八年级数学12月月考试题无答案
- 格式:docx
- 大小:165.28 KB
- 文档页数:5
江苏省东海县横沟中学2014-2015学年八年级数学12月月考试题一.选择题:(将正确答案填在表格中,每小题3分,共30分) 1、在平面直角坐标系中,点P(-1,2)的位置( )A .第一象限B .第二象限C .第三象限D .第四象限 2、下列语句中正确的是( ) A.的平方根是3- B.9的平方根是3 C.9的算术平方根是3± D.9的算术平方根是33、下列说法中,不正确的是( ).A 3是2)3(-的算术平方根B ±3是2)3(-的平方根C -3是2)3(-的算术平方根 D.-3是3)3(-的立方根 4、下面实数:π,-2,722,16,38.0,1.732,3271-,0.131131113……中,无理数的个数是 ( )A 、1个B 、2个C 、3个D 、4个5)A 、点PB 、点QC 、点MD 、点N6、已知第二象限内的点P 到.x 轴的距离为4,到y 轴的距离为3,则P 点的坐标一定是 ( ) A .(3,4) B .(3,4) C .(4,3) D .(-4,3)7、下列结论正确的是( )A.6)6(2-=--B.9)3(2=- C.16)16(2±=- D.251625162=⎪⎪⎭⎫ ⎝⎛-- 8、若a 、b 为实数,且满足│a -2│+2b -=0,则b -a 的值为A .2B .0C .-2D .以上都不对9.已知在坐标平面内有一点,若,则点的位置在( )A.原点B.轴上C.轴上D.坐标轴上 10.如图,直角坐标系中,正方形ABCD 的面积是( ). (A )1 (B )2 (C )4 (D )12题10图第5题图二.填空题:( 每小题3分,共30分 ) 11、81的平方根是_____________。
12、按要求取近似值:某人一天饮水1890ml=_______________ml 。
(精确到1000ml ) 13、21-的相反数是_______________________。
山东省滕州市滕西中学2014-2015学年八年级数学12月月考试题(满分:120分 时间:100分钟)一 选择题 (每小题3分)1.下列方程组中,是二元一次方程组的是( ).(A )2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x-=⎧⎪⎨-=-⎪⎩ (D )24795x y x y +=⎧⎨-=⎩ 2.若220a ba b xy -+--=是二元一次方程,那么a 、b 的值分别是( )。
(A)1,0 (B)0,-1 (C)2.1 (D)2,-33.如果⎩⎨⎧-==23y x 是方程组⎪⎩⎪⎨⎧=+=+53121ny mx ny mx 的解,则一次函数y=mx+n 的解析式为( ) A .y=-x+2 B .y=x -2 C .y=-x -2 D .y=x+24.函数y=ax -3的图象与y=bx+4的图象交于x 轴上一点,那么a ∶b 等于( )A .-4∶3B .4∶3C .(-3)∶(-4)D .3∶(-4) 5.一组数据9.5,9,8.5,8,7.5的极差是 ( ). A .0.5 B .8.5 C .2.5 D .26.在统计中样本的标准差可以反映这组数据的 ( ). A .平均状态 B .分布规律 C .离散程度 D .数值大小 90 A .82 B .75 C .65 D .628. 某射击小组有20人,教练根据他们某次射击的数据绘制成如图1所示的统计图,则这组数据的众数和中位数分别是( ). A.7,7B.8,7.5C.7,7.5D.8,6.59.小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ). A .该组数据的众数是24分 B .该组数据的平均数是25分C .该组数据的中位数是24分D .该组数据的极差是8分10.有一组数据如下:3、a 、4、6、7,它们的平均数是5,那么这组数据的方差是( ). A .10 B .10 C .2 D .2二. 填空题 (每小题3分) 1.若一个二元一次方程的一个解为2,1.x y =⎧⎨=-⎩则这个方程可以是______。
2021-2022学年江苏省苏州市高新一中八年级第一学期月考数学试卷(12月份)一.选择题(本大题共有8小题,每小题2分,共16分)1.3的平方根是()A.±B.9C.D.±92.已知点A(3,y1)和点B(﹣2,y2)是一次函数y=﹣2x+3图象上的两点,比较y1与y2的大小关系()A.y1>y2B.y1=y2C.y1<y2D.不能确定3.下列条件中,不能判断△ABC(a、b、c为三边,∠A、∠B、∠C为三内角)为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:54.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°5.一次函数y=mx+m2(m≠0)的图象过点(0,4),且y随x的增大而增大,则m的值为()A.﹣2B.﹣2或2C.1D.26.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)7.如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣3,﹣5),B(2,﹣3),若直线y=kx+1与线段AB有交点,则k的值不可能是()A.﹣5B.﹣1C.3D.58.如图,直线y=与x轴、y轴分别交于点A,B,点C是直线AB上的一个动点,在平面直角坐标系中,点P(0,2)是y轴上的一个点,则线段PC的最小值为()A.5B.2C.4D.39.如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点D在线段OA上,将△ABD沿着直线BD折叠,点A的对应点为E,当点E在线段OC上时,则AD的长是()A.1B.C.2D.10.甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了3min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=700;④a=33.以上结论正确的有()A.①②B.①②③C.①③④D.①②④二.填空题(本大题共8小题,每小题2分,共16分)11.=.12.如图,在△ABC中,AB=AC,若∠B=70°,则∠C=度.13.点A(4,﹣2)关于x轴的对称点B的坐标为.14.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是.15.某商店今年6月初销售纯净水的数量如下表所示:日期1234数量(瓶)120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为瓶.16.已知直角三角形的两边长为3厘米和5厘米,则第三边长为.17.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点,且AB=8,BC=6,则△BEC的周长是.18.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=12,BC=18,CD=8,则四边形ABCD的面积是.三.解答题19.计算或化简:(1);(2).20.已知一次函数y=﹣2x+4,完成下列问题:(1)图象与x轴交点A()、与y轴交点B();(2)画出函数图象,并根据图象回答:当x时,y>2;当x≥0时,y的取值范围.当1<x≤3时,y的取值范围.21.一次函数y=kx+4的图象经过点(﹣3,﹣2),则(1)求这个函数表达式;(2)建立适当坐标系,画出该函数的图象;(3)判断(﹣5,3)是否在此函数的图象上;(4)把这条直线向下平移4个单位长度后的函数关系式是.22.已知一次函数的图象与y=﹣x的图象平行,且与y轴交点(0,﹣3),求此函数关系式.23.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.24.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.25.如图,在△ABC中,AB=AC,DE垂直平分AC,CE⊥AB,AF⊥BC.(1)求证:CF=EF;(2)求∠EFB的度数.26.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲、乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为km/h;乙车速度为km/h;(2)已知最终甲、乙两车同时到达B地.①从乙车掉头到乙车到达B地的过程中,求S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图象;②从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离何时为80km?27.如图,直线l:y=﹣x+3与x轴、y轴分别交于A、B两点,OM⊥AB于点M,点P 为直线l上不与点A、B重合的一个动点.(1)求线段OM的长;(2)当△BOP的面积是6时,求点P的坐标;(3)在y轴上是否存在点Q,使得以O、P、Q为顶点的三角形与△OMP全等,若存在,请直接写出所有符合条件的点P的坐标,否则,说明理由.参考答案一.选择题(本大题共有8小题,每小题2分,共16分)1.3的平方根是()A.±B.9C.D.±9【分析】直接根据平方根的概念即可求解.解:∵()2=3,∴3的平方根是为.故选:A.2.已知点A(3,y1)和点B(﹣2,y2)是一次函数y=﹣2x+3图象上的两点,比较y1与y2的大小关系()A.y1>y2B.y1=y2C.y1<y2D.不能确定【分析】根据一次函数的性质:k<0时,y随x的增大而减小,可得y1与y2的大小关系.解:∵k=﹣2<0,∴y随x的增大而减小,∵3>﹣2,∴y1<y2,故选:C.3.下列条件中,不能判断△ABC(a、b、c为三边,∠A、∠B、∠C为三内角)为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【分析】根据勾股定理的逆定理和三角形内角和,可以判断各个选项中的条件是否可以构成直角三角形,从而可以解答本题.解:当a2=1,b2=2,c2=3时,则a2+b2=c2,即△ABC是直角三角形,故选项A不符合题意;当a:b:c=3:4:5时,设a=3x,b=4x,c=5x,则a2+b2=(3x)2+(4x)2=(5x)2=c2,即△ABC是直角三角形,故选项B不符合题意;当∠A+∠B=∠C时,则∠C=90°,即△ABC是直角三角形,故选项C不符合题意;当∠A:∠B:∠C=3:4:5时,则最大的∠C=180°×=75°,即△ABC不是直角三角形,故选项D符合题意;故选:D.4.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【分析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.5.一次函数y=mx+m2(m≠0)的图象过点(0,4),且y随x的增大而增大,则m的值为()A.﹣2B.﹣2或2C.1D.2【分析】由y随x的增大而增大,根据一次函数的性质得m>0;再由于一次函数y=mx+m2(m≠0)的图象过点(0,4),则m2=4,然后解方程,求出满足条件的m的值.解:根据题意得m>0且m2=4,解得m=2.故选:D.6.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.7.如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣3,﹣5),B(2,﹣3),若直线y=kx+1与线段AB有交点,则k的值不可能是()A.﹣5B.﹣1C.3D.5【分析】当直线y=kx+1过点A时,求出k的值,当直线y=kx+1过点B时,求出k的值,介于二者之间的值即为使直线y=kx+1与线段AB有交点的x的值.解:①当直线y=kx+1过点A时,将A(﹣3,﹣5)代入解析式y=kx+1得,k=2,②当直线y=kx+1过点B时,将B(2,﹣3)代入解析式y=kx+1得,k=﹣2,∵|k|越大,它的图象离y轴越近,∴当k≥2或k≤﹣2时,直线y=kx+1与线段AB有交点.故选:B.8.如图,直线y=与x轴、y轴分别交于点A,B,点C是直线AB上的一个动点,在平面直角坐标系中,点P(0,2)是y轴上的一个点,则线段PC的最小值为()A.5B.2C.4D.3【分析】根据垂线段最短得出PC⊥AB时线段PC最短,分别求出PB、OB、OA、AB的长度,利用△PBC≌△ABO,即可求出本题的答案.解:如图,过点P作PC⊥AB,则∠PCB=90°,当PC⊥AB时,PC最短,∵直线y=x﹣3与x轴、y轴分别交于点A,B,∴点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BCP=∠AOB=90°,∠B=∠B,PB=OP+OB=5=AB,∴△PBC≌△ABO(AAS),∴PC=OA=4.解法二:连接PA,△PBA的面积=PB×OA=×BA×PC,因为PB=BA=5,所以PC=OA=4.故选:C.9.如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点D在线段OA上,将△ABD沿着直线BD折叠,点A的对应点为E,当点E在线段OC上时,则AD的长是()A.1B.C.2D.【分析】由点的坐标得出∠DAB=∠AOC=90°,由折叠的性质得出AD=DE,AB=BE =5,根据勾股定理可得出答案.【解答】∵A(0,3),B(5,3),C(5,0),∴AB∥x轴,BC∥y轴,AB=OC=5,AO=BC=3,∴∠DAB=∠AOC=90°,∴∠BCE=90°,∵将△ABD沿着直线BD折叠,点A的对应点为E,∴AD=DE,AB=BE=5,∴CE===4,设AD=DE=x,则OD=3﹣x,OE=1,∵OD2+OE2=DE2,∴(3﹣x)2+12=x2,解得x=.∴AD=.故选:D.10.甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了3min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=700;④a=33.以上结论正确的有()A.①②B.①②③C.①③④D.①②④【分析】①由x=0时y=1200,可得出A、B之间的距离为1200m,结论①正确;②根据速度=路程÷时间可求出乙的速度,再根据甲的速度=路程÷时间﹣乙的速度可求出甲的速度,二者相除即可得出乙行走的速度是甲的1.5倍,结论②正确;③根据路程=二者速度和×运动时间,即可求出b=800,结论③错误;④根据甲走完全程所需时间=两地间的距离÷甲的速度+4,即可求出a=34,结论④错误.综上即可得出结论.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④错误.故结论正确的有①②.故选:A.二.填空题(本大题共8小题,每小题2分,共16分)11.=2.【分析】如果一个正数x的平方等于a,那么x是a的算术平方根,由此即可求解.解:∵22=4,∴=2.故答案为:212.如图,在△ABC中,AB=AC,若∠B=70°,则∠C=70度.【分析】由已知条件判断出∠B、∠C是底角,结合等腰三角形的两个底角相等,可知∠C=∠B=70°.解:∵在△ABC中,AB=AC∴∠B=∠C∵∠B=70°∴∠C=70°13.点A(4,﹣2)关于x轴的对称点B的坐标为(4,2).【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,即可求解.解:∵关于x轴对称的点横坐标相同,纵坐标互为相反数,∴点A(4,﹣2)关于x轴的对称点B的坐标为(4,2).故答案为(4,2).14.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是(﹣4,5).【分析】根据点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,得到点M的横纵坐标可能的值,进而根据所在象限可得点M的具体坐标.解:设点M的坐标是(x,y).∵点M到x轴的距离为5,到y轴的距离为4,∴|y|=5,|x|=4.又∵点M在第二象限内,∴x=﹣4,y=5,∴点M的坐标为(﹣4,5),故答案为:(﹣4,5).15.某商店今年6月初销售纯净水的数量如下表所示:日期1234数量(瓶)120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为150瓶.【分析】这是一个一次函数模型,设y=kx+b,利用待定系数法即可解决问题,解:这是一个一次函数模型,设y=kx+b,则有,解得,∴y=5x+115,当x=7时,y=150,∴预测今年6月7日该商店销售纯净水的数量约为150瓶,故答案为150.16.已知直角三角形的两边长为3厘米和5厘米,则第三边长为cm或4cm.【分析】根据勾股定理直接解答即可.不过要分情况讨论,即5厘米的边是斜边还是直角边.解:∵两边长为3厘米和5厘米,当均为直角边时,∴由勾股定理得第三边长为=cm;当5厘米的线段为斜边时,第三边长为=4cm.17.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点,且AB=8,BC=6,则△BEC的周长是16.【分析】根据勾股定理求出AC,根据线段垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.解:在Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是边AB的垂直平分线,∴EA=EB,∴△BEC的周长=BC+EC+BE=BC+EC+EA=BC+AC=16,故答案为:16.18.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=12,BC=18,CD=8,则四边形ABCD的面积是120.【分析】过点D作DE⊥BA的延长线于点E,利用角平分线的性质可得出DE=DC=8,再利用三角形的面积公式结合S四边形ABCD=S△ABD+S△BCD可求出四边形ABCD的面积.解:过点D作DE⊥BA的延长线于点E,如图所示.∵BD平分∠ABC,∴DE=DC=8,∴S四边形ABCD=S△ABD+S△BCD,=AB•DE+BC•CD,=×12×8+×18×8,=120.故答案为:120.三.解答题19.计算或化简:(1);(2).【分析】(1)先分母有理化,再利用零指数幂的意义计算,然后合并即可;(2)先把各二次根式化为最简二次根式,再把括号内合并,然后进行二次根式的除法运算.解:(1)原式=+1+3﹣1=4;(2)原式=(﹣9a)÷=(1﹣9a)××=3﹣27a.20.已知一次函数y=﹣2x+4,完成下列问题:(1)图象与x轴交点A(2,0)、与y轴交点B(0,4);(2)画出函数图象,并根据图象回答:当x<1时,y>2;当x≥0时,y的取值范围y≤4.当1<x≤3时,y的取值范围﹣2≤y<2.【分析】(1)分别代入y=0及x=0,求出与之对应的x,y的值,进而可得出点A,B 的坐标;(2)画出函数图象,利用一次函数图象上点的坐标特征及函数图象,即可得出结论.解:(1)当y=0时,﹣2x+4=0,解得:x=2,∴点A的坐标为(2,0);当x=0时,y=﹣2×0+4=4,∴点B的坐标为(0,4).故答案为:2,0;0,4;(2)画出函数图象,如图所示.当y>2时,﹣2x+4>2,解得:x<1;当x=0时,y=4,且y随x的增大而减小,∴当x≥0时,y的取值范围为y≤4;当x=1时,y=﹣2×1+4=2,当x=3时,y=﹣2×3+4=﹣2,∴当1<x≤3时,y的取值范围为﹣2≤y<2.故答案为:<1;y≤4;﹣2≤y<2.21.一次函数y=kx+4的图象经过点(﹣3,﹣2),则(1)求这个函数表达式;(2)建立适当坐标系,画出该函数的图象;(3)判断(﹣5,3)是否在此函数的图象上;(4)把这条直线向下平移4个单位长度后的函数关系式是y=2x.【分析】(1)待定系数法即可求解;(2)根据函数解析式即可画出图象;(3)把点代入即可判断是否在直线解析式上;(4)根据上加下减的规律即可得出答案;解:(1)∵一次函数y=kx+4的图象经过点(﹣3,﹣2),∴﹣3k+4=﹣2,∴k=2,∴函数表达式y=2x+4;(2)图象如图:(3)把(﹣5,3)代入y=2x+4,∵﹣10+4=﹣6≠3,∴(﹣5,3)不在此函数的图象上;(4)∵把这条直线向下平移4个单位,∴函数关系式是:y=2x;故答案为:y=2x.22.已知一次函数的图象与y=﹣x的图象平行,且与y轴交点(0,﹣3),求此函数关系式.【分析】一次函数的图象与y=﹣x的图象平行,可得k=﹣,将点(0,﹣3)代入即可求解.解:设所求函数为y=kx+b,∵函数的图象与y=﹣x的图象平行,∴k=﹣,又∵所求函数过点(0,﹣3),∴﹣3=b,∴所求函数为关系式为:y=x﹣3.23.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得DE=AE=AB,DF =AF=AC,再根据四边形的周长的定义计算即可得解;(2)根据到到线段两端点距离相等的点在线段的垂直平分线上证明即可.【解答】(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=AB=×10=5,DF=AF=AC=×8=4,∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4+4=18;(2)证明:∵DE=AE,DF=AF,∴EF垂直平分AD.24.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.【分析】(1)先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.解:(1)y=﹣x+8,令x=0,则y=8,令y=0,则x=6,∴A(6,0),B(0,8),∴OA=6,OB=8 AB=10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴M的坐标为:(0,3),设直线AM的解析式为y=kx+b,则,解得:,故直线AM的解析式为:y=﹣x+3.25.如图,在△ABC中,AB=AC,DE垂直平分AC,CE⊥AB,AF⊥BC.(1)求证:CF=EF;(2)求∠EFB的度数.【分析】(1)由等腰三角形的性质可得BF=CF,由直角三角形的性质可证CF=EF;(2)由垂直平分线的性质可证AE=EC,由等腰三角形的性质可求∠B=∠ACB=67.5°,即可求解.【解答】证明:(1)∵AB=AC,AF⊥BC,∴BF=CF,又∵CE⊥AB,∴CF=EF;(2)∵DE垂直平分AC,∴AE=EC,又∵∠AEC=90°,∴∠ACE=∠EAC=45°,∴∠B=∠ACB=67.5°,∵EF=CF=BF,∴∠BEF=∠FBE=67.5°,∴∠EFB=45°.26.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲、乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为40km/h;乙车速度为80km/h;(2)已知最终甲、乙两车同时到达B地.①从乙车掉头到乙车到达B地的过程中,求S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图象;②从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离何时为80km?【分析】(1)根据题意和函数图象中的数据,可以计算出甲车和乙车的速度;(2)①根据题意和(1)中的结果,可以写出S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图象;②根据题意,利用分类讨论的方法可以得到从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离何时为80km.解:(1)由图象可知,甲车速度为:(100﹣60)÷(1.5﹣0.5)=40÷1=40(km/h),乙车的速度为:60÷0.5﹣40=120﹣40=80(km/h),故答案为:40,80;(2)①由题意可得,S=80×0.5+40x﹣80(x﹣1.5)=﹣40x+160,当80×0.5+40x=80(x﹣1.5)时,解得x=4,即S与x的函数表达式是S=﹣40x+160(1.5≤x≤4),补全的函数图象如右图所示;②当0.5≤x≤1.5时,60+40(x﹣0.5)=80,解得x=1,当1.5≤x≤4时,40x+80×0.5﹣80(x﹣1.5)=80,解得x=2,即从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离在1小时或2小时时为80km.27.如图,直线l:y=﹣x+3与x轴、y轴分别交于A、B两点,OM⊥AB于点M,点P 为直线l上不与点A、B重合的一个动点.(1)求线段OM的长;(2)当△BOP的面积是6时,求点P的坐标;(3)在y轴上是否存在点Q,使得以O、P、Q为顶点的三角形与△OMP全等,若存在,请直接写出所有符合条件的点P的坐标,否则,说明理由.【分析】(1)先求得点A、B的坐标,可求得OA、OB、AB的长,利用面积法即可求得OM的长;(2)先画图,确定△BOP面积可以BO为底,P到y轴距离为高求得P到y轴距离,再分类讨论求得答案;(3)分△OMP≌△PQO与△OMP≌△OQP两种情况讨论,结合图形分析即可求解.解:(1)对于直线y=﹣x+3,令x=0,则y=3,令y=0,则﹣x+3=0,解得:x=4,∴点A、B的坐标分别是(4,0),(0,3),∴OA=4,OB=3,∴AB===5,∵S△OAB=AB•OM,∴OM=;(2)过P作PC⊥y轴于C,如图1,∴S△BOP=OB•PC=6,∴PC=4,∴点P的横坐标为4或﹣4,∵点P为直线l上的一个动点且不与A、B重合,∴横坐标为4时,与A重合,不合题意,∴横坐标为﹣4时,纵坐标为:﹣×(﹣4)+3=6,∴当点P坐标为(﹣4,6)时,△BOP的面积是6;(3)存在,理由如下:①当△OMP≌△PQO时,如图2和图3,由(1)得OM=,∴PQ=OM=,即P点横坐标为﹣或,当P点横坐标为﹣时,纵坐标为:﹣×+3=,∴P(﹣,),当P点横坐标为时,纵坐标为:﹣,∴P(),此时点P的坐标为(﹣,),(,);②当△OMP≌△OQP时,如图4和图5,∴OQ=OM=,即点P、点Q纵坐标为﹣或,由﹣,解得:x=;由﹣,解得:x=;此时点P的坐标为(,﹣),(,);综上所述,符合条件的点P的坐标为(﹣,)或(,)或(,﹣)或(,).。
2022-2023学年山西省太原市八年级(上)月考数学试卷说明:共三大题,23小题,满分120分,作答时间120分钟.一、选择题(本大题共10个小题,每小题3分,共30分.) 1.()02-等于( ) A.2-B.0C.1D.22.下列图标形象地表示了“二十四节气”中的“立春”“芒种”“白露”“大雪”,其中是轴对称图形的是( )A. B. C. D.3.下列计算结果正确的是( ) A.1234a a a ÷=B.()236aa -= C.2510a a a ⋅=D.()2236a a -=4.在ABC △中,B C ∠=∠,2AB =,则AC 的长为( ) A.1B.2C.3D.45.现需要在某条街道l 上修建一个核酸检测点P ,向居住在A ,B 小区的居民提供核酸检测服务,要使P 到A ,B 的距离之和最短,则核酸检测点P 符合题意的是( )A. B. C . D.6.下列各式从左到右的变形是因式分解,并因式分解正确的是( ) A.()2222m n mn m n -+=-B.()()21454x x x x ++=++C.()()22444x y x y x y -=-+D.()()()()21a b a b a b a b -+-=--+7.如图,在33⨯的正方形网格中,12∠+∠等于( )A.60°B.75°C.90°D.105°8.若225x mx ++是完全平方式,则m 的值是( ) A.10±B.5±C.10D.59.如图,将图1中的一个小长方形变换位置得到如图2所示的图形,根据两个图形中阴影部分的面积关系得到的等式是( )A.()2222a b a ab b +=++ B.()2222a b a ab b -=-+ C.()()22a b a b a b -=+-D.()()2222a b a b a ab b +-=+-10.如图,在Rt ABC △中,90C ∠=︒,30A ∠=︒,BH 平分ABC ∠,6BH =,P 是边AB 上一动点,则H ,P 之间的最小距离为( )A.2B.3C.4D.6二、填空题(本大题共5个小题,每小题3分,共15分) 11.分解因式:225x -=______.12.若点A 位于第三象限,则点A 关于y 轴的对称点落在第______象限. 13.已知45m =,49n =,则4m n +的值为______.14.如图,在ABC △中,AB AC =,AB 的垂直平分线交边AB 于点D ,交边AC 于点E ,若ABC △与EBC △的周长分别是15,9,则BC =______.15.如图,某山的山顶E 处有一个观光塔EF ,已知该山的山坡面与水平面的夹角EAB ∠为30°,山高EB 为120米,点C 距山脚A 处180米,CD AB ∥,交EB 于点D ,在点C 处测得观光塔顶端F 的仰角FCD ∠为60°,则观光塔EF 的高度是______米.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本题共2个小题,每小题5分,共10分)计算:(1)()3232a a a -⋅+.(2)()()()2a b a b b a b +---.先化简,再求值:()()22x xy y x y ++-,其中1x =,2y =-.18.(本题8分)课本再现:(1)如图,ABC △是等边三角形,DE BC ∥,分别交AB ,AC 于点D ,E .求证:ADE △是等边三角形.(2)如图,等边三角形ABC 的两条角平分线相交于点D ,延长BD 至点E ,使得AE AD =,求证:ADE △是等边三角形.19.(本题8分) 观察以下等式:第1个等式:223181-=⨯;第2个等式:225382-=⨯;第3个等式:227583-=⨯;第4个等式:229784-=⨯;…按照以上规律,解决下列问题: (1)写出第5个等式:______.(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.下列方框中的内容是小宇分解因式的解题步骤.请回答下列问题:(1)小宇分解因式中第二步到第三步运用了______. A.提公因式法B.平方差公式法C.两数和的完全平方公式法D.两数差的完全平方公式法(2)小宇得到的结果能否继续因式分解?若能,直接写出分解因式的结果;若不能,请说明理由. (3)请对多项式()()22262425x x xx +++-+进行因式分解.21.(本题8分)为了推进节能减排,助力实现碳达峰、碳中和,某市新换了一批新能源公交车(如图1).图2、图3分别是该公交车双开门关闭、打开中某一时刻的俯视(从上面往下看)示意图.ME ,EF ,FN 是门轴的滑动轨道,90E F ∠=∠=︒,两门AB ,CD 的门轴A ,B ,C ,D 都在滑动轨道上,两门关闭时(如图2),点A ,D分别在点E ,F 处,门缝忽略不计(B ,C 重合),两门同时开启时,点A ,D 分别沿E M →,F N →的方向同时以相同的速度滑动,如图3,当点B 到达点E 处时,点C 恰好到达点F 处,此时两门完全开启,若1EF =米,AB CD =,在两门开启的过程中,当60ABE ∠=︒时,求BC 的长度.22.(本题13分)综合与探究【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如,由图可以得到()2222a b a ab b +=++,基于此,请解答下列问题.【直接应用】(1)若3x y +=,225x y +=,求xy 的值. 【类比应用】(2)若()32x x -=,则()223x x +-=______.【知识迁移】(3)将两块全等的特制直角三角板(90AOB COD ∠=∠=︒)按如图所示的方式放置,其中点A ,O ,D 在同一直线上,点B ,O ,C 也在同一直线上,连接AC ,BD .若14AD =,50AOC BOD S S +=△△,求一块直角三角板的面积.23.(本题13分)综合与实践课间,小鑫在草稿纸上画了一个直角三角形.如图,在Rt ABC △中,90ACB ∠=︒,他想到了作AC 的垂直平分线ED ,交AC 于点E ,交AB 于点D .他和同桌开始探讨线段AD 与BD 的大小关系.(1)尝试探究:当30A ∠=︒时,直接写出线段AD 与BD 的大小关系:AD ______BD .(填“>”、“<”或“=”)(2)得出结论:若A ∠为任意锐角,则线段AD 与BD 的大小关系是AD ______BD ,请说明理由.(填“>”、“<”或“=”)(3)应用结论:利用上面的结论继续研究,如图,P 是FHG △的边HG 上的一个动点,PM FH ⊥于点M ,PN FG ⊥于点N ,FP 与MN 交于点K .当点P 运动到某处时,MN 与FP 正好互相垂直,此时FP 平分HFG ∠吗?请说明理由.数学参考答案1.C2.D3.B4.B5.A6.D7.C8.A9.C 10.B 11.()()55x x +- 12.四 13.45 14.3 15.6016.(1)解:原式3338a a =-+……3分35a =.……5分(2)解:原式2222a b ab b =--+……3分22a ab =-.……5分 17.解:原式322223x x y xy x y xy y =++---……3分33x y =-.……5分 当1x =,2y =-时,原式()33129=--=.……7分18.解:(1)①AED ∠;……1分②ADE ∠; ③AED ∠;……3分④等角对等边.……4分(2)证明:∵ABC △是等边三角形,∴60BAC ABC ∠=∠=︒.……5分 ∵BE 和AD 分别为ABC ∠和BAC ∠的平分线,∴1302ABD ABC ∠=∠=︒,1302BAD BAC ∠=∠=︒. ∵ADE ∠为ABD △的外角,∴60ADE ABD BAD ∠=∠+∠=︒.……7分∵AE AD =,∴ADE △是等边三角形.……8分 19.解:(1)2211985-=⨯.……3分(2)第n 个等式:()()2221218n n n +--=.……5分证明:∵等式左边()()212121218n n n n n =++-+-+==等式右边,∴等式成立.……8分 20.解:(1)C.……2分(2)能,分解因式的结果为()42x +.……4分 (3)设22y x x =+.原式()()6425y y =+-+……5分()22211y y y =++=+……6分()()2222211x x x ⎡⎤=++=+⎣⎦……7分()41x =+.……8分21.解:由题意,得BE CF =,1EF AB CD =+=米.∵AB CD =,∴12AB CD ==米.……2分 在Rt AEB △中,∵90E ∠=︒,60ABE ∠=︒,∴30EAB ∠=︒,∴1124BE AB ==米,∴14CF BE ==米,……6分∴12BC EF BE CF =--=米. 答:BC 的长度为12米.……8分 22.解:(1)∵()2222x y x xy y +=++,又∵3x y +=,225x y +=,∴952xy =+,∴2xy =.……4分 (2)5.……7分 提示:设3y x =-,则()33x y x x +=+-=.∵()32x x -=,即2xy =,∴()()222222323225x x x y x y xy +-=+=+-=-⨯=.(3)∵两块直角三角板全等,∴AO CO =,BO DO =,90AOB COD ∠=∠=︒.……8分 ∵点A ,O ,D 在同一直线上,点B ,O ,C 也在同一直线上, ∴18090AOC COD ∠=︒-∠=︒,90BOD AOC ∠=∠=︒. 设AO CO x ==,BO DO y ==.∵14AD AO OD x y =+=+=, 又∵22115022AOC BOD S S x y +=+=△△,∴22100x y +=,解得48xy =,……11分 ∴112422AOBS OA OB xy =⋅==△.答:一块直角三角板的面积为24.……13分 23.解:(1)=.……2分 (2)=.……4分理由:∵ED 垂直平分AC ,∴AD CD =,∴A ACD ∠=∠.……5分 ∵90ACB ∠=︒,∴90A B ACD BCD ∠+∠=∠+∠=︒, ∴B BCD ∠=∠,∴BD CD =,∴AD BD =.……7分 (3)FP 平分HFG ∠.……8分理由:如图,作MF 的垂直平分线交FP 于点O ,连接OM ,ON .∵PM FH ⊥,PN FG ⊥,∴MPF △和NPF △都是直角三角形. 由(2)中所证可知OF OP OM ==.作线段FN 的垂直平分线也必经过FP 的中点O ,……10分 ∴OM OP OF ON ===.又∵MN FP ⊥,∴90OKM OKN ∠=∠=︒.∵OK OK =,∴Rt Rt OKM OKN ≌△△,∴MK NK =,∴FKM FKN ≌△△,∴MFK NFK ∠=∠,即FP 平分HFG ∠.……13分。
2023-2024学年江苏省苏州市星海实验初级中学八年级上学期12月月考数学试题1.下列曲线不能表示y是x的函数的是()A.B.C.D.2.如图,表示了自变量x与因变量y的关系,当x每增加1时,y增加()A.1B.3C.6D.123.下列图形中,表示一次函数与正比例函数(为常数,且)的图象的是()A.B.C.D.4.一辆快车和一辆慢车按相同的路线从地行驶到地,所行驶的路程与时间的函数图象如图所示,下列说法不正确的是()A.快车追上慢车需小时B.慢车的速度是千米时C.,两地相距千米D.快车比慢车早到小时5.若一次函数的图象不经过第二象限,则()A .,B .,C .,D .,6.若是关于的方程的解,则一次函数的图象与轴的交点坐标是()A .B .C .D .7.在平面直角坐标系中,将函数的图象向上平移个单位长度,使其与的交点在位于第二象限,则的取值范围为()A .B .C .D .8.如图,在平面直角坐标系xoy 中,,线段,B 为的中点.点C 在y 轴上滑滑动,当线段长为最小值时点D 的坐标是()A .B .C .D .9.在平面直角坐标系中,一次函数的图象与y 轴交点坐标为__________.10.若点在函数的图象上,则代数式的值为________.11.已知一次函数的图象经过,两点,则________.(填“”“<”或“=”)12.已知一次函数的图象与直线平行,且经过点关于y 轴的对称点,则该函数的表达式为________.13.如图,直线过点与直线交于点,则不等式的解集为______.14.已知:如图(1),长方形中,E 是边上一点,且,,点P 从B 出发,沿折线匀速运动,运动到点C 停止.P 的运动速度为2,运动时间为t (s ),的面积为y ().y 与t 的函数关系式图象如图(2),则下列结论:①;②;③;④当时,为等腰三角形;⑤当时,.其中正确的是______.15.我们知道,若.则有或.如图,直线与分别交轴于点、,则不等式的解集是______.16.已知两个函数图像的表达式分别为:,,,与相交于,求__________.17.已知一次函数.(1)为何值时,它的图象经过原点;(2)为何值时,它的图象经过点.18.某校甲、乙两班参加植树活动.乙班先植树20棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为(棵),乙班植树的总量为(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时),分别与x之间的部分函数图象如图所示.(1)当时,分别求与x之间的函数关系式.(2)如果甲、乙两班均保持前4个小时的工作效率,通过计算说明,当时,甲、乙两班植树的总量之和能否超过180棵.19.如图,在正方形网格中(图中每个小正方形的边长均为1个单位长度),若点的坐标为,点的坐标为,请按要求解决下列问题:(1)在图中建立正确的平面直角坐标系;(2)点的坐标为_____________;(3)的面积为_____________;(4)如果的面积为1,且点在轴上,则点的坐标为_____________;(5)如果的周长最小,且点在轴上,则的周长最小值为_____________,点的坐标为_____________.20.如图,已知直线与坐标轴分别交于A,B两点,与直线交于点.(1)求t,b的值;(2)若点在线段上运动,过点M作直线平行于y轴,该直线与直线交于点N,与x轴交于点D,如图所示.①若,求四边形的面积;②若M是线段的3等分点,求m的值.21.某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台冰箱进价1500元,每台空调的进价1200元.现在商场准备一次购进这两种家电共100台,设购进电冰箱台,这100台家电的销售利润为元,(1)求出与之间的函数关系式;(2)要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16400元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调()元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,求出这100台家电销售时的最大利润.22.如图1,等腰直角三角形中,,,过点作交于点,过点作交于点,易得,我们称这种全等模型为“型全等”.如图2,在直角坐标系中,直线:分别与轴,轴交于点、(,).(1)求的值和点的坐标;(2)在第二象限构造等腰直角,使得,求点的坐标;(3)将直线绕点旋转得到,求的函数表达式.。
浙江省金华市金华海亮外国语学校2022-2023学年八年级上学期12月月考数学试题(wd无答案)一、单选题(★) 1. 下列图案不是..轴对称图形的是()A.B.C.D.(★) 2. 下列长度的三条线段能首尾相接构成三角形的是()A.,,B.,,C.,,D.,,(★) 3. 在平面直角坐标系中,点关于x轴对称的点的坐标为()A.B.C.D.(★) 4. 不等式的解集在数轴上表示正确的是()A.B.C.D.(★★★) 5. 在下列四个命题中,是真命题的是()A.有两边及其中一边上的高线对应相等的两个三角形全等;B.有两个内角是60°的三角形是等边三角形;C.垂直于同一条直线的两条直线平行;D.等腰三角形一腰上的高与另一腰的夹角是20°,则顶角是70°.(★) 6. 如图,已知所在直线是的对称轴,点E、F是上的两点,若的面积为18.则图中阴影部分的面积是()A.6B.12C.9D.无法确定(★★) 7. 如图所示,两个三角形全等,则等于A.B.C.D.(★) 8. 如图,在中,,分别以点A和点B为圆心,大于的长为半径作弧相交于点D和点E,直线交于点F,交于点G,连接,若,则的周长为()A.B.C.D.8(★★) 9. 若点,,在一次函数(是常数)的图象上,则,,的大小关系是()A.B.C.D.(★★★) 10. 为预防新冠疫情,民生大院入口的正上方A 处装有红外线激光测温仪(如图所示),测温仪离地面的距离AB=2.4 米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为 1.8 米的市民CD 正对门缓慢走到离门 0.8 米的地方时(即BC=0.8 米),测温仪自动显示体温,则人头顶离测温仪的距离AD 等于()A.1.0 米B.1.2 米C.1.25 米D.1.5 米二、填空题(★) 11. 命题“等腰三角形的两个底角相等”的逆命题是 _________ .(★) 12. 一次函数的图象不经过第 ____________ 象限.(★) 13. 已知一个等腰三角形的一个内角为40°,则它的顶角等于______.(★★★) 14. 如图,是的角平分线,若,,则 ______ .(★) 15. 小明和小亮的家分别位于新华书店的东西两边,他们相约同时出发到新华书店购买书籍,小明骑车小亮步行.小明、小亮到新华书店的距离(m),(m)与时间(min)之间的关系如图所示,经过 ______ min,他们途中到书店的距离相等.(★★★) 16. 如图,的两条直角边,.分别以的三边为边作三个正方形.若四个阴影部分面积分别为,,,,则的值为 ____________ ,的值为 ____________ .三、解答题(★) 17. 如图,在中,,,求的度数.(★) 18. 如图,,,.求证:.(★★) 19. 如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?(★) 20. 在如图所示的正方形网格中建立平面直角坐标系,的顶点坐标分别为,,,请按要求解答下列问题:(1)画出关于x轴对称的,并写出点A的对应点的坐标为(______,______);(2)平行于y轴的直线l经过,画出关于直线l对称的图形,并写出的坐标为(______,______);(★★) 21. (1)解不等式:,并把它的解集在数轴上表示出来.(2)解不等式组:.(★★★) 22. 一次函数的图象经过点和,与轴交于点.(1)试求这个一次函数的解析式;(2)求一次函数的图象与两坐标轴围成的三角形面积.(★★★) 23. 如图,是边长是的等边三角形,动点,同时从,两点出发,分别沿,方向匀速移动,其中点运动的速度是,点运动的速度是,当点到达点时,、两点都停止运动,设运动时间为,解答下列问题:(1)当点到达点时,与的位置关系如何?请说明理由.(2)在点与点的运动过程中,是否能成为等边三角形?若能,请求出,若不能,请说明理由.(3)则当为何值时,是直角三角形?(★★★) 24. 通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,,过点B作于点C,过点D作于点E.由,得.又,可以推理得到.进而得到AC =_______,BC=______.我们把这个数学模型称为“K字”模型或“一线三等角”模型;【模型应用】(2)①如图2,,连接,且于点F,与直线交于点G.求证:点G是的中点;②如图3,在平面直角坐标系xOy中,点A的坐标为,点B为平面内任一点.若是以为斜边的等腰直角三角形,请直接写出点B的坐标.。
时间:120分钟 分值:150分一、选择题(每小题3分,共27分)1、下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是( ).A . B. C. D.2、下列说法中,不是..一般平行四边形的特征的是( ) A 、对边平行且相等 B 、对角线互相平分 C 、是轴对称图形 D 、对角相等3、在如图的网格中,以格点A 、B 、C 、D 、E 、F 中的4个点为顶点,你能画出平行四边形的个数为 ( )A .2个B .3个C .4个 13.5个 4、横坐标和纵坐标都是正数的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5、下列图形中,不一定为菱形的是( )A 、两条对角线互相垂直平分的四边形B 、四条边都相等的四边形C 、有一条对角线平分一个内角的平行四边形D 、由两个全等的三角形拼成的图形6、如图,在一块形状为直角梯形的草坪中,修建了一条由A →M →N →C 的小路(M 、N 分别是AB 、CD 的中点).极少数同学为了走“捷径”,沿线段AC 行走,破坏了草坪,实际上他们仅少走了( )F7、矩形ABCD 中,三点的坐标分别是(0,0);(5,0);(5,3).则第四点的坐标是( )A .(0,3)B .(3,0)C .(0,5)D .(5,0)8、如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,CE=CF 。
若∠BEC=80°,则∠EFD 的度数为( )A 、20°B 、25°C 、35°D 、40°9、如图,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上RP DC AEF第8题 第3题 第6题从C向D移动而点R不动时,那么下列结论成立的是()A、线段EF的长逐渐增大B、线段EF的长逐渐减小C、线段EF的长不变D、线段EF的长与点P的位置有关二、填空题(每小题3分,共27分)10、在平行四边形ABCD中,已知AB=8,周长等于24,则AD= 。
2013年秋武汉部分学校八年级12月份调研考试数学试卷一、选择题(每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请将各题正确答案的代号填入到答题卷相应的答题卡中。
1. 在等腰三角形、圆、长方形、正方形、直角三角形中,一定是轴对称图形的有( )个。
A. 1 B. 2 C. 3 D. 42. 下列计算正确的是( )。
A. -2(x 2y 3)2=-4x 4y 6B. 8x 3-3x 2-x 3=4x 3C. a 2b (-2ab 2)=-2a 3b3 D. -(x-y )2=-x 2-2xy-y 23. 下列分解因式正确的是( )。
A. x 2-y 2=(x+y )2B. m 2+2mn+n 2=(m-n)2C. ab 2x-aby=ab(x-y)D. 4x 2-8xy+4y 2=4(x-y)24. 在直角坐标系中,点P (a ,2)与点A (-3,m )关于y 轴对称,则a 、m 的值分别为( )。
A. 3,-2 B. -3,-2 C. 3,2 D. -3,25. 一个三角形的底边为4m ,高为m+4n ,它的面积为( )。
A. m 2+4mnB. 4m 2+8mnC. 2m 2+8mnD. 8m 2+4mn6. 如图,在△ABC 中,∠A=72°,AB=AC ,BD 平分∠ABC ,且BD=BE ,点D 、E 分别在AC 、BC 上,则∠DEB=( )。
A. 76°B. 75.5°C. 76.5°D. 75°7. 如图,已知AB ∥CD ,AB=CD ,添加条件( )能使△ABE ≌△CDF 。
A. AF=EFB. ∠B=∠CC. EF=CED. AF=CE8. 如图,△ABC 中,∠ACB=90°,AC=4,BC=3,AB=5,CH⊥AB 于H ,则CH 的长为( )。
A. 2.4B. 3C. 2.2D. 3.29. 如图,已知等边△ABC 中,点D 、E 分别在边AB 、BC 上,把△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1、EB 1分别交边AC 于M 、H 点,若∠ADM=50°,则∠EHC 的度数为( )。
泰州市姜堰区2022-2023学年第一学期初二数学12月月考试题一、选择题(本大题共有6小题,每小题3分,共18分.)1.(3分)下列微信表情图标属于轴对称图形的是()A.B.C.D.2.(3分)下列各式中正确的是()A.B.C.=±4 D.=33.(3分)在实数:3.14159,,1.010010001…,,π,中,是无理数的共()A.1个B.2个C.3个D.4个4.(3分)若A(x1,y1)、B(x2,y2)是一次函数y=ax﹣2x+1图象上的不同的两个点,记m=(x1﹣x2)(y1﹣y2),则当m<0时,a的取值范围是()A.a<0 B.a>0 C.a<2 D.a>25.(3分)八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x6.(3分)下列说法:①正比例函数一定是一次函数,一次函数不一定是正比例函数;②函数y=kx+b(k、b是常数)是一次函数;③对于函数y=﹣3x+2,当x<0时,y>0;④已知一次函数y=(2﹣m)x﹣4+n,当函数图象不经过第二象限,则m<2,n<4,其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(本大题共有10小题,每小题3分,共30分.)7.(3分)如图,△ABC≌△DBC,∠A=43°,∠ACD=78°,则∠ABC=.8.(3分)用四舍五入法取近似值:699506(精确到千位):.9.(3分)把直线y=﹣5x+1沿y轴向下平移2个单位,所得直线的函数关系式为.10.(3分)点P(﹣3,5)关于y轴的对称点的坐标是.11.(3分)若点P(a,b)在一次函数y=3x+4的图象上,则代数式1﹣6a+2b=.12.(3分)如图,在平面直角坐标系中,O为坐标原点,若将A(3,1)绕点O逆时针旋转90°得到点A',则点A'的坐标是.13.(3分)如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于.14.(3分)当一次函数y=(2m﹣5)x+3m﹣3的图象与y轴的交点在x轴的上方时,m满足的条件是.15.(3分)若点A(8,0),B(0,n),且直线AB与坐标轴围成的三角形面积为12,则n=.16.(3分)在等腰三角形ABC中,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=x°,当∠B有且只有一个度数时,x的取值范围是.三、解答题(本大题共有10小题,共102分)17.(10分)计算与解方程(1)(π﹣3)0﹣|﹣3|+(﹣)﹣2﹣(2)(x+2)2﹣9=0.18.(8分)已知y=y1+y2,y1与x+3成正比例,y2与x﹣2成正比例,且x=3时,y=4;x=1时,y=2,求y与x之间的函数表达式.19.(8分)如图,已知△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出△ABC沿y轴向下平移3个单位得到△A2B2C2;(3)在y轴上求作一点P,使△P AC的周长最小,并直接写出点P的坐标.20.(10分)如图,在△ABC和△DBC中,AC和BD相交于点O,OB=OC,试从①AB=CD,②AC=DB 这两个条件中任选一个作为补充条件,证明∠A=∠D.你选择的条件是.(只填序号),请写出证明过程.21.(10分)如图,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点重合.(1)证明:AE=AF;(2)求DF的长.22.(10分)已知一次函数y=(4m+1)x﹣(m+1).(1)当m为何值时,y随x的增大而增大?(2)当m为何值时,一次函数的图象经过第二、三、四象限?23.(10分)如图,一根长10m的梯子AB斜靠在墙上,梯子的顶端A到地面的距离AO为8m,P为AB 中点.(1)当梯子的顶端A下滑1m时,求梯子底端B向外滑行的距离?(2)请判断在木棍滑动的过程中,点P到点O的距离是否变化,若不变,则求出OP的长度,若变化,请说明理由;(3)直接写出木棍滑动的过程中△AOB面积的最大值.24.(10分)甲、乙两人驾车都从P地出发,沿一条笔直的公路匀速前往Q地,乙先出发一段时间后甲再出发,甲、乙两人分别到达Q地后停止.已知P、Q两地相距200km,设乙行驶的时间为t(h),甲、乙两人之间的距离为y(km),表示y与t函数关系的部分图象如图所示.请解决以下问题:(1)由图象可知,甲比乙迟出发h,解释图象中点B与点C的实际意义;(2)求甲、乙两人的速度.25.(12分)我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆车都要装运,每辆汽车只能装运同一种脐橙.且必须装满,根据如表组织的信息,解答以下问题.脐橙品种A B C每辆汽车运载量(吨) 6 5 4每吨脐橙获利(元)1200 1600 1000(2)如果转运每种脐橙的车辆数都不少于4,那么车辆的安排方案有几种?(3)若要使此次销售获利最大,应采用哪种安排方案?并求出此时最大利润的值.26.(14分)已知:如图,平面直角坐标系中,A(3,0),B(0,3),C(﹣3,0),过点C的直线绕C 旋转,交y轴于点D,交线段AB于点E.(1)求直线AB的解析式;(2)若△OCD与△BDE的面积相等,求直线CE的解析式;(3)若点P(m+1,6m+3)是该平面直角系内的点.①求点P的纵坐标随横坐标变化的函数表达式;②若点P在该△AOB内,求m的取值范围.答案与解析一、选择题(本大题共有6小题,每小题3分,共18分.)1.(3分)下列微信表情图标属于轴对称图形的是()A.B.C.D.【分析】结合轴对称图形的概念求解即可.【解答】解:A、不是轴对称图形,本选项不合题意;B、不是轴对称图形,本选项不合题意;C、是轴对称图形,本选项符合题意;D、不是轴对称图形,本选项不合题意.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)下列各式中正确的是()A.B.C.=±4 D.=3【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、=2,故选项错误;B、=1,故选项正确;C、=4,故选项错误;D、=3,故选项错误.故选:B.【点评】本题考查了算术平方根和立方根的概念.算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.3.(3分)在实数:3.14159,,1.010010001…,,π,中,是无理数的共()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,,实数:3.14159,,1.010010001…,π,,中,无理数有1.010010001…,π,,共3个.故选:C.【点评】本题主要考查了无理数的定义,掌握无理数的定义是解题的关键,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(3分)若A(x1,y1)、B(x2,y2)是一次函数y=ax﹣2x+1图象上的不同的两个点,记m=(x1﹣x2)(y1﹣y2),则当m<0时,a的取值范围是()A.a<0 B.a>0 C.a<2 D.a>2【分析】根据一次函数的性质知,当k<0时,判断出y随x的增大而减小.【解答】解:∵A(x1,y1)、B(x2,y2)是一次函数y=ax﹣2x+1=(a﹣2)x+1图象上的不同的两点,m =(x1﹣x2)(y1﹣y2)<0,∴该函数图象是y随x的增大而减小,∴a﹣2<0,解得a<2.故选:C.【点评】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.5.(3分)八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x【分析】设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A作AC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标即可得到该直线l的解析式.【解答】解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴S△AOB=4+1=5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(﹣,3),设直线方程为y=kx,则3=﹣k,k=﹣,∴直线l解析式为y=﹣x,故选:D.【点评】此题考查了面积相等问题、用待定系数法求一次函数的解析式以及正方形的性质,此题难度较大,解题的关键是作AB⊥y轴,作AC⊥x轴,根据题意即得到:直角三角形ABO,利用三角形的面积公式求出AB的长.6.(3分)下列说法:①正比例函数一定是一次函数,一次函数不一定是正比例函数;②函数y=kx+b(k、b是常数)是一次函数;③对于函数y=﹣3x+2,当x<0时,y>0;④已知一次函数y=(2﹣m)x﹣4+n,当函数图象不经过第二象限,则m<2,n<4,其中正确的有()个.A.1 B.2 C.3 D.4【分析】根据一次函数和正比例函数的定义以及一次函数的性质判断即可.【解答】解:①正比例函数一定是一次函数,一次函数不一定是正比例函数,故正确;②函数y=kx+b(k、b是常数,k≠0)是一次函数,故错误;③对于函数y=﹣3x+2,当x<0时,y>2,故错误;④一次函数y=(2﹣m)x﹣4+n,当函数图象不经过第二象限,则2﹣m>0,﹣4+n≤0,解得m<2,n≤4,故错误.故正确的是①.故选:A.【点评】本题主要考查一次函数与正比例函数的定义,一次函数的性质,熟知以两者之间的联系以及一次函数的性质是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.)7.(3分)如图,△ABC≌△DBC,∠A=43°,∠ACD=78°,则∠ABC=98°.【分析】根据全等三角形的性质求出∠D=∠A=43°,∠ABC=∠DBC,∠ACB=∠DCB,求出∠DCB,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△DBC,∠A=43°,∴∠D=∠A=43°,∠ABC=∠DBC,∠ACB=∠DCB,∵∠ACD=78°,∴∠BCD=∠ACB=39°,∴∠DBC=180°﹣∠D﹣∠DCB=98°,故答案为:98°.【点评】本题考查了全等三角形的性质的应用,能根据全等三角形的性质得出∠D=∠A=45°,∠ABC=∠DBC,∠ACB=∠DCB是解此题的关键,注意:全等三角形的对应角相等,对应边相等.8.(3分)用四舍五入法取近似值:699506(精确到千位):7.00×105.【分析】先用科学记数法表示,然后把百位上的数字5进行四舍五入即可.【解答】解:精确到千位,699506≈7.00×105.故答案为:7.00×105.【点评】本题考查了近似数和有效数字,近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.9.(3分)把直线y=﹣5x+1沿y轴向下平移2个单位,所得直线的函数关系式为y=﹣5x﹣1.【分析】根据平移的规则“上加下减”即可得出结论.【解答】解:把直线y=﹣5x+1沿y轴向下平移2个单位,所得直线的函数关系式为y=﹣5x+1﹣2,即y =﹣5x﹣1.故答案为:y=﹣5x﹣1.【点评】本题考查了一次函数图象与几何变换,解题的关键是牢记图形平移的规则“左加右减,上加下减”.本题属于基础题,难度不大,解决该题型题目时,熟练掌握图形平移的规则是关键.10.(3分)点P(﹣3,5)关于y轴的对称点的坐标是(3,5).【分析】利用关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而求出即可.【解答】解:点P(﹣3,5)关于y轴的对称点的坐标是:(3,5).故答案为:(3,5).【点评】此题主要考查了关于y轴对称的性质,正确把握横纵坐标的关系是解题关键.11.(3分)若点P(a,b)在一次函数y=3x+4的图象上,则代数式1﹣6a+2b=9.【分析】将点P坐标代入一次函数解析式可得a与b的关系,进而求解.【解答】解:将(a,b)代入y=3x+4得b=3a+4,∴b﹣3a=4,∴1﹣6a+2b=1+2(b﹣3a)=1+8=9,故答案为:9.【点评】本题考查一次函数图象上点的坐标特征,解题关键是掌握一次函数与方程的关系,通过整体思想求解.12.(3分)如图,在平面直角坐标系中,O为坐标原点,若将A(3,1)绕点O逆时针旋转90°得到点A',则点A'的坐标是(﹣1,3).【分析】利用旋转变换的性质正确作出图形,可得结论.【解答】解:如图,观察图象可知,A′(﹣1,3),故答案为:(﹣1,3).【点评】本题考查坐标与图形变化﹣旋转,解题的关键是学会利用图象法解决问题.13.(3分)如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于6.【分析】分别以AC,BC为边向△ABC的外部作正方形,则AC2=4S1,BC2=4S2,由勾股定理可得S=4(S1+S2),进而可求解AB的长.【解答】解:分别以AC,BC为边向△ABC的外部作正方形,则AC2=4S1,BC2=4S2,在Rt△ABC中AC2+BC2=AB2,∵AB2=S,∴S=4S1+4S2=4(S1+S2),∵S1+S2=9,∴S=4×9=36,∴AB=6.故答案为6.【点评】本题主要考查勾股定理,分别以AC,BC为边向△ABC的外部作正方形,利用勾股定理列算式时解题的关键.14.(3分)当一次函数y=(2m﹣5)x+3m﹣3的图象与y轴的交点在x轴的上方时,m满足的条件是m >1且m≠.【分析】根据一次函数图象与系数的关系得到2m﹣5≠0且3m﹣3>0,然后解不等式即可.【解答】解:根据题意得2m﹣5≠0且3m﹣3>0,解得m>1且m≠,故答案为:m>1且m≠.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴.15.(3分)若点A(8,0),B(0,n),且直线AB与坐标轴围成的三角形面积为12,则n=±3.【分析】根据直线AB与坐标轴围成的三角形面积为12,可得8|n|÷2=12,进一步求解即可.【解答】解:根据题意,得8|n|÷2=12,解得|n|=3,解得n=±3,故答案为:±3.【点评】本题考查了一次函数与三角形面积,熟练掌握一次函数图象上点的坐标特征是解题的关键.16.(3分)在等腰三角形ABC中,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=x°,当∠B有且只有一个度数时,x的取值范围是90°≤X<180°或X=60°.【分析】分两种情况:①当90≤x<180时,∠A只能为顶角,得到∠B的度数只有一个;②当0<x<90时,当x=60时,等腰三角形ABC是等边三角形,得到∠B的度数只有一个,于是得到结论.【解答】解:分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,当x=60时,等腰三角形ABC是等边三角形,∴∠B的度数只有一个,∴当∠B只有一个度数时,x的取值范围为90≤x<180或60;故答案为:90°≤X<180°或X=60°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解题的关键.三、解答题(本大题共有10小题,共102分)17.(10分)计算与解方程(1)(π﹣3)0﹣|﹣3|+(﹣)﹣2﹣(2)(x+2)2﹣9=0.【分析】(1)直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质分别化简,进而得出答案;(2)直接利用平方根的性质化简,进而得出答案.【解答】解:(1)原式=1﹣(3﹣)+9﹣=1﹣3++9﹣=7;(2)(x+2)2﹣9=0,(x+2)2=9,则x+2=±3,解得:x=﹣或x=.【点评】本题主要考查了实数的运算,掌握正确化简各数是关键.18.(8分)已知y=y1+y2,y1与x+3成正比例,y2与x﹣2成正比例,且x=3时,y=4;x=1时,y=2,求y与x之间的函数表达式.【分析】设y1=k(x+3),y2=d(x﹣2),则y=y1+y2=k(x+3)+d(x﹣2)=(k+d)x+3k﹣2d,将x=3时,y=4;x=1时,y=2分别代入解析式即可得到k,d的值.【解答】解:∵y1与x+3成正比例,y2与x﹣2成正比例,∴可设y1=k(x+3),y2=d(x﹣2),则y=y1+y2=k(x+3)+d(x﹣2)=(k+d)x+3k﹣2d,当x=3时,y=4;x=1时,y=2,可知,整理得,解得.故函数解析式为y=x+1.【点评】本题考查了待定系数法求一次函数解析式,熟悉正比例函数的定义,根据题意得到方程组是解题的关键.19.(8分)如图,已知△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出△ABC沿y轴向下平移3个单位得到△A2B2C2;(3)在y轴上求作一点P,使△P AC的周长最小,并直接写出点P的坐标.【分析】(1)分别作出AB,C的对应点A1,B1,C1即可.(2)分别作出AB,C的对应点A2,B2,C2即可.(3)连接AC1交y轴于P,连接PC,点P即为所求作.【解答】解:(1)如图,△A1B1C1;即为所求作.(2)如图,△A2B2C2即为所求作.(3)如图,点P即为所求作,P.【点评】本题考查作图﹣轴对称变换,解题的关键是理解题意,灵活运用所学知识解决问题.20.(10分)如图,在△ABC和△DBC中,AC和BD相交于点O,OB=OC,试从①AB=CD,②AC=DB 这两个条件中任选一个作为补充条件,证明∠A=∠D.你选择的条件是②.(只填序号),请写出证明过程.【分析】选择②,证明△AOB≌△DOC,即可解决问题.【解答】解:选择②,证明:∵AC=DB,OB=OC,∴AO=DO,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴∠A=∠D.故答案为:②.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△AOB≌△DOC.21.(10分)如图,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点重合.(1)证明:AE=AF;(2)求DF的长.【分析】(1)先过点F作FG⊥BC于G.利用勾股定理可求出AE,再利用翻折变换的知识,可得到AE=CE,∠AEF=∠CEF,再利用平行线可得∠AEF=∠AFE,故有AE=AF.(2)根据折叠的性质得到AE=CE,根据勾股定理即可得到结论;(2)设DF=D′F=x,则AF=4﹣x,在Rt△AD′F中利用勾股定理即可得出x的值.【解答】(1)证明:过点F作FG⊥BC于G,∵EF是直角梯形AECD的折痕,∴AE=CE,∠AEF=∠CEF.又∵AD∥BC,∴∠AEF=∠AFE,∴AE=AF;、(2)解:设DF=D′F=x,则AF=4﹣x,在Rt△AD′F中,AF2=AD′2+D′F2,(4﹣x)2=22+x2,解得:x=1.5,故线段DF的长是1.5.【点评】本题考查了翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.22.(10分)已知一次函数y=(4m+1)x﹣(m+1).(1)当m为何值时,y随x的增大而增大?(2)当m为何值时,一次函数的图象经过第二、三、四象限?【分析】(1)当4m+1>0时,y随x的增大而增大;(2)当4m+1<0且m+1>0时,图象经过第二、三、四象限.【解答】解:(1)依题意得:4m+1>0,解得m>﹣,即当m>﹣时,y随x的增大而增大;(2)依题意得:4m+1<0且m+1>0,解得﹣1<m<﹣.即当﹣1<m<﹣时,图象经过第二、三、四象限.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.函数值y随x的增大而减小⇔k <0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y =kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.23.(10分)如图,一根长10m的梯子AB斜靠在墙上,梯子的顶端A到地面的距离AO为8m,P为AB 中点.(1)当梯子的顶端A下滑1m时,求梯子底端B向外滑行的距离?(2)请判断在木棍滑动的过程中,点P到点O的距离是否变化,若不变,则求出OP的长度,若变化,请说明理由;(3)直接写出木棍滑动的过程中△AOB面积的最大值25m2.【分析】(1)由勾股定理求出BC及B'C的长,则可得出答案;(2)根据直角三角形斜边上中线等于斜边的一半得出OP=AB,即可得出答案;(3)当△AOB的斜边上的高h等于中线OP时,△AOB的面积最大.【解答】解:(1)∵Rt△ABC中,AC=8m,AB=10m,∴BC==6m,∵Rt△A'B'C中,A'C=8﹣1=7m,A'B'=10m,∴B'C==(m),∴BB′=B'C﹣BC=(﹣6)m.(2)在木棍滑动的过程中,点P到点O的距离不变,OP是5m.理由:在木棍滑动的过程中,AB的长是不变的,∵P为AB中点,AB=10m,∴OP=AB=5m;(3)如图,h为AB上的高,若h与OP不相等,则总有h<OP,故根据三角形面积公式,有h与OP相等时△AOB的面积最大,此时,S△AOB=AB•h=×10×5=25(m2).∴△AOB的最大面积为25m2.故答案为:25m2.【点评】此题考查了勾股定理,直角三角形的性质,三角形面积公式;理解△AOB的面积什么情况最大是解决本题的关键.24.(10分)甲、乙两人驾车都从P地出发,沿一条笔直的公路匀速前往Q地,乙先出发一段时间后甲再出发,甲、乙两人分别到达Q地后停止.已知P、Q两地相距200km,设乙行驶的时间为t(h),甲、乙两人之间的距离为y(km),表示y与t函数关系的部分图象如图所示.请解决以下问题:(1)由图象可知,甲比乙迟出发1h,解释图象中点B与点C的实际意义;(2)求甲、乙两人的速度.【分析】(1)根据函数图象中的数据可以求得线段BC所在直线的函数表达式,根据图形可以写出点B和点C的实际意义;(2)根据题意和函数图象中的数据可以求得甲的速度.【解答】解:(1)由图象可知,甲比乙迟出发1h;设线段BC所在直线的函数解析式为y=kx+b,根据题意得:,解得:,∴线段BC所在直线的函数解析式为y=15x﹣40;点B:乙出发小时时,甲乙两人相遇;点C:乙行驶5小时时,甲乙两人相距35千米;故答案为:1;(2)设甲的速度为v1km/h,设乙的速度为v2km/h,由题意得:,解得,答:甲的速度为40km/h,乙的速度为25km/h.【点评】本题考查了一次函数的应用,掌握一次函数的性质和数形结合的思想是关键.25.(12分)我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆车都要装运,每辆汽车只能装运同一种脐橙.且必须装满,根据如表组织的信息,解答以下问题.脐橙品种A B C每辆汽车运载量(吨) 6 5 4每吨脐橙获利(元)1200 1600 1000(2)如果转运每种脐橙的车辆数都不少于4,那么车辆的安排方案有几种?(3)若要使此次销售获利最大,应采用哪种安排方案?并求出此时最大利润的值.【分析】(1)等量关系为:车辆数之和=20;(2)关系式为:装运每种脐橙的车辆数≥4;(3)总利润为:装运A种脐橙的车辆数×6×12+装运B种脐橙的车辆数×5×16+装运C种脐橙的车辆数×4×10,然后按x的取值来判定.【解答】解:(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20﹣x﹣y),则有:6x+5y+4(20﹣x﹣y)=100,整理得:y=﹣2x+20(1≤x≤9且为整数);(2)由(1)知,装运A、B、C三种脐橙的车辆数分别为x,﹣2x+20,x.由题意得:,解得:4≤x≤8,因为x为整数,所以x的值为4,5,6,7,8,所以安排方案共有5种.方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车,方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车,方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车,方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;(3)设利润为W(百元)则:W=6x×12+5(﹣2x+20)×16+4x×10=﹣48x+1600,∵k=﹣48<0,∴W的值随x的增大而减小.要使利润W最大,则x=4,故选方案一W最大=﹣48×4+1600=1408(百元)=14.08(万元),答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为14.08万元.【点评】本题考查了一次函数的应用,解决的关键是读懂题意,根据关键描述语,找到所求量的等量关系.确定x的范围,得到装在的几种方案是解决本题的关键.26.(14分)已知:如图,平面直角坐标系中,A(3,0),B(0,3),C(﹣3,0),过点C的直线绕C 旋转,交y轴于点D,交线段AB于点E.(1)求直线AB的解析式;(2)若△OCD与△BDE的面积相等,求直线CE的解析式;(3)若点P(m+1,6m+3)是该平面直角系内的点.①求点P的纵坐标随横坐标变化的函数表达式;②若点P在该△AOB内,求m的取值范围.【分析】(1)根据A、B的坐标和三角形的内角和定理求出∠OAB的度数即可;设直线AB的解析式为y =kx+b,把A、B的坐标代入得出方程组,求出方程组的解即可;(2)推出三角形AOB和三角形ACE的面积相等,根据面积公式求出E的纵坐标,代入直线AB的解析式,求出E的横坐标,设直线CE的解析式是:y=mx+n,利用待定系数法求出直线EC的解析式,进而即可求得点D的坐标.(3)①根据点坐标特征,消去m得到y与x关系式即可得出答案;②求出直线y=6x﹣3与y=﹣x+3的交点,y=6x﹣3与x轴的交点,若点P在△AOB的内部,只需要<m+1<即可;【解答】解:(1)∵B(0,3),A(3,0),设直线AB的解析式为y=kx+b.∴,解得,∴直线AB的解析式为y=﹣x+3;(2)∵S△COD=S△BDE,∴S△COD+S四边形AODE=S△BDE+S四边形AODE,即S△ACE=S△AOB,∵点E在线段AB上,∴点E在第一象限,且y E>0,∴×AC×y E=×OA×OB,∴×6×y E=×3×3,y E=,把y=代入直线AB的解析式得:=﹣x+3,∴x=,设直线CE的解析式是:y=mx+n,∵C(﹣3,0),E(,)代入得:,解得:m=,n=1,∴直线CE的解析式为y=x+1;(3)①∵P(m+1,6m+3)是平面直角坐标系的点,∴x=m+1,y=6m+3,∴y=6(x﹣1)+3,∴y=6x﹣3,即点P的纵坐标随横坐标变化的函数表达式是y=6x﹣3;②由①可知点P在一次函数y=6x﹣3的图象上,∴,解得,∴y=6x﹣3与y=﹣x+3的交点为(,),当6x﹣3=0时,x=,∴y=6x﹣3与x轴的交点(,0),∵点P在△AOB的内部,∴,∴﹣<m<﹣.【点评】本题是一次函数综合题,考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积等知识点,综合运用这些性质进行推理和计算是解此题的关键.。
江苏省无锡市天一实验学校2016-2017学年八年级数学12月月考试题
一、选择题(每题3分,共30分)
1.下列图形中既是轴对称图形又是中心对称图形的是(▲)
A .
B .
C .
D .
2.关于函数12
y x =,下列结论正确的是(▲) A .函数图象必经过点(1,2) B .函数图象经过第二、四象限
C .y 随x 的增大而增大
D .不论x 取何值,总有0y >
3.已知一次函数y=kx+b 的图象经过第一、二、三象限,则b 的值可以是(▲)
A .﹣2
B .﹣1
C .0
D .2
4.如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能是(▲)
A .AE=CF
B .BE=FD
C .BF=DE
D .∠1=∠2
(第4题)(第5题)(第8题)
5.如图,在△ABC 中,∠CAB=65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB ,则旋转角的度数为(▲)
A .35°
B .40°
C .50°
D .65°
6.已知一次函数3y kx =+,当x 增加3时,y 减少2,则k 的值是(▲) A.23- B.32- C.23 D.32
7.下列说法:(1)矩形的对角线相互垂直且平分;(2)菱形的四边相等;(3)一组对边平行,另一组对边相等的四边形是平行四边形;(4)正方形的对角线相等,并且互相垂直平分;(5)顺次连接平行四边形各边中点所得到的四边形是矩形。
其中正确的个数是 (▲)
A .1个 B.2个 C.3个 D.4个
8.如图,在平面直角坐标系中,点A (﹣1,m )在直线y=2x+3上,连结OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线y=﹣x+b 上,则b 的值为(▲)
A .﹣2
B .1
C .32
D .2 9.在ABCD 中,AD=8,A
E 平分∠BAD 交BC 于点E ,D
F 平分∠ADC 交BC 于点F ,且EF=2,则AB 的长为(▲)
A .3
B .5
C .2或3
D .3或5
10.已知=1,
2m x n x +=-+,若规定1,1,m n m n y m n m n +-≥⎧=⎨-+<⎩,则y 的最小值为(▲) A .0 B .1 C .﹣1 D .2
二、填空题(每空2分,共16分)
11.
函数2
y x =-中,自变量x 的取值范围是▲. 12. 在Y ABCD 中,对角线AC 、BD 相交于点O,AC=10,BD=6,AD=4,,则Y ABCD 的面积等于▲.
13. 如图,在Rt △ABC 中,∠ACB=90°,点D ,E ,F 分别为AB ,AC ,BC 的中点.若CD=5,则EF 的长为▲.
14. 已知一次函数y=(2m ﹣2)x+m+1的图象与y 轴交点在x 轴上方,则m 取值范围是▲. 15.一次函数y=-2x+b 与坐标轴围成的三角形的面积为4,则b 的值为▲.
(第13题) (第16题) (第17题) (第18题)
16.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=10,点A 、B 的坐标分别为(1,0)、(7,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x ﹣8上时,线段BC 扫过的面积为▲.cm 2.
17. 已知函数y ax b =-和y kx =的图象交于点P ,则根据图象可知,关于x ,y 的二元一次方程组y ax b y kx
=-⎧⎨=⎩的解是▲. 18.如图,在矩形ABCD 中,AD=2,点P 是直线AD 上一动点,若满足△PBC 是等腰三角形的点P 有且只有3个,则AB 的长为▲.
三、解答题(共8题,共54分)
19.(本题6分)如图,△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,4).
(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出B 1点的坐标;
(2)画出△ABC 绕原点O 旋转180°后得到的图形△A 2B 2C 2,并写出B 2点的坐标;
(3)在x 轴上求作一点P ,使△PAB 的周长最小,并直接写出点P 的坐标.
(第21题图) (第22题图)
20.(本题5分)已知y-3与4x-2成正比例,且当x=1时,y=5.
(1)求y 与x 的函数关系式;
(2)求当x=-2时的函数值.
21. (本题4分)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AE ⊥BD 于E ,
若BE :ED=1:3.求∠BAE 的度数;
22.(本题7分)如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点.点M 是AB 边上一动点(不与点A 重合),延长ME 交射线CD 于点N ,连接MD 、AN .
(1)求证:四边形AMDN 是平行四边形;
(2)填空:①当AM 的值为▲时,四边形AMDN 是矩形;
②当AM 的值为▲时,四边形AMDN 是菱形.
23 (本题8分)如图,直线y=﹣x+3与坐标轴分别交于点A ,B ,与直线y=x 交于点C ,线段OA 上的点Q 以每秒1个长度单位的速度从点O 出发向点A 作匀速运动,运动时间为t 秒,连结CQ .
(1)求出点C 的坐标;
(2)若CQ 平分△OAC 的面积,求直线CQ 对应的函数关系式.
(3)若△OQC 是等腰直角三角形,则t 的值为▲;
24.(本题8分)甲、乙两地之间有一条笔直的公路,小明从甲地出发沿公路步行前往乙地,同时小亮从乙地出发沿公路骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为1y 米,小亮与甲地的距离为2y 米,小明与小亮之间的距离为s 米,小明行走的时间为x 分钟.1y 、2y 与x 之间的函数图象如图1,s 与x 之间的函数图象(部分)如图2.
(1)求小亮从乙地到甲地过程中2y (米)与x (分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s (米)与x (分钟)之间的函数关系式;
(3)在图2中,补全整个过程中s (米)与x (分钟)之间的函数图象,并确定a 的值.
25. (本题8分)如图①,将ABCD 置于直角坐标系中,其中BC 边在x 轴上(B 在C 的左侧),点D 坐标为(0,4),直线MN :y=x ﹣6沿着x 轴的负方向以每秒1个单位的长度平移,设在平移过程中该直线被□ABC D 截得的线段长度为m ,平移时间为t (s ),m 与t 的函数图象如图②所示.
(1)填空:点C 的坐标为▲;在平移过程中,该直线先经过B 、D 中的哪一点?▲;(填“B”或“D”)
(2)点B 的坐标为▲,a=▲.
(3)求图②中线段EF 的函数关系式;
26.(本题8分)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.
(1)实验操作:
在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:
(2)观察发现:
任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数▲的图象上;平移2次后在函数▲的图象上…由此我们知道,平移n次后在函数▲的图象上.(请填写相应的解析式)
(3)探索运用:
点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.。