糖磷酸化生成1,6-二磷酸果糖此反应是由磷酸果糖激酶催化6-磷酸果糖磷酸化生成1,6-二磷酸果糖,消耗了第二个ATP分子。
4.1,6-二磷酸果糖裂解在醛缩酶的作用下,使己糖磷酸1,6-二磷酸果糖C3和C4之间的键断裂,生成一分子3-磷酸甘油醛和一分子磷酸二羟丙酮。
5.3-磷酸甘油醛和磷酸二羟丙酮的相互转换3-磷酸甘油醛是酵解下一步反应的底物,所以磷酸二羟丙酮需要在丙糖磷酸异构酶的催化下转化为3-磷酸甘油醛,才能进一步酵解。
6.3-磷酸甘油醛的氧化3-磷酸甘油醛在NAD+和H3P04存在下,由3-磷酸甘油醛脱氢酶催化生成1,3-二磷酸甘油酸,这一步是酵解中惟一的氧化反应。
7.1,3-二磷酸甘油酸转变为3-磷酸甘油酸在磷酸甘油酸激酶的作用下,将1,3-二磷酸甘油酸高能磷酰基转给ADP形成ATP和3-磷酸甘油酸。
精心整理在高等植物中存在着多条呼吸代谢的生化途径,这是植物在长期进化过程中,对多变环境条件适应的体现。
在缺氧条件下进行酒精发酵和乳酸发酵,在有氧条件下进行三羧酸循环和戊糖磷酸途径,还有脂肪酸氧化分解的乙醛酸循环以及乙醇酸氧化途径等(图5-2)。
图5-2植物体内主要呼吸代谢途径相互关系示意图一、糖酵解己糖在细胞质中分解成丙酮酸的过程,称为糖酵解(glycolysis)。
整个糖酵解化学1.糖酵解普遍存在于生物体中,是有氧呼吸和无氧呼吸途径的共同部分。
2.糖酵解的产物丙酮酸的化学性质十分活跃,可以通过各种代谢途径,生成不同的物质(图5-4)。
图5-4丙酮酸在呼吸和物质转化中的作用3.通过糖酵解,生物体可获得生命活动所需的部分能量。
对于厌氧生物来说,糖酵解是糖分解和获取能量的主要方式。
4.糖酵解途径中,除了由己糖激酶、磷酸果糖激酶、丙酮酸激酶等所催化的反应以外,多数反应均可逆转,这就为糖异生作用提供了基本途径。
二、发酵作用生物体中重要的发酵作用有酒精发酵和乳酸发酵。
在酒精发酵(alcoholfermentation)过程中,糖类经过糖酵解生成丙酮酸。
然后,丙酮酸先在丙酮酸脱羧酶(pyruvicaciddecarboxylase)作用下脱羧生成乙醛。
CH3COCOOH→CO2+CH3CHO(5-5)乙醛再在乙醇脱氢酶(alcoholdehydrogenase)的作用下,被还原为乙醇。
CH3CHO+NADH+H+→CH3CH2OH+NAD+(5-6)在缺少丙酮酸脱羧酶而含有乳酸脱氢酶(lacticaciddehydrogenase)的组织里,丙酮酸便被NADH还原为乳酸,即乳酸发酵(lactatefermentation)。
CH3COCOOH+NADH+H+→CH3CHOHCOOH+NAD+(5-7)在无氧条件下,通过酒精发酵或乳酸发酵,实现了NAD+的再生,这就使糖酵解得以继续进行。
无氧呼吸过程中形成乙醇或乳酸所需的NADH+H+,一般来自于糖酵解。
四、糖代谢概况酵解途径丙酮酸有氧 无氧H 2O 及CO 2乳酸乳酸、氨基酸、甘油糖原核糖 + NADPH+H+磷酸戊糖途径 淀粉 消化与吸收 无氧分解(糖酵解)糖酵解(glycolysis)是指葡萄糖在无氧条件下分解生成乳酸并释放出能量的过程。
糖酵解的全部反应过程在胞液(cytoplasm)中进行,代谢的终产物为乳酸(lactate),一分子葡萄糖经无氧酵解可净生成两分子ATP 。
无氧酵解的反应过程可分为活化、裂解、放能和还原四个阶段。
酸的生醇发酵及葡萄糖的无氧分解葡萄糖EMP+NADCH2OHCH3乙醇NADH+H+NAD+CO2乳酸COOHCH(OH)C H3CHOCH3COOHC==OCH3丙酮酸1.活化(a c t i v a t i o n)-己糖磷酸酯的生成活化阶段是指葡萄糖经磷酸化和异构反应生成1,6-二磷酸果糖(FDP)的反应过程。
该过程共由三步化学反应组成。
(一)糖酵解途径葡萄糖磷酸化磷酸葡萄糖(G-6-P)G-6-P异构为(F-6-P)F-6-P再磷酸化为1,6( F-1,6-BP )......(1)......(2) (3)ADPATPADP**己糖激酶/葡萄糖激酶(1磷酸己糖异构酶(2磷酸果糖激酶-1(3ATP 无氧酵解的活化阶段第一阶段总结:消耗ATP不生成ATP从葡萄糖开始→ 2分子ATP从糖原开始→ 1分子ATP.裂解(lysis)——磷酸丙糖的生一分子F-1,6-BP裂解为两分子可以互变的磷酸丙糖(triose phosphate),包括两步反应:F-1,6-BP 裂解为3-磷酸甘油醛和磷酸二羟丙酮磷酸二羟丙酮异构为3-磷酸甘油醛......(5) (4)第二阶段总结:1、一分子六碳糖分解为2分子能够互变的磷酸丙糖。
2、既不消耗ATP,也不生成ATP。
3.放能(r e l e a s i n g e n e r g y)——丙酮酸的生成3-磷酸甘油醛经脱氢、磷酸化、脱水及放能等反应生成丙酮酸,包括六步反应。
精心整理在高等植物中存在着多条呼吸代谢的生化途径,这是植物在长期进化过程中,对多变环境条件适应的体现。
在缺氧条件下进行酒精发酵和乳酸发酵,在有氧条件下进行三羧酸循环和戊糖磷酸途径,还有脂肪酸氧化分解的乙醛酸循环以及乙醇酸氧化途径等(图5-2)。
图5-2植物体内主要呼吸代谢途径相互关系示意图(二)糖酵解的生理意义1.糖酵解普遍存在于生物体中,是有氧呼吸和无氧呼吸途径的共同部分。
2.糖酵解的产物丙酮酸的化学性质十分活跃,可以通过各种代谢途径,生成不同的物质(图5-4)。
图5-4丙酮酸在呼吸和物质转化中的作用3.通过糖酵解,生物体可获得生命活动所需的部分能量。
对于厌氧生物来说,糖酵解是糖分解和获取能量的主要方式。
4.糖酵解途径中,除了由己糖激酶、磷酸果糖激酶、丙酮酸激酶等所催化的反应以外,多数反应均可逆转,这就为糖异生作用提供了基本途径。
二、发酵作用生物体中重要的发酵作用有酒精发酵和乳酸发酵。
在酒精发酵(alcoholfermentation)过程中,糖类经过糖酵解生成丙酮酸。
然后,丙酮酸先在丙酮酸脱羧酶(pyruvicaciddecarboxylase)作用下脱羧生成乙醛。
CH3COCOOH→CO2+CH3CHO(5-5)乙醛再在乙醇脱氢酶(alcoholdehydrogenase)的作用下,被还原为乙醇。
CH3CHO+NADH+H+→CH3CH2OH+NAD+(5-6)在缺少丙酮酸脱羧酶而含有乳酸脱氢酶(lacticaciddehydrogenase)的组织里,丙酮酸便被NADH还原为乳酸,即乳酸发酵(lactatefermentation)。
CH3COCOOH+NADH+H+→CH3CHOHCOOH+NAD+(5-7)在无氧条件下,通过酒精发酵或乳酸发酵,实现了NAD+的再生,这就使糖酵解得以继续进行。
乙酰基转移酶(dihydrolipoyltransacetylase)、二氢硫辛酸脱氢酶(dihydrolipoicaciddehydrogenase)。
在高等植物中存在着多条呼吸代谢的生化途径,这是植物在长期进化过程中,对多变环境条件适应的体现。
在缺氧条件下进行酒精发酵和乳酸发酵,在有氧条件下进行三羧酸循环和戊糖磷酸途径,还有脂肪酸氧化分解的乙醛酸循环以及乙醇酸氧化途径等(图5-2)。
图5-2 植物体内主要呼吸代谢途径相互关系示意图一、糖酵解己糖在细胞质中分解成丙酮酸的过程,称为糖酵解(glycolysis)。
整个糖酵解化学过程于1940年得到阐明。
为纪念在研究这一途径中有突出贡献的三位生物化学家:G.Embden,O.Meyerhof和J.K.Parnas,又把糖酵解途径称为EmbdenMeyerhofParnas途径,简称EMP途径(EMP pathway)。
糖酵解普遍存在于动物、植物、微生物的细胞中。
(一)糖酵解的化学历程糖酵解途径(图5-3)可分为下列几个阶段:图5-3糖酵解途径1.己糖的活化(1~9)是糖酵解的起始阶段。
己糖在己糖激酶作用下,消耗两个ATP逐步转化成果糖-1,6二磷酸(F-1,6-BP)。
如以淀粉作为底物,首先淀粉被降解为葡萄糖。
淀粉降解涉及到多种酶的催化作用,其中,除淀粉磷酸化酶(starch phosphorylase)是一种葡萄糖基转移酶外,其余都是水解酶类,如α-淀粉酶(α-amylase)、β-淀粉酶(β-amylase)、脱支酶(debranching enzyme)、麦芽糖酶(maltase)等。
2.己糖裂解(10~11)即F-1,6-BP在醛缩酶作用下形成甘油醛-3-磷酸和二羟丙酮磷酸,后者在异构酶(isomerase)作用下可变为甘油醛-3-磷酸。
3.丙糖氧化(12~16)甘油醛-3-磷酸氧化脱氢形成磷酸甘油酸,产生1个ATP和1个NADH,同时释放能量。
然后,磷酸甘油酸经脱水、脱磷酸形成丙酮酸,并产生1个ATP,这一过程分步完成,有烯醇化酶和丙酮酸激酶参与反应。
糖酵解过程中糖的氧化分解是在没有分子氧的参与下进行的,其氧化作用所需要的氧来自水分子和被氧化的糖分子。
糖酵解代谢的重要特点
糖酵解代谢是一种重要的代谢过程,它涉及糖的分解,以产生能量来支持有机体的生
理活动。
糖酵解代谢的重要特点是:
一、复杂性。
糖酵解代谢是一个非常复杂的生物学过程,它由多种酶、活性位点、能
量来源和反应序列等因素共同构成。
二、能量产生。
糖酵解代谢是能量产生的重要过程,多种能量产生机制通过糖酵解代
谢来支撑有机体的生理功能和生活过程。
三、反应复杂。
通常,糖酵解代谢包括一系列化学反应,除了简单的氧化还有构建聚
集体的反应,甚至可以形成复杂的有机物。
四、固氮功能。
糖酵解代谢可以提供有机体合成固氮物质所需的氮,从而为细胞生长
和生活提供必要的营养。
五、免疫功能。
糖酵解代谢不仅可以产生能量,还可以对有机体的免疫功能发挥重要
作用。
它可以增强有机体对病原微生物侵害的抵抗力,从而保护生物群体免受疾病的侵害。
六、连通性。
糖酵解代谢不仅支持有机体的生理功能,而且与生物体内的其他代谢过
程如蛋白质合成、脂质代谢以及有机氮的吸收和积累都有关联。
它成为多种代谢路径之间
的连接词。
总之,糖酵解代谢是一种重要的特征,它为有机体的生理功能提供能量,涉及反应的
复杂性、固氮功能、免疫功能和连通性等多种特点。
糖代谢1.糖酵解的特点及生理意义。
(熟记)(一)特点:(1)糖酵解的全过程没有氧的参与,乳酸是其产物。
(2)糖酵解是糖在无氧条件下发生的不完全氧化,释放的能量较少。
以葡萄糖为原料可净生成2分子ATP,以糖原为原料可净生成3分子的ATP。
(3)糖酵解是单向的,不可逆的。
糖酵解有三个关键酶:6-磷酸果糖激酶-1;己糖激酶;丙酮酸激酶。
(4)红细胞中存在2,3-二磷酸甘油酸支路。
(二)生理意义(1)在机体缺氧的情况下迅速供能。
(2)成熟的红细胞没有线粒体,即使在氧供充足的情况下也依糖酵解。
(3)在某些组织中如神经细胞、白细胞、骨髓细胞等,即使不缺氧也由糖酵解提供能量。
(4)2,3-二磷酸甘油酸对于调节红细胞带氧功能有重要意义。
(5)为体内其他物质合成提供原料。
2.三羧酸循环的特点。
(1)必须在有氧的条件下进行。
(2)三羧酸循环是机体的主要产能途径,其中有四次脱氢,两次脱羧,一次底物水平磷酸化。
(3)三羧酸循环是单向反应体系,其中有三个关键酶:柠檬酸合酶、异柠檬酸脱氢酶、α-酮戊二酸脱氢酶系。
(4)三羧酸循环的中间产物必须不断补充。
3.三羧酸循环的生理意义。
(背过)(1)是体内主要的供能方式。
(2)是三大营养物质代谢联系枢纽。
(3)是三大营养物质的最终代谢通路。
(4)为呼吸链提供氢和电子。
(5)为某些物质的生物合成提供小分子前体物质。
3.磷酸戊糖途径的生理意义。
发生部位及关键酶。
(重点背过)(一)发生部位:细胞的胞液(二)关键酶:6-磷酸葡萄糖脱氢酶(三)生理意义1.为核酸的生物合成提供核糖。
2.提供NADPH作为供氢体参与多种代谢反应。
(1)NADPH是体内许多合成代谢的供氢体。
(2)NADPH作为羟化酶的辅酶维持体内的羟化反应。
(3)NADPH作为谷胱甘肽还原酶的辅酶维持谷胱甘肽的还原状态。
4.糖异生是否为糖酵解的逆反应(重点背过)糖异生不完全是糖酵解的逆反应,糖酵解与糖异生的多数反应是可逆的,仅糖酵解3个限速步骤所对应的逆反应需由糖异生的特有的关键酶催化。
糖酵解特点
温馨提示:文档内容仅供参考
糖酵解是一种生化反应,通过这种反应,有机化合物(通常是糖类)被分解成能够供能的小分子,如乳酸、乙醇和二氧化碳等。
以下是糖酵解的一些特点:
糖酵解是一种无氧过程,不需要氧气参与。
这是它与细胞呼吸的区别之一。
糖酵解是一种不完全氧化的过程,分解的糖类只被分解成乳酸、乙醇或其他有机酸,而不是二氧化碳和水。
糖酵解是一种快速的过程,能够在缺氧的环境下迅速地为细胞提供能量。
糖酵解是一种原始的代谢途径,存在于所有生物中,包括细菌、真核生物和古菌。
糖酵解的产物可以被用于其他代谢途径的进一步反应,如乳酸可以进一步被氧化成丙酮酸,乙醇可以被氧化成乙醛。
总之,糖酵解是一种重要的生物代谢途径,能够为细胞提供能
量和有机物。