2.1 不等关系
- 格式:ppt
- 大小:2.57 MB
- 文档页数:31
北师大版数学八年级下册2.1《不等关系》教案一. 教材分析《不等关系》是北师大版数学八年级下册第2.1节的内容,主要介绍不等式的概念和基本性质。
这一节内容是学生学习不等式的重要基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析学生在学习这一节内容前,已经学习了有理数、方程等基础知识,对于数学符号和运算有一定的了解。
但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.了解不等式的概念和基本性质。
2.学会用不等式表示实际问题中的不等关系。
3.培养学生的逻辑思维和解决问题的能力。
四. 教学重难点1.不等式的概念和基本性质。
2.如何用不等式表示实际问题中的不等关系。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生通过观察、思考、讨论和操作,自主探索不等式的概念和性质,提高学生的参与度和实践能力。
六. 教学准备1.PPT课件2.教学案例和练习题3.小组讨论材料七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题中的不等关系,如身高、体重、温度等,引导学生思考如何用数学符号表示这些不等关系。
2.呈现(10分钟)介绍不等式的概念和基本性质,通过示例和讲解,让学生理解不等式的含义和运用。
3.操练(10分钟)让学生分组讨论,选取一些实际问题,尝试用不等式表示不等关系,并互相交流分享。
4.巩固(10分钟)针对每组的问题,选取几个进行讲解和分析,引导学生正确理解和运用不等式。
5.拓展(10分钟)让学生尝试解决一些不等式相关的应用题,提高学生解决实际问题的能力。
6.小结(5分钟)对本节课的内容进行总结,强调不等式的概念和性质,提醒学生注意运用时的细节。
7.家庭作业(5分钟)布置一些有关不等式的练习题,让学生巩固所学知识,提高解题能力。
8.板书(课后整理)总结本节课的主要内容和知识点,方便学生复习和回顾。
教学过程每个环节所用的时间如上所示,供您参考。
2.1 不等关系1.了解不等式的概念;2.会用不等式表示简单问题的数量关系.(重点,难点)一、情境导入有一群猴子,一天结伴去摘桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每只猴子分5个,那么最后一只猴子分得的桃子不够5个.你知道有几只猴子,几个桃子吗?二、合作探究探究点一:不等式的概念下列各式中:①-3<0;②4x +3y >0;③x =3;④x 2+xy +y 2;⑤x ≠5;⑥x +2>y +3.不等式的个数有( )A .5个B .4个C .3个D .1个解析:③是等式;④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共4个.故选B.方法总结:本题考查不等式的判别,一般用不等号表示不等关系的式子是不等式.解答此类题的关键是要识别常见不等号:>,<,≤,≥,≠.如果式子中没有这些不等号,就不是不等式.探究点二:列不等式【类型一】 用不等式表示数量关系根据下列数量关系,列出不等式: (1)x 与2的和是负数;(2)m 与1的相反数的和是非负数; (3)a 与-2的差不大于它的3倍;(4)a ,b 两数的平方和不小于他们的积的两倍.解析:(1)负数即小于0;(2)非负数即大于或等于0;(3)不大于就是小于或等于;(4)不小于就是大于或等于.解:(1)x +2<0; (2)m -1≥0;(3)a +2≤3a ; (4)a 2+b 2≥2ab . 方法总结:在列不等式时要善于将文字与相应的数学符号相对应,如负数――→对应<0等,列出相应的不等式.【类型二】 实际问题中的不等式亮亮准备用自己节省的零花钱买一台学生平板电脑.他现在已存有55元,计划从现在起以后每个月节省20元.若此学生平板电脑至少需要350元,则可以用于计算所需要的月数x 的不等式是( )A .20x -55≥350B .20x +55≥350C .20x -55≤350D .20x +55≤350 解析:此题中的不等关系:现在已存有55元,计划从现在起以后每个月节省20元.若此学生平板电脑至少需要350元.列出不等式20x +55≥350.故选B.方法总结:用不等式表示数量关系时,要找准题中表示不等关系的两个量,并用代数式表示;正确理解题中的关键词,如负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过、至少、至多等的含义.三、板书设计 1.不等式的概念 2.列不等式(1)找准题目中不等关系的两个量,并且用代数式表示;(2)正确理解题目中的关键词语的确切含义;(3)用与题意符合的不等号将表示不等关系的两个量的代数式连接起来;(4)要正确理解常见不等式基本语言的含义.本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过,这些关键词中如果含有“不”“非”等文字,一般应包括“=”,这也是学生容易出错的地方.。
2.1 不等关系1.了解不等式的概念;2.会用不等式表示简单问题的数量关系.(重点,难点)一、情境导入有一群猴子,一天结伴去摘桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每只猴子分5个,那么最后一只猴子分得的桃子不够5个.你知道有几只猴子,几个桃子吗?二、合作探究探究点一:不等式的概念下列各式中:①-3<0;②4x +3y >0;③x =3;④x 2+xy +y 2;⑤x ≠5;⑥x +2>y +3.不等式的个数有( )A .5个B .4个C .3个D .1个解析:③是等式;④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共4个.故选B.方法总结:本题考查不等式的判别,一般用不等号表示不等关系的式子是不等式.解答此类题的关键是要识别常见不等号:>,<,≤,≥,≠.如果式子中没有这些不等号,就不是不等式. 探究点二:列不等式【类型一】 用不等式表示数量关系根据下列数量关系,列出不等式: (1)x 与2的和是负数;(2)m 与1的相反数的和是非负数;(3)a 与-2的差不大于它的3倍; (4)a ,b 两数的平方和不小于他们的积的两倍.解析:(1)负数即小于0;(2)非负数即大于或等于0;(3)不大于就是小于或等于;(4)不小于就是大于或等于.解:(1)x +2<0; (2)m -1≥0; (3)a +2≤3a ; (4)a 2+b 2≥2ab .方法总结:在列不等式时要善于将文字与相应的数学符号相对应,如负数――→对应<0等,列出相应的不等式.【类型二】 实际问题中的不等式亮亮准备用自己节省的零花钱买一台学生平板电脑.他现在已存有55元,计划从现在起以后每个月节省20元.若此学生平板电脑至少需要350元,则可以用于计算所需要的月数x 的不等式是( )A .20x -55≥350B .20x +55≥350C .20x -55≤350D .20x +55≤350解析:此题中的不等关系:现在已存有55元,计划从现在起以后每个月节省20元.若此学生平板电脑至少需要350元.列出不等式20x+55≥350.故选B.方法总结:用不等式表示数量关系时,要找准题中表示不等关系的两个量,并用代数式表示;正确理解题中的关键词,如负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过、至少、至多等的含义.三、板书设计1.不等式的概念2.列不等式(1)找准题目中不等关系的两个量,并且用代数式表示;(2)正确理解题目中的关键词语的确切含义;(3)用与题意符合的不等号将表示不等关系的两个量的代数式连接起来;(4)要正确理解常见不等式基本语言的含义.本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过,这些关键词中如果含有“不”“非”等文字,一般应包括“=”,这也是学生容易出错的地方.。
北师大版八年级下册数学《2.1 不等关系》教案一. 教材分析北师大版八年级下册数学《2.1 不等关系》这一节主要介绍不等式的概念和基本性质。
通过这一节的学习,使学生了解不等式的定义,理解不等式中的基本概念如解、解集等,掌握不等式的基本性质,为后续的不等式计算和应用打下基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数、方程等基础知识,具备一定的逻辑思维能力和运算能力。
但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
三. 教学目标1.了解不等式的定义,理解不等式中的基本概念。
2.掌握不等式的基本性质,能运用不等式解决实际问题。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.不等式的定义和基本性质。
2.如何运用不等式解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实例和练习引导学生理解和掌握不等式的概念和性质,培养学生运用不等式解决实际问题的能力。
六. 教学准备1.准备相关的实例和练习题。
2.准备课件和教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的概念,如“小明比小红高,请问小明和小红的身高关系是什么?”引导学生思考和表达不等式。
2.呈现(10分钟)呈现不等式的定义和基本性质,通过课件和讲解使学生理解和掌握。
同时,给出相关的实例和练习题,让学生巩固所学知识。
3.操练(10分钟)让学生分组进行练习,解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)通过一些选择题和填空题,检验学生对不等式的理解和掌握程度。
5.拓展(5分钟)引导学生思考和探讨不等式在实际生活中的应用,如比较物品的价格、判断比赛的名次等。
6.小结(5分钟)对本节课的主要内容进行总结,强调不等式的定义和基本性质。
7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。
8.板书(5分钟)总结本节课的主要知识点,方便学生复习和记忆。
2024北师大版数学八年级下册2.1《不等关系》教学设计一. 教材分析《不等关系》是北师大版数学八年级下册第2.1节的内容,主要介绍不等式的概念和性质,以及不等关系的基本形式。
本节内容是在学生已经掌握了实数、函数等基础知识的基础上进行讲解的,为后续的不等式运算和不等式组的学习打下基础。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于实数和函数等基础知识有一定的掌握。
但是,对于不等式的概念和性质的理解还需要通过具体的例子和练习来进行巩固。
此外,学生对于实际问题中的不等关系还需要进一步的引导和培养。
三. 教学目标1.了解不等式的概念和性质,掌握不等关系的基本形式。
2.能够运用不等关系解决实际问题,提高解决实际问题的能力。
3.培养学生的逻辑思维能力和抽象思维能力,提高学生的数学素养。
四. 教学重难点1.不等式的概念和性质的理解。
2.不等关系在实际问题中的应用。
五. 教学方法采用问题驱动法和案例教学法,通过具体的例子和练习来引导学生理解和掌握不等式的概念和性质,以及如何运用不等关系解决实际问题。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备课件和教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等关系的概念,例如:小明比小红高,如何用数学表达式来表示这个关系?2.呈现(15分钟)通过具体的例子和练习,引导学生理解和掌握不等式的概念和性质。
例如,给出两个实数a和b,如何判断a是否大于b?如何表示a大于b?3.操练(15分钟)让学生通过练习来巩固对不等式的理解和掌握。
例如,给出一些不等式,让学生判断其真假,并解释原因。
4.巩固(10分钟)通过一些综合性的练习题,让学生应用不等关系来解决实际问题。
例如,给出一个实际问题,让学生用不等式来表示问题的条件,并求解。
5.拓展(10分钟)引导学生思考不等关系在实际问题中的应用,如何运用不等关系来解决实际问题。
例如,给出一个实际问题,让学生用不等式来表示问题的条件,并求解。
不等关系知识点1. 一般地,用不等号【“<”(或“≤”), “>”(或“≥”)】连接的式子叫做不等式.2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系.3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0例题讲解例1、判断下列各式哪些是等式、哪些是不等式、哪些既不是等式也不是不等式.① x+y ② 3x>7 ③ 5=2x+3 ④x2≥0 ⑤ 2x-3y=1 ⑥ 52例2、用适当符号表示下列关系.(1)a的7倍与15的和比b的3倍大;(2)a是非正数;(3)篮球的体积比排球大.例3、燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域.已知导火线的燃烧速度为0.02 m/s,人离开的速度为4 m/s,导火线的长x(m)应满足怎样的关系式?请你列出.课堂练习一、选择题1、如图所示,对a,b,c三种物体的重量判断不正确的是()A、a<cB、a<bC、a>cD、b<c2、如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A、a>b>-b>-aB、a>-a>b>-bC、b>a>-b>-aD、-a>b>-b>a3、已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A 、ab >0B 、a b >C 、a -b >0D 、a +b >01-10a b4、若a <b <0,则下列式子:①a +1<b +2;②1a b >;③a +b <ab ;④11a b<中,正确的有( ) A 、1个 B 、2个C 、3个D 、4个二、填空题7、有下列数学表达:①30<;②450x +>;③3x =;④2x x +;⑤4x ≠-; ⑥21x x +>+.其中是不等式的有________个.8、学校食堂出售两种厚度一样但大小不同的面饼,小饼直径30cm,售价0.3元;大饼直径40cm ,售价0.4元.你更愿意买 饼,原因是 .9、小强在一次检测中,语文与英语平均分数是76分,但语文、英语、数学三科的平均分不低于80分,则数学分数x 应满足的关系为 .10、有如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a ,b 的不等式表示为 .图1 图2 11、如图是测量一颗玻璃球体积的过程:(1)将300ml 的水倒进一个容量为500ml 的杯子中; (2)将四颗相同的玻璃球放入水中,结果水没有满; (3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在________ cm 3以上,_________cm 3以下12、一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成任务,请列出以后几天平均每天至少要完成的土方数x 应满足的不等式为___________________________.三、解答题 13、用不等式表示:(1)x 与-3的和是负数; (2)x 与5的和的28%不大于-6;(3)m 除以4的商加上3至多为5; (4)a 与b 两数和的平方不小于3;(5)三角形的两边a 、b 的和大于第三边c.14、班级50名学生上体育课,老师出了一道题目:现在我拿来一些篮球,如果每5人一组玩一个篮球,有些同学没有球玩;如果每6人一组玩一个篮球,就会有一组玩篮球的人数不足6个.你们知道有几个篮球吗?甲同学说:如果有x 个篮球,550x <.乙同学说:650x >. 你明白他们的意思吗?15、比较下面每小题中两个算式结果的大小(在横线上填“>”、“<”或“=”).⑴ 32+422×3×4; ⑵ 22+222×2×2; ⑶ 12+243⎪⎭⎫⎝⎛ 2×1×43;⑷ (-2) 2+522×(-2)×5; ⑸ 223221⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛ 32212⨯⨯.16、有5支排球劲旅A 队、B 队、C 队、D 队、E 队,参加排球锦标赛,成绩如下:D 队的名次比C 队低,A 队比B 队高,但低于E 队;E 队比C 低,B 队比D 队高,请问:这5支球队各是第几名。