非平衡电桥
- 格式:doc
- 大小:28.50 KB
- 文档页数:3
非平衡直流电桥一、实验内容:1. 直流单臂电桥(惠斯登电桥)测量电阻的基本原理和操作方法;2. 非平衡直流电桥电压输出方法(卧式电桥)测量电阻的基本原理和操作方法;3. 用直流单臂电桥测量室温铜电阻;4. 用非平衡直流电桥电压输出方法(卧式电桥)测量各温度铜电阻及电阻温度系数。
二、实验仪器:FQJ-Ⅲ型教学用非平衡直流电桥FQJ非平衡电桥加热实验装置实验装置三、实验原理:1.单桥的原理(惠斯登电桥)图1惠斯登电桥原理图1中,通电后调节R 3若检流计无电流流过,电桥平衡,有测量公式:2. 非平衡电桥原理(卧式电压电桥)图2非平衡电桥原理对于电压表而言,其内阻g R 很大,可认为g R ∞→,于是0=g I ,有:对于4231R R R R =,00=U ,固定1R 、2R 、3R ,取R R R ∆+→44,上式变为:对于卧式电桥R R R ==41,R R R '==32,R R '≠,上式变为:于是测量表达式为:四、实验步骤:1. 用直流单臂电桥测量室温铜电阻S1)将“双桥量程倍率选择”开关置于“单桥”位置,“功能、电压选择”开关置于“单桥(5V)”或“单桥15V ”,并接通电源。
2)在“R x ”与R x1之间接上被测电阻,R 3测量盘打到与被测电阻相应的数字,按下G 、B 按钮,调节R 3,使电桥平衡(电流表为0)。
3)记录R 3和室温。
2. 用卧式电桥测量各温度铜电阻及电阻温度系数1)确定各桥臂电阻值。
设定室温时之铜电阻值为R 0(由步骤1测得)使R=R 1=R 4=R 0,选择R ′=R 2=R 3=30Ω(供参考,可自行设计)2)预调平衡,将待测电阻接至R x ,R 2,R 3调至30Ω,R 1调至R 0,功能转换开关转至电压输出,G 、B 按钮按下,微调R 1使电压U 0=0。
3)开始升温,每5℃测量1个点,同时读取温度t 和输出U 0(t)。
五、数据记录和数据处理:1. 直流单臂电桥测量室温铜电阻2. 卧式电桥测量各温度铜电阻s U = 0R (室温)=注:)(Ω∆R 根据测量表达式计算,式中0R R =在坐标纸上以℃)(t 为横坐标、)(t R 为纵坐标作图,根据所作直线求斜率k 和截距,截距即为0℃时铜的电阻0R ',铜的电阻温度系数α)1()(0t R t R α+'=六、注意事项:1. 实验开始前,所有导线,特别是加热炉与温控仪之间的信号输入线应连接可靠。
,),即,则电桥失去平衡,。
,根据电桥平衡条件:,则当时,略去分母,有:<<1时,非平衡电桥输出电压与成线性关系。
由(,,四臂输入时电桥的电压输出特性在惠斯登电桥电路中,若电桥的四个臂均采用可变阻接入相邻桥臂内,而将两个变化量符号相同的可变电阻接入相对桥臂内,这种电桥电路称为全桥差动电路。
对于全桥差动电路,通常采用对称元件,且可以证明,全桥差动电路的输出电压为:电桥的输出电压灵敏度为:故障分析1.检查电路是否接对:(1)稳压电源的正负极是否接反,其中红色接线柱是正极,黑色接线柱是负极。
开关是否打开,是否把输出电压调到6.00V。
(2)电压表应水平放置,接通电源之前要先进行机械调零,正负极是否接反,量程是否选择正确。
(3)电阻箱应接最左边和最右边两个接线柱,是否有按实验操作的要求预置阻值。
(4)数字多用表的正极接电路中的A点,负极接B点。
2.若接通电源之后,电压表指针向零的负方向偏转,则可能是电压表的正负极接反。
3.若数字多用表读数为零或读数不变,则可能是导线接头虚焊或导线内部断开。
这时,可另外拿一条导线接通每条导线,看读数是否有变化。
4.若数字多用表在电桥平衡时读数不为0,而为某一正值,在测量过程中转为负值,则可能是数字多用表的正负极接反。
5.如果数字多用表显示闪烁的〝0000〞时,表明测量的数据值超出了所选择的量程范围,此时应立即将量程键切换至最高档,若仍然显示闪烁的〝0000〞,则应立即拔出输入线,检查被选择的功能键是否出现错误或有其它故障(如输入电压过大或内部故障等).1.每次测得的读数都要减去零点修正值(即调电桥平衡时,数字多用表所读的正的最小值). ???2.在同一直角坐标纸上以为横坐标、为纵坐标分别作出单臂输入(K=1,0.1,5)、双臂输入、四臂输入时电桥的电压输出特性图线。
3.用图解法分别求出在每种情况下电桥的输出电压灵敏度(即电压输出特性图线的斜率),并与理论输出电压灵敏度作比较分析。
实验报告非平衡电桥
实验目的:
1. 了解非平衡电桥的工作原理。
2. 掌握非平衡电桥的搭建和校准方法。
3. 运用非平衡电桥进行精密电阻测量。
实验器材:非平衡电桥实验仪、标准电阻箱、高灵敏万用表、多比较仪、导线等。
实验原理:
非平衡电桥是一种精密的电阻测量仪器,它利用比较电桥的基本原理,通过调节一个可变电阻和一个已知电阻使得电桥失去平衡。
此时根据电桥失去平衡的条件,即可求出未知电阻值。
电阻箱中的标准电阻为比较电桥中已知电阻,测量电路中的不平衡电位差与标准电阻比值即可得到待测电阻值。
实验步骤:
1. 搭建非平衡电桥实验电路如图。
2. 将待测电阻接入电路中,调节可变电阻使得电桥失去平衡,记录电桥失去平衡时的电位差值U。
4. 根据电桥失去平衡的条件,利用U与标准电阻的比值计算待测电阻值。
5. 重复上述步骤,直至取得较为精确的电阻值。
实验结果:
根据实验得到的数据,利用公式计算出待测电阻值为R=XXX欧姆。
实验分析:
非平衡电桥相比于其他电阻测量仪器,具有精度高、测量精度可调、适用范围广等优点。
实验中需要注意的是,应该先将电路搭建好并校准好标准电阻值,再接入待测电阻进行测量,避免因调整可变电阻时干扰整个电路,使数据准确性变差。
结论:
本次实验主要是通过使用非平衡电桥实验仪,掌握了非平衡电桥的搭建和校准方法以及精密电阻测量方法。
通过实验,我们了解了非平衡电桥的工作原理,掌握了实验中需要注意的事项,并获得了一定的实际操作经验。
一文看懂非平衡电桥和平衡电桥的区别
电桥一般分线式电桥和箱式电桥,其原理基本上是一样的,就是一组接有好多电阻和电表的电路图,当线路某两个特定的接点的电势相等时,就称其平衡电桥,常用它来精确地测电阻。
有平衡电桥与不平衡电桥两种。
什么是非平衡电桥在实际工程中和科学实验中,很多物理量是连续变化的,只能采用非平衡电桥才能测量;非平衡电桥的基本原理是通过桥式电路来测量电阻,根据电桥输出的不平衡电压,再进行运算处理,从而得到引起电阻变化的其它物理量,如温度、压力、形变等。
非平衡电桥的桥路形式1、等臂电桥
电桥的四个桥臂阻值相等,即R1=R2=R3=RX0;其中RX0是RX的初始值,这时电桥处于平衡状态,U0=0。
2、卧式电桥也称输出对称电桥
这时电桥的桥臂电阻对称于输出端,即R1= R3,R2= RX0,但R1≠R2
3、立式电桥也称电源对称电桥
这时从电桥的电源端看桥臂电阻对称相等即
4、比例电桥
这时桥臂电阻成一定的比例关系,即R1=KR2,R3=KRX0或R1=K R3,R2=K RX0,K为比例系数。
实际上这是一般形式的非平衡电桥。
非平衡电桥的输出非平衡电桥的输出接负载大小分类又可分为两种。
一种是负载阻抗相对于桥臂电阻很大,如输入阻抗很高的数字电压表或输入阻抗很大的运算放大电路;另一种是负载阻抗较小,和桥臂电阻相比拟。
后一种由于非平衡电桥需输出一定的功率,故又称为功率电桥。
根据戴维南定理,图1所示的桥路可等效为图2(a)所示的二端口网络。
直流非平衡电桥实验报告直流非平衡电桥实验报告引言:直流非平衡电桥是一种常用的电路实验装置,用于测量电阻、电容和电感等元件的参数。
本实验旨在通过搭建直流非平衡电桥电路,测量未知电阻的阻值,并探究电桥在不同条件下的工作原理和特性。
实验装置和原理:实验所需装置包括直流电源、电阻箱、电桥、万用表等。
电桥由两个相互平行的电阻分支和两个相互垂直的电阻分支组成。
当电桥电路中电流平衡时,称为平衡状态,此时电桥两侧电压相等,电桥不会有输出电压。
而当电桥电路中存在非平衡时,即电桥两侧电压不等,电桥会产生输出电压,通过测量输出电压的大小可以得到未知电阻的阻值。
实验过程:1. 搭建电桥电路:将电阻箱与电桥的相应分支连接,将未知电阻与电桥的其他分支连接,将电源与电桥连接。
2. 调节电阻箱的阻值:通过改变电阻箱的阻值,使电桥电路达到平衡状态。
3. 测量输出电压:使用万用表测量电桥输出端的电压值,记录下来。
4. 计算未知电阻的阻值:根据实验所用电桥的参数和测得的输出电压值,利用相关公式计算未知电阻的阻值。
实验结果与分析:经过一系列的实验操作和测量,我们得到了一组实验结果。
根据这些数据,我们可以进一步分析电桥的工作原理和特性。
首先,我们可以观察到电桥的平衡状态与非平衡状态之间的差异。
在平衡状态下,电桥两侧电压相等,电桥不会有输出电压。
而在非平衡状态下,电桥两侧电压不等,电桥会产生输出电压。
这说明电桥的工作原理是基于电压差的测量,通过测量电桥两侧的电压差来判断电路中是否存在非平衡。
其次,我们可以观察到电桥输出电压的变化规律。
当电桥电路中存在非平衡时,输出电压的大小与非平衡程度成正比。
即非平衡越大,输出电压越大。
这说明电桥的输出电压可以作为一个定量的指标,用来衡量电路中非平衡的程度。
最后,我们可以利用实验结果计算未知电阻的阻值。
根据电桥的参数和测得的输出电压值,我们可以利用相关公式进行计算。
这样,我们就可以通过电桥实验来测量未知电阻的阻值,从而实现对电阻元件的参数测量。
非平衡电桥实验报告实验目的:1.掌握非平衡电桥实验的基本原理和方法。
2.熟练掌握非平衡电桥实验仪器的使用方法。
3.研究非平衡电桥的工作原理,并了解其在实际应用中的意义。
实验原理:非平衡电桥是一种通过测量电桥中电流的方法来确定未知电阻的实验装置。
它由四个电阻组成,分别是R1、R2、R3、R4、电桥连接成一个平衡物理电桥,其中R1、R2相同,R3、R4相同,桥中心是电流表和电压表。
当电桥平衡时,电流表显示的电流值为零。
实验器材:1.电桥实验仪2.电流表3.电压表4.电阻器实验步骤:1.将实验仪器接线好,按照电桥连接图的方式将电阻器连接至电桥中。
注意要保证电桥的平衡。
2.通过调节电阻器的阻值,使电桥平衡,并记录下此时电流表和电压表的读数。
3.更改一个电阻器的阻值,观察并记录下此时电流表和电压表的读数。
4.重复步骤3,更改其他电阻器的阻值,并记录相应的读数。
5.根据实验数据计算出各个电阻器的阻值,并与标准值进行比较。
实验结果与分析:根据实验记录的数据,我们可以计算出各个电阻器的阻值,然后与标称值进行比较。
如果测量值与标称值相差较大,则可能出现实验仪器的误差,或者电阻器本身质量不好。
如果测量值与标称值相差较小,则说明实验仪器的准确度较高,并且电阻器的质量较好。
实验注意事项:1.使用仪器时要小心操作,避免给仪器造成损坏。
2.在调节电桥平衡时要小心操作,避免误操作导致电桥烧坏。
3.在更改电阻器阻值时,要注意调节的幅度,避免导致电桥失去平衡。
4.实验过程中要注意记录实验数据,并及时进行数据处理和分析。
实验结论:通过非平衡电桥实验,我们可以准确地测量电阻器的阻值,并借此了解到非平衡电桥的工作原理。
非平衡电桥在实际应用中具有广泛的意义,可以用于测量和校准电阻器的阻值,并帮助我们确定电路中未知电阻的数值。
这对于电路设计和电子工程领域非常重要。
直流单臂电桥的工作原理非平衡电桥直流单臂电桥,这个名字听起来像是个高深莫测的科学仪器,它在电气工程的世界里可是个老朋友。
想象一下,你正在一间实验室里,桌子上摆着各种奇奇怪怪的设备,这时候,一个电桥就像是个调皮的小孩,时不时冒出一些令人惊讶的结果。
直流单臂电桥的工作原理,乍一看让人觉得复杂,但其实它的奥妙在于平衡与不平衡的较量。
就像一场精彩的比赛,两个选手你来我往,直到最后胜负分明。
在这个电桥的“比赛”中,电流通过不同的电阻,形成了一种平衡状态。
但是,当其中一个电阻发生变化,比如说温度升高、材料性质改变,它就不甘示弱,直接打破了这种平衡。
这个时候,你就能看到它的不平衡状态。
这就像在生活中,有时候一件小事也能打破你原本平静的日子,简简单单的失误,瞬间就让你重新审视一切。
你想,电桥的这个不平衡就像是生活中的小插曲,让你不得不去关注那些平时被忽略的细节。
要想理解这个原理,我们得先看看电流是怎么流动的。
电流就像一条欢快的小溪,经过不同的河道,遇到的阻力不同。
直流单臂电桥中,电流通过的电阻会影响电压的分布。
简单来说,电阻越大,电流流动得就越困难。
就像你在爬山,路越陡,越累,越难走。
但电桥的神奇之处在于,它可以通过测量电压的变化,来判断这些电阻的大小。
这时候,电桥就像个侦探,依靠线索来找出真相。
想象一下,电桥的工作过程就像是一场侦探小说的推理。
电压的变化,就像是一个个线索,让我们逐渐逼近真相。
你看,这种神秘感是不是特别吸引人?尤其是在实验室里,看到那些仪器发出微微的光,听到电流流动的声音,心里就不由得涌起一阵期待。
这就是科技的魅力,让我们在日常生活中体验到不一样的乐趣。
再说说这不平衡状态,它实际上是很有趣的。
当电桥不平衡的时候,电流就像是一个不听话的孩子,四处游荡。
这种状态的出现,说明你测量的电阻值和实际的值之间存在差距。
就像你在买菜的时候,看到称上的数字和你心里预想的不一致,心里难免会一惊。
这种不平衡不仅能告诉你电阻的变化,也提醒我们在生活中,很多时候要保持警惕,留意那些微小的变化。
非平衡直流电桥实验报告实验名称:非平衡直流电桥实验实验目的:1.理解直流电桥的工作原理;2.掌握非平衡直流电桥的测量方法;3.学会使用直流电桥测量未知电阻。
仪器与材料:1.非平衡直流电桥装置;2.电源;3.电阻箱;4.未知电阻;5.导线;6.电压表。
实验原理:直流电桥是一种用电桥原理来测量电阻值的仪器。
在实验中,利用直流电桥装置中的电阻箱和未知电阻建立一个电桥电路,然后通过调整电桥中的电阻值来使电桥平衡,最终测得未知电阻的值。
实验步骤:1.将直流电桥装置连接电源,并调整电源输出电压到适当的值;2.将电阻箱连接到电桥上,设置一个适当的已知电阻;3.将未知电阻连接到电桥上,将电压表连接到示数端口;4.调整电桥中的电阻值,使电桥示数最小;5.记录电压表示数和电桥中的电阻值;6.重复步骤4和5,直到得到稳定的测量值;7.计算未知电阻的值。
实验数据:已知电阻:R1=100Ω电阻箱设定值(Ω)电桥示数电阻箱设定值(Ω)电桥示数50 0 150 0.1600.03 1600.05700.051700.1数据处理与分析:根据实验数据,我们可以得到如下电桥示数与电阻箱设定值的关系表:电阻箱设定值(Ω)电桥示数50 060 0.0370 0.051500.11600.051700.1根据电桥原理,当电桥平衡时,电桥示数为0。
由上表可知,50Ω和150Ω的电阻箱设定值电桥示数均为0,所以未知电阻应在50Ω和150Ω之间。
对于60Ω和70Ω的电阻箱设定值,电桥示数较小但不为0,说明未知电阻值与这两组值相比较接近。
通过计算,可以得到未知电阻的近似值为:60Ω实验总结:本实验通过非平衡直流电桥进行电阻测量,掌握了非平衡直流电桥实验的基本步骤和方法。
实验中注意到电桥示数的变化,并根据示数的变化来预测未知电阻的取值范围。
通过数据处理与分析,得出了未知电阻的近似测量值。
实验结果与预期值较为接近,实验目的达到,实验取得了满意的结果。
非平衡电桥实验报告范文实验目的:1.了解非平衡电桥的原理和基本结构;2.学习使用非平衡电桥测量未知电阻的方法;3.掌握非平衡电桥的调节方法和误差分析。
实验仪器和材料:电阻箱、滑线电位器、稳压电源、待测电阻、导线等。
实验原理:非平衡电桥是一种用来测量未知电阻值的电路。
其基本结构由两个相等且相互之间串联的分支所组成,分别是一个称为比例阻值的电阻值为R1的标准电阻桥臂和一个称为计量阻值的电阻值为R2的未知电阻桥臂,两者之间并联了一个称为比例电阻(电位器)的调节电路。
使得仪表两侧电压相等,从而实现测量目标电阻的目的。
实验步骤:1.将电阻箱中的已知电阻值分别设置为10Ω、100Ω、1000Ω,连接成为标准电阻桥臂。
2.将滑线电位器接到滴射麦克风的输出端,并把接入滑线电位器的导线接到计量电阻桥臂末端,从而形成一个非平衡电桥。
3.调节滑线电位器,使得仪表的两侧电压相等,在示波器上观察到零电位点,记录此时滑线电位器的位置。
4.将待测电阻接入非平衡电桥臂,调节滑线电位器,使得仪表的两侧电压相等,记录此时滑线电位器的位置。
5.分别将电阻箱设置为100Ω和1000Ω,重复第4步,记录滑线电位器的位置。
实验数据:标准电阻桥臂电阻值:R1=100Ω计量电阻桥臂电阻值:R2=未知已知电阻值:10Ω,100Ω,1000Ω实验结果:根据实验数据和滑线电位器的位置记录,计算出未知电阻值R2的大小。
误差分析:1.由于实验中使用的电阻箱的精度限制,标准电阻桥臂的电阻值可能存在一定的误差。
2.由于实验中使用的滑线电位器的操作精确度限制,滑线电位器的位置记录也可能存在一定的误差。
3.当待测电阻较小时,仪器的精确度和稳定性对实验结果也会有一定影响。
实验讨论:结论:。
非平衡直流电桥实验报告非平衡直流电桥实验报告引言:在电子学领域中,电桥是一种常用的电路,用于测量电阻、电容和电感等元件的值。
而非平衡直流电桥则是一种特殊的电桥,它可以用来测量电阻的非平衡状态。
本实验旨在通过搭建非平衡直流电桥电路,探究其原理和应用。
实验目的:1. 理解非平衡直流电桥的工作原理;2. 学会搭建非平衡直流电桥电路;3. 掌握使用非平衡直流电桥测量电阻的方法。
实验仪器和材料:1. 直流电源;2. 可调电阻;3. 电流表;4. 电压表;5. 电阻箱。
实验原理:非平衡直流电桥是通过调节电阻箱的阻值,使电桥两侧电势差为零,从而测量未知电阻的一种方法。
在非平衡状态下,电桥两侧电势差不为零,此时通过电桥的电流会引起电流表的偏转,根据电流表的读数可以计算出未知电阻的值。
实验步骤:1. 将直流电源接入电桥电路的一侧,电流表接入电桥的另一侧;2. 调节电阻箱的阻值,使电桥两侧电势差为零;3. 记录电流表的读数,并计算未知电阻的值;4. 重复步骤2和3,改变电阻箱的阻值,测量不同未知电阻的值。
实验结果与分析:通过实验测量,我们得到了一系列的电流表读数和相应的未知电阻值。
根据这些数据,我们可以绘制电流表读数与未知电阻之间的关系曲线。
从曲线上可以看出,电流表读数随着未知电阻的增加而增加,呈线性关系。
这说明非平衡直流电桥可以准确测量未知电阻的值。
实验误差的分析:在实际实验中,由于电桥电路的接线、电源的稳定性等因素,可能会引入一定的误差。
为了减小误差,我们应该注意以下几点:1. 保证电桥电路接线的稳定性,避免接触不良或松动;2. 使用稳定的直流电源,并注意调节电源的输出电压;3. 仔细读取电流表和电压表的读数,避免读数误差。
实验应用:非平衡直流电桥在实际应用中有着广泛的用途。
它可以用于测量电阻、电容和电感等元件的值,也可以用于检测电路中的故障。
此外,非平衡直流电桥还可以用于校准仪器,提高测量的准确性。
结论:通过本次实验,我们成功搭建了非平衡直流电桥电路,并用它测量了未知电阻的值。
一、实验目的1. 了解直流非平衡电桥的原理和组成。
2. 掌握直流非平衡电桥的使用方法。
3. 通过实验验证直流非平衡电桥的测量原理。
4. 提高对电桥电路分析和故障排查的能力。
二、实验原理直流非平衡电桥是一种测量电阻、电容、电感等参数的电路。
它由四个电阻组成,其中两个电阻作为电桥的臂,另外两个电阻作为测量臂。
当电桥达到平衡状态时,测量臂上的电压为零,此时可以通过测量测量臂上的电阻值来得到被测电阻的值。
三、实验仪器与设备1. 直流稳压电源2. 数字多用表3. 非平衡电桥4. 标准电阻5. 连接线四、实验步骤1. 按照电路图连接直流非平衡电桥,确保电路连接正确。
2. 将标准电阻接入电桥的测量臂,调整电桥的平衡旋钮,使电桥达到平衡状态。
3. 记录此时测量臂上的电阻值。
4. 将被测电阻接入电桥的测量臂,再次调整电桥的平衡旋钮,使电桥达到平衡状态。
5. 记录此时测量臂上的电阻值。
6. 根据测量数据,计算被测电阻的值。
7. 对实验结果进行分析和讨论。
五、实验数据与结果1. 标准电阻值:R0 = 100Ω2. 第一次测量数据:R1 = 101Ω,电压U1 = 0.5V3. 第二次测量数据:R2 = 99Ω,电压U2 = 0.5V六、实验结果分析通过实验,我们得到了以下结论:1. 直流非平衡电桥可以有效地测量电阻值。
2. 实验过程中,电桥的平衡状态可以通过调整平衡旋钮来实现。
3. 实验结果与理论计算值基本一致,说明实验结果可靠。
七、实验讨论1. 实验过程中,由于电桥的平衡旋钮调整幅度较小,可能导致测量误差较大。
2. 在实际应用中,直流非平衡电桥可以应用于电阻、电容、电感等参数的测量。
3. 为了提高实验精度,可以采用高精度的电阻和电压表。
八、实验总结本次实验成功地验证了直流非平衡电桥的测量原理,通过实验我们掌握了直流非平衡电桥的使用方法,提高了对电桥电路分析和故障排查的能力。
在实验过程中,我们发现了实验误差和不足之处,为今后的实验提供了借鉴和改进的方向。
非平衡直流电桥测电阻实验数据及处理要进行非平衡直流电桥测电阻的实验,首先需要准备以下材料和设备:1. 电阻器:需要测量的电阻器。
2. 直流电源:提供电流给电桥电路。
3. 电阻板:用于调节电阻值,以使电桥处于非平衡态。
4. 可调电位器:调节电阻板上的电阻值。
5. 比较电阻:已知电阻值的电阻器,用作对照。
6. 滑动变阻器:用于调节电桥的灵敏度。
7. 没有电阻的滑动变阻器:用于调零电桥。
实验步骤:1. 将滑动变阻器的游梁部分移动到零位,使电桥处于平衡状态。
2. 将电源接入电桥,调节电源的电压,以确保电桥的电流不超过电阻器能承受的最大电流。
3. 将电阻板插入电桥电路中,使电桥失去平衡。
4. 调节滑动变阻器和可调电位器的电阻值,使电桥重新达到平衡。
5. 记录电桥平衡时的滑动变阻器和可调电位器的电阻值。
6. 重复步骤3-5,直到得到多个数据对。
7. 使用已知电阻值的比较电阻替换电阻板,重复步骤3-6,以获得更多数据对。
8. 对每个数据对,计算电桥电路中的未知电阻值。
数据处理:1. 将获取的滑动变阻器和可调电位器的电阻值代入电桥电路的平衡条件方程中,解方程得到未知电阻值。
2. 对不同的数据对重复上述步骤,计算得到的未知电阻值应接近且具有较小的标准差。
3. 对多次实验得到的未知电阻值进行平均,得到最终的测量结果。
4. 计算未知电阻值的不确定度,可根据实验条件和仪器精度进行评估。
注意事项:1. 在进行实验前,应确保电源电压和电流不会损坏电桥电路和电阻器。
2. 在调整滑动变阻器和可调电位器的电阻值时,应小心操作,确保调节精度和准确性。
3. 需要注意测量的电阻器的温度系数,如有需要,应进行温度补偿。
4. 实验过程中应注意防止接线松动或短路等问题,以避免影响测量结果的准确性。
非平衡电桥测量热敏电阻的温度特性引言
非平衡电桥作为一种经典的测量电阻和温度的方法,其应用范
围十分广泛。
与传统的平衡电桥相比,非平衡电桥存在一定的测
量误差,但由于其结构简单,实现便利,因此在实际应用中备受
欢迎。
本文将以热敏电阻的温度特性为例,介绍一种基于非平衡
电桥的测量方法。
热敏电阻的温度特性
热敏电阻是一种阻值随温度变化的电阻,其阻值随温度的升高
而降低。
热敏电阻的温度特性通常用温度系数来描述,即温度系
数α为单位温度变化时阻值的变化率。
在一定范围内,可以将热
敏电阻的温度系数视为一个常数,且一般很小,单位通常为%/℃。
非平衡电桥测量热敏电阻的温度特性
非平衡电桥测量热敏电阻的温度特性的关键是要制备一个热敏
电阻的温度均匀的加热环境。
可以将热敏电阻固定在一个绝缘杆上,杆子两端分别固定一个压电陶瓷片。
当压电陶瓷片受到电压
刺激时,会引起形变,从而使杆子弯曲。
弯曲的杆子会使热敏电
阻靠近或远离加热环境,从而使热敏电阻的温度发生变化。
将非平衡电桥中的标准电阻和热敏电阻分别连在两个谐振回路中,利用交流桥平衡定理,可以得到热敏电阻的阻值与标准电阻的比值。
当加热环境温度升高时,热敏电阻的阻值减小,从而造成非平衡电桥的电压输出增大,可以通过测量输出电压的变化来确定热敏电阻的温度系数。
结论
非平衡电桥测量热敏电阻的温度特性是一种简单、便利的测量方法,特别适用于热敏电阻温度系数较小的情况。
通过控制加热环境的温度,可以得到热敏电阻阻值随温度变化的趋势,为热敏电阻的应用提供了基础性的数据支持。
非平衡直流电桥的原理和应用直流电桥是一种精密的电阻测量仪器,具有重要的应用价值.按电桥的测量方式可分为平衡电桥和非平衡电桥.平衡电桥是把待测电阻与标准电阻进行比较,通过调节电桥平衡,从而测得待测电阻值,如单臂直流电桥惠斯登电桥、双臂直流电桥开尔文电桥.它们只能用于测量具有相对稳定状态的物理量,而在实际工程中和科学实验中,很多物理量是连续变化的,只能采用非平衡电桥才能测量;非平衡电桥的基本原理是通过桥式电路来测量电阻,根据电桥输出的不平衡电压,再进行运算处理,从而得到引起电阻变化的其它物理量,如温度、压力、形变等.实验目的本实验采用FQJ型教学用非平衡直流电桥,该仪器集单臂、非平衡电桥于一体,通过本实验能掌握以下内容:1.直流单臂电桥惠斯登电桥测量电阻的基本原理和操作方法;2.非平衡直流电桥电压输出方法测量电阻的基本原理和操作方法;3.根据不同待测电阻选择不同桥式和桥臂电阻的初步方法及非平衡电桥功率输出法测电阻;4.单臂电桥采用“三端”法测量电阻的意义.实验仪器1. FQJ型教学用非平衡直流电桥;2. FQJ非平衡电桥加热实验装置.实验原理FQJ型教学用非平衡直流电桥包括单臂直流电桥,非平衡直流电桥,上节我们已经对单臂电桥有所了解,下面对非平衡电桥的工作原理进行介绍.图1 非平衡电桥原理图1.非平衡电桥桥路输出电压非平衡电桥原理如图1所示,当负载电阻g R →∞ ,即电桥输出处于开路状态时,g 0I = ,仅有电压输出,并用0U 表示,根据分压原理,ABC 半桥的电压降为S U ,通过14, R R 两臂的电流为:S 1414U I I R R ==+ 1则4R 上之电压降为:4BC S 14R U U R R =•+ 2同理3R 上的电压降为:3DC S23R U U R R =•+3输出电压0U 为BC U 与DC U 之差()()340BC DC S S14232413S1423()R R U U U U U R R R R R R R R U R R R R =-=-++-=++ 4当满足条件1324R R R R = 时,电桥输出00U = ,即电桥处于平衡状态.5式就称为电桥的平衡条件.为了测量的准确性,在测量的起始点,电桥必须调至平衡,称为预调平衡.这样可使输出只与某一臂电阻变化有关.若123, , R R R 固定,4R 为待测电阻4x R R =,则当44R R R →+∆ 时,因电桥不平衡而产生的电压输出为:()242130S 142323()()R R R R R R U U R R R R R R R +∆-=+++∆+ 5当12R R R '==,34R R R ==,且R R '≠电阻增量R ∆较小时,即满足r R R ∆<< 时,公式的分母中含R ∆项可略去,公式可得以简化,各种电桥的输出电压公式为: 02()RR RU R R R'∆='+6注意:上式中的R 和其R '均为预调平衡后的电阻.十分清楚,当满足r R R ∆<<时,测量得到电压输出与/R R ∆成线性比例关系,通过上述公式运算得/R R ∆或R ∆ ,从而求得44R R R =±∆或X X R R R =±∆.2.用非平衡电桥测热敏电阻本实验采用51MF k 7.2Ω型半导体热敏电阻进行测量.该电阻是由一些过渡金属氧化物主要用Fe ,Ni ,Co ,Mn 等氧化物在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成,具有P 型半导体的特性,对于一般半导体材料,电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对来说可以忽略.但上述过渡金属氧化物则有所不同,在室温范围内基本上已全部电离,即载流子浓度基本上与温度无关,此时主要考虑迁移率与温度的关系.随着温度升高,迁移率增加,电阻率下降,故这类金属氧化物半导体是一种具有负温度系数的热敏电阻元件,其电阻-温度特性见表 6.根据理论分析,其电阻-温度特性的数学表达式通常可表示为t 25n 11exp[()]298R R B T =-式中,25t R R , 分别为C 25︒和°C t 时热敏电阻的电阻值;273T t =+;n B 为材料常数,制作时不同的处理方法其值不同.对于确定的热敏电阻,可以由实验测得的电阻-温度曲线求得.我们也可以把上式写成比较简单的表达式t 00E BU KTTR R eR e==因此,热敏电阻之阻值t R 与t 为指数关系,是一种典型的非线性电阻.式中298t 25BU R R e -= .k 为玻尔兹曼常数231.380610k -=⨯焦耳/开尔文.实验内容及方法1. 非平衡直流电桥实验内容及方法:FQJ 型非平衡直流电桥之三个桥臂a b , R R 及c R ,其中a b R R =由同轴双层同步变化的电阻盘Ω++++⨯)1.01101001000(10电阻箱组成,c R 则由10(100010010⨯+++10.10.01)++Ω电阻箱组成,调节范围在Ωk 1110.11~0内,负载电阻gR '由1个Ωk 10的多圈电位器粗调和1个Ω100多圈电位器细调串联而成,可在Ωk 1.10范围内调节.数字电压表量程mV 200.功率1为mA 20,采样电阻S 10R =Ω,用于测量Ω<k 1的较小电阻.功率2为A 200μ ,采样电阻S 1k ΩR =,用于测量Ω>k 1电阻.电压输出时,允许X R 变化率向上变化达到%100,向下变化为%70.2. 非平衡电桥电压输出形式测电阻 1C 2a 3b R R R R R R ===、、,测量范围:111.111k ΩΩ~.① 确定各桥臂电阻.使a c 1k ΩR R R ===,b 2k ΩR R '==左右供参考,可自己另行设计② 预调平衡,将待测电阻4R 接至X R ,功能、电压转换开关转至“电压”输出,按下, G B 微调C R 使电压输出00U = .③ 改变4R ,记录R ∆理论值,并记下相应的电压变化值g U ∆ .根据6计算出R ∆的实验值,其中S 1.3V U = .④ 计算出实验值和理论值的相对误差E . 3. 测量铜电阻配用FQJ 非平衡电桥加热装置 1非平衡电桥电压输出形式测量铜电阻① 确定各桥臂电阻值.设定室温时之铜电阻值为0R 查表使340R R R R ===选择1250R R R '===Ω供参考,可自行设计② 预调平衡,将待测电阻接至X R ,123050, R R R R ==Ω=,功能转换开关转至电压输出,, G B 按钮按下,微调1R 使电压00U =③ 开始升温,每C 5︒测量1个点,同时读取温度t 和输出0()U t ,连续升温,分别将温度及电压值记录入表1.表 1 温度和电压记录表数据处理:根据6式求出各点之()R t ∆和()R t 值,用最小二乘法求C 0︒时的电阻值0R 和α,计算α的不确定度.4. 热敏电阻的测量1采用非平衡电桥的电压输出测量热敏电阻51MF k 7.2Ω之()R t ,温度范围从室温加热至C 65︒ .① 根据51MF k 7.2Ω之电阻-温度特性研究桥式电路,并设计各桥臂电阻,, R R ',以确保电压输出不会溢出预习时设计计算好.实验时可以先用电阻箱模拟,若不满足要求,立即调整R ' 阻值.② 预调平衡a 根据桥式,预调, R R '.室温时之电阻值为0R .b 将功能转换开关旋至“电压”输出,按下, G B 开关,微调3R 使数字电压表为0.③ 升温,每隔C 5︒测1个点,、利用测量数据按公式6计算得电阻值填入表2.表2 温度和电阻记录表思考题1.测量电阻的原理是什么2.与二端法测试电阻相比,三端法测试电阻有何优点 3.使用双桥测量小电阻时为什么要使12R R = ,如果不相等有何影响4.非平衡电桥在工程中有哪些应用试举一、二例. 5.非平衡电桥之立式桥为什么比卧式桥测量范围大 6.当采用立式桥测量某电阻变化时,如产生电压表溢出现象,应采取什么措施表 5 铜电阻50Cu 的电阻—温度特性C /004280.0︒=α附录二表 6 51MF k 7.2Ω 型热敏电阻的电阻-温度特性供参考其它说明:1. 仪器面板中间桥路图中的“X R ”已在仪器内部与面板右上角的“X R ”、“X1R ”接线柱接通,参见附录四的图2.2. “功能、电压选择”开关中的“平衡”区块有三档电压,供单臂电桥测量时选用.“非平衡”区块也有三档,其中“电压”档表示电桥“桥”上的“g R ”无穷大,不消耗功率;“功率1”测量小电阻时用,采样电阻“S R ”为10Ω,g R '内部线已连通,阻值可调;“功率2”测量大电阻时用,采样电阻“S R ”为1000Ω,g R '内部线已连通,阻值可调.3.功率输出时负载电阻g S g R R R '=+. 4. “电压”、“功率1”、“功率2”三档的工作电压均为.附录四FQJ-2型非平衡直流电桥加热实验装置一、概述2FQJ -型非平衡直流电桥加热实验装置,是专为FQJ 系列非平衡直流电桥在实验过程中配套使用的装置.该装置具有下列特点:1.加热温度可自由设定不超过上限值2.XMT 系列智能双数显调节仪,控温精度高3.装置内配装有铜电阻,热敏电阻,增加了实验内容 4.加热装置电源输入为低电压,并通过变压器隔离,安全可靠5.装置内装有风扇,根据实验的需要,可强制加速降温 6.装置结构新颖,紧凑合理 二.结构和连接:该装置由加热炉及温度控制仪二大部分组成.其结构及连接见下图3.三.使用说明:1、使用前,将温控仪机箱底部的撑架竖起,以便在测试时方便观察及操作.2、实验开始前,应连接好温控仪与加热炉之间的导线,根据实验内容,用导线把“铜电阻”或“热敏电阻”接线柱与FQJ非平衡电桥的“R”端相接.实验装置的加温操作步骤X如下:1温度设定:根据实验温度需要,设定加热温度上限,其方法为:开启温控仪电源,“PV显示屏”显示的温度为环境温度.按“SET”键秒,“PV显示屏”显示“SO”,说明温控仪进入设置状态,这时,“SV显示屏”最低位数字闪烁,表示这一位可以用“上调”或“下调”键调整大小,每按一次“位移”键,闪烁位随即移动一位,即调节位改变,如此,即可把需要上限温度设置好.设置完毕,再按一下“SET”键,设置程序结束.这时“PV显示屏”显示加热炉实时温度,“SV显示屏”显示设置上限温度.温控仪进入“测量”状态.在温度设定时,仪器上“加热选择”开关置于“断”处图3 非平衡直流电桥结构图2加热:根据环境温度和所需升温的上限及升温速度来确定温控仪面板上“加热选择”开关的位置.该开关分为“3,2,1”三档,由“断”位置转到任意一挡,即开始加热,升温的高低及速度以“1”档为最低、最慢,“3”档为最高、最快 ,一般在加热过程中温度升至离设定上限温度C~5︒时,应将加10热档位降低一档,以减小温度过冲.总之:在加热升温时,应根据实际升温需求,选择加热档位;加热档位的选择可参考:环境温度与设定温度上限之间的差距为CC︒时,宜选择20︒30~“2”档;当差距大于C30︒时,宜选择“3”档.由于温度控制受环境温度、仪表调节、加热电流大小等诸多因素的影响,因此实验时需要仔细调节,才能取得温度控制的最佳效3 测量:在加热过程中,根据实验内容,调节FQJ系列非平衡直流电桥,可进行50Cu铜电阻或517.2Ω热敏电阻特性的MFk测量.测量时连接导线的直流电阻估计值为Ω5.0左右4降温:实验过程中或实验完毕,可能需要对加热铜块或加热炉体降温.降温时操作方法如下:将加热铜块及传感器组件升至一定高度并固定,开启温控仪面板中的“风扇开关”使炉体底部的风扇转动,达到使炉体加快降温目的.如要加快加热铜块的降温速度,可断电后将加热铜块提升至加热炉外,并浸入冷水中.注意:放回炉体内时,要先把水擦干四.注意事项:1.实验开始前,所有导线,特别是加热炉与温控仪之间的信号输入线应连接可靠.2.传热铜块与传感器组件,出厂时已由厂家调节好,不得随意拆卸.3.装置在加热时,应注意关闭风扇电源.4.“备用测试口”为一根一端封闭,并插入加热铜块中的空心铜管,供实验时加入介质后测试用.如在空心管中加入变压器油及铜电阻,用44QJ双臂电桥测试铜电阻随着温度变化时的电阻值.5.温控仪机箱后部的电源插座中的熔丝管应选用~1 .5.1A6.实验完毕后,应切断仪器工作电源.由于热敏电阻、铜电阻耐高温的局限,在设定加温的上限值时不允许超过C120︒.。
非平衡直流电桥的原理和应用实践报告下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言非平衡直流电桥是一种通过测量电流差异来检测电阻、电容、电感等电路元件的仪器。
非平衡电桥的原理和应用实验报告摘要:本实验通过搭建非平衡电桥实验装置,研究了非平衡电桥的原理及其在测量电阻、测量温度等方面的应用。
实验结果表明,非平衡电桥能够提供高精度的测量结果,具有较高的准确性和可靠性。
一、引言电桥是一种常用的电子测量仪器,广泛应用于物理、化学、生物学等领域的实验研究中。
电桥可以通过比较物体的电阻、电容、电感等特性与已知标准之间的差异,从而进行测量和判断。
在实际应用中,电桥通常分为平衡电桥和非平衡电桥两种类型。
非平衡电桥是一种基于漏差电流的测量原理进行测量的电桥。
当电桥中的漏差电流为零时,称电桥达到平衡状态;而当漏差电流不为零时,则表示电桥处于非平衡状态。
通过测量非平衡电流的大小,可以推断出待测物体的特性。
二、实验目的1.了解非平衡电桥的工作原理;2.掌握搭建非平衡电桥实验装置的方法;3.研究非平衡电桥在测量电阻和测量温度等方面的应用。
三、实验装置和方法1.实验装置:实验主要使用漏差电流测量电桥装置,包括电源、电阻箱、电流表、电压表等组成。
2.实验方法:(1)搭建非平衡电桥实验装置,根据实际需求调整电路连接方式;(2)将待测电阻或温度传感器与电桥连接;(3)依次调整电桥的各个电位器,使电桥的漏差电流尽量接近零;(4)记录电桥的各个参数,计算并分析实验结果。
四、实验结果与分析1.测量电阻:将待测电阻与电桥连接,调整电桥中的电位器,使电桥漏差电流尽量接近零。
记录电桥的电流和电压值,根据欧姆定律计算出待测电阻的阻值。
重复测量多次,取平均值作为最终结果。
2.测量温度:将温度传感器与电桥连接,调整电桥中的电位器,使电桥漏差电流尽量接近零。
通过改变温度传感器所在环境的温度,记录电桥的电流和电压值。
使用校准曲线将电桥输出的电压转换为对应的温度值。
五、结论本实验通过搭建非平衡电桥实验装置,研究了非平衡电桥的原理及其在测量电阻、测量温度等方面的应用。
实验结果表明,非平衡电桥能够提供高精度的测量结果,具有较高的准确性和可靠性。
实验原理:直流电桥是一种精密的非电量测量仪器,他的基本原理是通过桥式电路来测量电阻。
按电桥的测量方式可分为平衡电桥和非平衡电桥两类,非平衡电桥的基本原理是通过桥式电路来测量电阻的,但测的是电桥输出的不平衡电压,经过运算处理才能得到的电阻值,从而可得到引起电阻变化的其他变化物理量,如温度,压力,形变等,因而可以测量连续变化的物理量,具有重要的应用价值。
FQJ-Ⅲ型教学用非平衡直流电桥包括单臂直流电桥,双臂直流电桥,非平衡直流
电桥。
电桥分类:
(1)等臂电桥:R1=R2=R3=R4
(2)输出对称电桥,也称卧式电桥:R1=R4=R, R2=R3=R′。
且R≠R′。
(3)电源对称电桥,也称为立式电桥:R1=R2=R′,R3=R4=R,且R≠R′。
本实验中测R x采用电源对称电桥(立式电桥):即R1=R2 R3=R4
摘要:本实验主要通过使用非平衡电桥来测量电阻,学会用非平衡直流电桥电压输出方法测量电阻变化量的基本原理和操作方法,学习与初步掌握非平衡电桥的设计方法。
通过实验得出铜电阻与温度的关系。
从该实验中学到会引起电阻变化的一些物理量,比如:温度,压力,形变等。
通过做该实验还能丰富物理实验的
内容。
非平衡电桥往往和一些传感元件配合使用.某些传感元件受外界环境(压力、温度、光强等)变化引起其内阻的变化,通过非平衡电桥可将阻值转化为电流输出,从而达到观察、测量和控制环境变化的目的.
本实验所用到的传感元件有:铜电阻、热敏电阻、Pt 电阻和光敏电阻等,它们的阻值会随着温度或光强的变化而变化.
【实验目的】
1 .学习非平衡电桥的工作原理;
2 .学习和掌握非平衡电桥的应用;
3 .学习一些传感器的工作原理和不同的测量电路.
【【实验仪器】
实验接线板,控温仪,稳压源,恒流源,数字万用表,Zx21 型旋转式电阻箱,传感元件(铂电阻,铜电阻,热敏电阻和光敏电阻),保温瓶,100 Ω /5 W 可变电阻器和精密电阻等.
1 .控温仪:0 ~200 ± 1 ℃,测量精度0.1 ℃.
2 .恒流源:当负载电阻在一定范围内变化时,输出电流保持不变,电流稳定度为1% .
3 .稳压源:电压变化范围为0 ~15 V .
4 .铂电阻:本实验选用Pt100 ,它被广泛用来测量-200 ~850 ℃范围的温度.它具有准确度高、灵敏度高、稳定性好等优点.在0 ~100 ℃范围内近似有R t = R 0 (1 + A t ) ,其中 A 为正温度系数,约为 3.8
5 × 10 -3 ℃-1 ,R 0 为0 ℃时铂电阻的阻值,允许通过的最大电流I m <2.5 mA .
5 .铜电阻:-50 ~150 ℃的范围内有R t = R 0 (1 + A t + B t 2 + C t 3 ),R 0 为0 ℃时铜电阻的阻值,A = 4.28899 × 10 -3 ℃-1 ,B = -2.133 × 10 -7 ℃-2 ,C = 1.233 × 10 -9 ℃-3 .在0 ~100 ℃范围内近似有R t = R 0 (1 + A t ) ,允许通过的最大电流I m <4 mA .
6 .热敏电阻:热敏电阻由半导体材料制成,用其可制成半导体温度计,主要用来测定- 100 ~300 ℃间的温度,有R T = R 0 exp[B (1/ T -1/ T 0 )] ,其中R T 和R 0 分别为温度T (K )和T 0 (K )时的电阻值,B 为热敏电阻的材料常数.本实验选用MF51 型热敏电阻,B = 2700 ~4100 K ,25 ℃时,R T ≈ 3.3 k Ω.允许通过的最大电流I m <0.4 mA .
7 .光敏电阻:允许通过的最大电流I m <0.1 mA .
【实验内容】
在了解实验室所给条件的基础上,利用非平衡电桥实现以下设计:
1 .设计制作一铂电阻(Pt100 )数字温度计,测温范围0 ~100 ℃,输出电压范围0 ~50 mV 要求最大误差小于0.5 ℃.
2 .制作一铜电阻温度计,测温范围0 ~100 ℃,输出电压范围0 ~50 mV ,要求最大误差小于0.5 ℃.
3 .制作一热敏电阻温度计,测温范围0 ~100 ℃,输出电压范围0 ~100 mV .
4 .利用光敏电阻制作一光强计,光强范围10 ~1500 lux ,输出电压范围0 ~100 mV .
【注意事项】
1 .每次实验接线后,要仔细检查线路.接线要牢固、整齐;
2 .水烧开时应注意避免烫伤;
3 .设计的参数应与所给元件的允许值相匹配.
【思考题】
1 .什么是平衡电桥?什么是非平衡电桥?
2 .对于铂电阻、铜电阻,在设计电路时,实验中哪些因素会引起输出电压与温度变化的非线性误差?请事先计算出可能引起的测量误差.你准备采取什么措施?
3 .请根据图1 和图2 从理论上分析,与二线制接线法相比,三线制接线法为何能减小测量误差?
4 .万用表内阻是否需要考虑?为什么?
5 .在设计电路时,你主要考虑的因素是什么,为什么?
6 .从实验结果分析,你认为实验结果达到了你所设计的要求了吗?。