3 运动的守恒定律 1
- 格式:ppt
- 大小:2.44 MB
- 文档页数:22
物理学中的动量守恒定律1. 引言动量守恒定律是物理学中非常重要的基本原理之一,它描述了在没有外力作用的情况下,系统的总动量将保持不变。
这一原理在理论物理学和工程学等领域具有广泛的应用,对于深入理解自然界中的许多现象具有重要意义。
2. 动量守恒定律的定义与表述2.1 定义动量守恒定律指的是,在一个孤立系统中,如果没有外力作用,那么系统的总动量将保持不变。
动量是物体的质量与速度的乘积,是一个矢量量,有大小和方向。
2.2 表述动量守恒定律可以用数学公式来表述:[ = _{i=1}^{n} m_i v_i = ]其中,( m_i ) 表示系统中第 ( i ) 个物体的质量,( v_i ) 表示第 ( i ) 个物体的速度,( n ) 表示系统中的物体总数。
3. 动量守恒定律的适用条件动量守恒定律在实际应用中有一定的局限性,需要满足以下条件:3.1 孤立系统动量守恒定律适用于孤立系统,即在系统中没有物质和能量的交换。
孤立系统可以是一个封闭的容器,也可以是真空中的自由空间。
3.2 没有外力作用在动量守恒定律的适用范围内,系统内部的所有作用力相互抵消,没有外力作用于系统。
外力可以是其他物体的撞击、摩擦力等。
3.3 物体间的相互作用力在动量守恒定律的适用范围内,系统内部物体之间的相互作用力在作用时间内具有相同的作用时间和大小。
这意味着在碰撞过程中,物体之间的相互作用力是恒定的。
4. 动量守恒定律的应用动量守恒定律在物理学和工程学中有广泛的应用,下面列举几个典型的应用场景:4.1 碰撞问题在碰撞问题中,动量守恒定律可以用来计算碰撞前后系统的总动量。
通过分析碰撞前后的动量变化,可以了解碰撞过程中物体速度、方向和能量的转化。
4.2 爆炸问题在爆炸问题中,动量守恒定律可以用来分析爆炸产生的冲击波和碎片运动。
通过计算爆炸前后系统的总动量,可以了解爆炸产生的能量和冲击波的传播速度。
4.3 宇宙物理学在宇宙物理学中,动量守恒定律可以用来研究星体碰撞、黑洞合并等极端现象。
动力学三大守恒定律【知识专栏】动力学三大守恒定律1. 引言及概述动力学三大守恒定律是物理学中非常重要的概念,它们为我们理解和描述物体运动提供了基础规律。
这三大守恒定律分别是动量守恒定律、角动量守恒定律和能量守恒定律。
本文将以从简到繁、由浅入深的方式来逐步探讨这三大守恒定律的背后原理和应用,以帮助读者更全面地理解这一主题。
2. 动量守恒定律2.1 动量的基本概念为了更好地理解动量守恒定律,首先需要了解动量的基本概念。
动量是物体运动的数量度,表示物体在运动过程中所具有的惯性。
动量的大小与物体的质量和速度相关,可以用数学公式 p = m * v 表示,其中 p 为动量,m 为物体的质量,v 为物体的速度。
2.2 动量守恒定律的表述根据动量守恒定律,一个封闭系统中物体的总动量在没有外力作用的情况下保持不变。
也就是说,如果一个物体的动量发生改变,那么系统中其他物体的动量总和将相应地发生改变,以保持系统的总动量守恒。
2.3 动量守恒定律的应用动量守恒定律在多个领域中都有应用,例如力学、流体力学和电磁学等。
在碰撞问题中,我们可以利用动量守恒定律来分析碰撞前后物体的速度和质量变化。
在交通事故中,通过应用动量守恒定律,我们可以了解事故发生时车辆的速度和冲击力对乘客的影响,并提出相应的安全建议。
3. 角动量守恒定律3.1 角动量的基本概念角动量是物体绕某一轴旋转时所具有的运动状态,它是描述物体旋转惯性的量度。
角动量的大小与物体的惯性和旋转速度相关,可以用数学公式L = I * ω 表示,其中 L 为角动量,I 为物体的转动惯量,ω 为物体的角速度。
3.2 角动量守恒定律的表述根据角动量守恒定律,一个封闭系统中物体的总角动量在没有外力矩作用的情况下保持不变。
即使系统中发生了旋转速度的改变,但系统的总角动量仍然保持恒定。
3.3 角动量守恒定律的应用角动量守恒定律在天体物理学、自然界中的旋转现象等领域中具有广泛的应用。
它被用来解释行星和卫星的自转、陀螺的稳定性以及漩涡旋转等自然现象。
第五章第4节牛顿第三运动定律
本节重点:
①相互作用力的定量关系,并分析实际问题。
本节难点:
①区分一对平衡力和一对相互作用力。
知识点:
1.牛顿第三运动定律
(1)内容:两个物体间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上。
理解:内容中的“总是”是强调对于任何物体,在任何情况下均成立。
①不管物体大小形状如何。
②不管物体的运动状态如何。
(2)数学表达式F=-F’,式中的负号表示作用力F与反作用力F’的方向相反。
(3)作用力与反作用力的特点
①作用在两个的物体上。
②具有同种性质。
③同时产生,同时消失。
④同一直线,方向相反。
2.一对平衡力和一对相互作用力。
动量守恒动量守恒,是最早发现的一条守恒定律,它渊源于十六、七世纪西欧的哲学思想,法国哲学家兼数学、物理学家笛卡儿,对这一定律的发现做出了重要贡献。
如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。
动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律,也可用牛顿第三定律和动量定理推导出来。
简介动量守恒定律,是最早发现的一条守恒定律,它渊源于十六、七世纪西欧的哲学思想,法国哲学家兼数学、物理学家笛卡儿,对这一定律的发现做出了重要贡献。
观察周围运动着的物体,我们看到它们中的大多数终归会停下来。
看来宇宙间运动的总量似乎在养活整个宇宙是不是也像一架机器那样,总有一天会停下来呢?但是,千百年对天体运动的观测,并没有发现宇宙运动有减少的现象,十六、七世纪的许多哲学家都认为,宇宙间运动的总量是不会减少的,只要我们能够找到一个合适的物理量来量度运动,就会看到运动的总量是守恒的,那么,这个合适的物理量到底是什么呢?法国的哲学家笛卡儿曾经提出,质量和速率的乘积是一个合适的物理量。
速率是个没有方向的标量,从第三节的第一个实验可以看出笛卡儿定义的物理量,在那个实验室是不守恒的,两个相互作用的物体,最初是静止的,速率都是零,因而这个物理量的总合也等于零;在相互作用后,两个物体都获得了一定的速率,这个物理量的总合不为零,比相互作用前增大了。
后来,牛顿把笛卡儿的定义略作修改,即不用质量和速率的乘积,而用质量和速度的乘积,这样就得到量度运动的一个合适的物理量,这个量牛顿叫做“运动量”,现在我们叫做动量,笛卡儿由于忽略了动量的矢量性而没有找到量度运动的合适的物理量,但他的工作给后来的人继续探索打下了很好的基础。
2023届高三物理一轮复习重点热点难点专题特训专题39 动量守恒定律(一)特训目标特训内容目标1 动量守恒的条件(1T—4T)目标2 弹性碰撞动碰静模型(5T—8T)目标3 弹性碰撞动碰动模型(9T—12T)目标4 完全非弹性碰撞模型(13T—16T)目标5 类碰撞问题(17T—20T)一、动量守恒的条件1.如图所示,小木块m与长木板M之间光滑,且小木块与长板质量不相等,M置于光滑水平面上,一轻质弹簧左端固定在M的左端,右端与m连接。
开始时m和M都静止,弹簧处于自然状态,现同时对m、M施加等大反向的水平恒力F1、F2,两物体开始运动后,对m、M、弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)()A.整个运动过程中,系统机械能不守恒,动量守恒B.整个运动过程中,系统机械能守恒,动量不守恒C.M、m分别向左、右运行过程当中,均一直做加速度逐渐减小的加速直线运动D.M、m分别向左、右运行过程当中,当弹簧弹力与F1、F2的大小相等时,系统动能最小【答案】A【详解】AB.整个运动过程中,系统所受合外力为零,动量守恒。
易知M和m在任意时刻所受合外力大小相等,但由于m≠M,所以二者任意时刻加速度大小不等,相同时间内位移不相等,所以F1和F2做功的代数和不为零,则系统机械能不守恒,故A正确,B错误;CD.M、m分别向左、右运行过程当中,当弹簧弹力小于F1、F2时,M和m做加速度逐渐减小的加速直线运动,当弹簧弹力增大至与F1、F2的大小相等时,系统动能最大,之后弹簧弹力开始大于F1、F2,M和m将做加速度逐渐增大的减速直线运动,直至速度减为零,故CD错误。
故选A。
2.如图所示,平板车放在光滑的水平面上,木块和轻弹簧放在光滑的平板车上,轻弹簧一端与固定在平板车上的挡板连接,整个装置处于静止状态,一颗子弹以一定的水平速度射入木块(时间极短)并留在木块中与木块一起向前滑行,与弹簧接触后压缩弹簧,不计挡板和弹簧的质量,从子弹刚好接触木块至弹簧压缩最短的过程中以下说法错误的是()A.整个过程,子弹、木块、小车及弹簧组成的系统动量守恒、机械能守恒B.子弹和木块一起压缩弹簧过程中,子弹、木块、小车及弹簧组成的系统动量守恒、机械能守恒C.整个过程,子弹、木块、小车及弹簧组成的系统所损失的机械能等于子弹与木块摩擦产生的热量D.其他条件不变时,小车的质量越大,弹簧的最大压缩量越大【答案】A【详解】A.整个过程,子弹、木块、小车及弹簧组成的系统所受合外力为零,则动量守恒,但系统内有阻力做负功,产生了摩擦热,所以机械能不守恒,故A错误;B.子弹和木块一起压缩弹簧过程中,子弹、木块、小车及弹簧组成的系统所受合外力为零,则动量守恒,且系统内除了弹力之外没有其他外力做功,则机械能守恒,故B正确;C.根据能量守恒定律可知整个过程,子弹、木块、小车及弹簧组成的系统所损失的机械能等于子弹与木块摩擦产生的热量,故C正确;D.由题意,设子弹和木块的总质量为m,小车的质量为M,子弹射入木块后子弹与木块整体的速度为v0,当弹簧最短时,子弹、木块和小车具有共同速度v,根据动量守恒定律有0()mv M m v=+①根据机械能守恒定律可得此时弹簧的弹性势能为22p 011()22E mv M m v =-+ ②联立①②解得20p 22mv E m M=+ ③由③式可知M 越大,E p越大,则弹簧的最大压缩量越大,故D 正确。
大学物理动量守恒一、动量守恒定律动量守恒定律是自然界中最重要、最普遍、最基本的规律之一。
它表述了一个基本物理规律,即在没有外力作用的情况下,物体的动量总保持不变。
动量守恒定律可以表述为:如果一个系统不受外力,或者所受外力的矢量和为零,那么这个系统的总动量保持不变。
动量是矢量,具有方向和大小两个分量。
在表述动量守恒定律时,必须同时考虑这两个分量。
二、动量守恒的条件动量守恒的条件是系统不受外力或者所受外力的矢量和为零。
这个条件可以理解为系统内部的相互作用力相互抵消,或者系统受到的外部作用力为零。
在这种情况下,系统内部的物体之间的相互作用不会改变系统的总动量。
三、动量守恒的应用动量守恒定律在物理学中有着广泛的应用,特别是在研究物体碰撞、衰变、爆炸等过程中,它可以提供重要的理论基础。
在这些过程中,物体的形状、大小和运动状态都会发生变化,但是动量守恒定律保证了系统总动量的不变。
四、动量守恒的意义动量守恒定律是物理学中最基本的规律之一,它反映了自然界的对称性和基本性质。
它不仅在理论上有着广泛的应用,而且在实践中也有着广泛的应用。
例如,在航天技术中,动量守恒定律被用来设计火箭的推进系统和飞行轨迹;在军事领域,动量守恒定律被用来设计导弹和枪炮的弹道和射击精度。
动量守恒定律是物理学中非常重要的规律之一,它反映了自然界的本质和基本性质。
它不仅在理论上有着广泛的应用,而且在实践中也有着广泛的应用。
高中物理动量守恒题型归类标题:高中物理动量守恒题型归类在物理学的海洋中,动量守恒是一个非常重要的概念。
它表述的是,在一个封闭系统中,如果只考虑相互作用的力,那么系统的总动量将保持不变。
这一原理广泛应用于各种物理场景,从天体运动到分子碰撞,从电磁学到量子力学。
在这篇文章中,我们将重点探讨高中物理中的动量守恒题型及其解法。
一、单一物体的动量守恒单一物体的动量守恒通常指的是一个物体在受到外力作用后,其动量保持不变。
例如,一个在光滑水平面上滑行的物体,当它撞上另一个物体时,两个物体的总动量将保持不变。
经典力学中的三大守恒定律
经典力学中的三大守恒定律包括:
1. 能量守恒定律:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而总的能量保持不变。
2. 动量守恒定律:动量守恒定律是物理学中的基本定律之一,它规定如果一个封闭系统的总动量在任何时间都是恒定的,则该系统中的物体不会相互施加净力。
3. 角动量守恒定律:角动量守恒定律是物理学中的基本定律之一,它规定如果一个封闭系统的总角动量在任何时间都是恒定的,则该系统中的物体不会相互施加净力矩。
这三个守恒定律在力学中非常重要,描述了物体在力的作用下的运动规律和能量转化过程,被广泛应用于解决各种问题和现象的分析和预测。
第3节动量守恒定律一、动量守恒的条件1.如图所示,木块a和b用一根轻弹簧连接起来,放在光滑的水平面上,a紧靠在墙壁上,在b上施加向左的水平力使弹簧压缩。
当撤去外力后,下列说法中不正确的是()A.a尚未离开墙壁前,a和b组成的系统的动量守恒B.a尚未离开墙壁前,a和b组成的系统的动量不守恒C.a离开墙壁后,a和b组成的系统动量守恒D.a离开墙壁后,a和b组成的系统动量不守恒2.如图所示,一轻质弹簧,上端悬挂于天花板,下端系一质量为M的平板,静止在O点,一质量为m的均匀环套在弹簧外,与平板的距离为h,如图所示,让环自由下落,撞击平板.已知碰后环与板以相同的速度向下运动,使弹簧伸长,则下列说法正确的是()A.若碰撞时间极短,则碰撞过程中环与板的总机械能守恒B.若碰撞时间极短,则碰撞过程中环与板的总动量守恒C .环撞击板后,板的新的平衡位置在O 点正下方D .碰撞后新平衡位置与下落高度h 无关3.如图所示,质量为m 、带有四分之一光滑圆弧槽的小车停放在光滑水平面上,一质量为m 的小球以水平速度0v 从底端滑上小车,到达某一高度后,小球又返回底端。
下列说法正确的是( )A .小车一直向左运动B .小球到达最高点时速度为零C .小球和小车组成的系统机械能守恒D .小球和小车组成的系统动量守恒二、动量守恒定律的应用4.如图所示,质量为M 的小车置于光滑的水平面上,车的上表面粗糙,有一质量为m 的木块以初速度0v 水平地滑至车的上表面,若车足够长,则( )A .木块的最终速度为0M v M mB .由于车上表面粗糙,小车和木块所组成的系统动量不守恒C .车上表面越粗糙,木块减少的动量越多D .改变车上表面的粗糙程度,小车获得的动量不变5.如图所示,光滑水平面上甲、乙两球间粘少许炸药,一起以速度0.5m/s 向右做匀速直线运动。
已知甲、乙两球质量分别0.1kg 和0.2kg 。
某时刻炸药突然爆炸,分开后两球仍沿原直线运动,从爆炸开始计时经过3.0s ,两球之间的距离为x =2.7m ,则下列说法正确的是( )A .刚分离时,甲、乙两球的速度方向相同B .刚分离时,甲球的速度大小为0.6m/sC .刚分离时,乙球的速度大小为0.3m/sD .爆炸过程中释放的能量为0.027J6.在光滑的水平轨道上放置一门质量为m 1的旧式炮车(不包含炮弹质量),炮弹的质量为m 2,当炮车沿与水平方向成θ角发射炮弹时,炮弹相对炮口的速度为v 0,则炮车后退的速度为( )A .201cos m v m θ B .102cos m v m θ C .2012cos +m v m m θ D .1012cos +m v m m θ7.如图所示,所有接触面均光滑,质量为M 的半圆弧槽静止地靠在竖直墙面处,A 、B 是槽的两个端点,C 为槽的底部中点。