河北省石家庄市赵县2017届九年级数学上学期第一次月考试题
- 格式:doc
- 大小:3.07 MB
- 文档页数:8
2017九年级上册数学第一次月考测试卷出差订酒店就用趣出差,单单有返现,关注微信小程序或下载APP立即领取100元返现红包九年级上册数学第一次月考测试与学生的学习是息息相关的。
下面是我为大家带来的关于2017九年级上册数学第一次月考的测试卷,希望会给大家带来帮助。
一、选择题每小题3分,共36分1.下列函数:中,是关于的反比例函数的有个A. 1个B.2个C. 3个D.4个2. 同时抛掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是A.点数之和为12.B.点数之和小于3.C.点数之和大于4且小于8.D.点数之和为13.3. 已知反比例函数y= 的象在每一个象限内,y随x增大而减小,则 .A.m≥5B.m5 D.m≤54. 从2,3,4,5中任意选两个数,记作和,那么点,在函数象上的概率是5.下列四个三角形,与左中的三角形相似的是6.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=A.7B.7.5C.8D.8.57.已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是A.ABAD=ACAEB.ABAD=BCDEC.∠B=∠DD.∠C=∠AED8. 将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为9. 二次函数y=kx - 6x + 3的像与X轴有交点,则K的取值范围是A.K﹤3B.K﹤3且K≠0C.K≤3D.K≤3且K≠010. 在函数中,自变量的取值范围是11. 已知反比例函数的象如右所示,则二次函数的象大致为12. ,在矩形ABCD中,AB=10 , BC=5 . 若点M、N分别是线段AC、AB上的两个动点,则BM+MN的最小值为A. 10B. 8C.D. 6二、填空题每小题3分,共18分13.在一个袋中,装有五个除数字外其它完全相同的小球,球面上分别写有1,2,3,4, 5这5个数字. 小芳从袋中任意摸出一个小球,球面数字的算术平方根是无理数的概率是.14. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数 100 400 800 1 000 2 000 5 000发芽种子粒数 85 398 652 793 1 604 4 005发芽频率 0.850 0.745] 0.851 0.793 0.802 0.801根据以上数据可以估计,该玉米种子发芽的概率约为精确到0.1.15. 在函数 a为常数的像上三点—1 ,,,则函数值、、的大小关系是__________________.16. 反比例函数y= x<0的象经过点P ,则k的值为______.17.△ABC∽△DEF,且相似比是3:4,△ABC的面积是18cm2,则△DEF的面积为___________cm2.18. 在△ABC中,AB=6,AC=4,P是AC的中点,过P点的直线交AB于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为__________.三、解答题19-25题每题8分,26题10分共66分19.本小题8分在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别.1随机地从箱子里取出1个球,则取出红球的概率是多少?2随机地从箱子里取出1个球,放回搅匀再取第二个球,请你用画树状或列表的方法表示所有等可能的结果,并求两次取出相同颜色球的概率.20. 本小题8分一次函数的象与x轴、y轴分别相交于A、B两点,且与反比例函数y= k≠0的象在第一象限交于点C,如果点B的坐标为0,2,OA=OB,B 是线段AC的中点.1求一次函数解析式及反比例函数的解析式;2若一次函数值大于反比例函数值,请求出相应的自变量的取值范围.21.本小题8分为了解中考体育科目训练情况,长沙市从全市九年级学生中随机抽取了部分学生进行了一次中考体育科目测试把测试结果分为四个等级:A 级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如下两幅不完整的统计.请根据统计中的信息解答下列问题:1本次抽样测试的学生人数是;21中∠α的度数是,并把2条形统计补充完整;3若全市九年级有学生35000名,如果全部参加这次中考体育科目测试,请估计不及格的人数为.4测试老师想从4位同学分别记为E、F、G、H,其中E为小明中随机选择两位同学了解平时训练情况,请用列表或画树形的方法求出选中小明的概率.22. 本小题8分某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度微克/毫升与服药时间小时之间的函数关系所示当时,与成反比1请根据象求出与之间的函数关系式;2问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?23.△ABC是一块锐角三角形余料,边BC=180 mm,高AD=120 mm,要把它加工成矩形零件,使一边在BC上,其余两个顶点分别在边AB、AC上.1若这个矩形是正方形,那么边长是多少?2若这个矩形的长是宽的2倍,则边长是多少?24. 本小题8分⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.1求∠D的度数;2若 ,求线段的长.25. 本小题8分已知:△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点不与B,C点重合,∠ADE=45°.1求证:△ABD∽△DCE;2设BD=x,AE=y,求y关于x的函数关系式;3当△ADE是等腰三角形时,求AE的长.26. 本小题10分在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点不与C、B重合,反比例函数y= k>0的象经过点D且与边BA交于点E,连接DE.1连接OE,若△EOA的面积为2,则k= ;2连接CA,请问DE与CA是否平行?请说明理由;3是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A D B D B B B A D C D B二、填空题 13. 14.0.8 15. 16. -6 17. 32 18.3或三、解答题19. 解:1∵在一个不透明的箱子里,装有红、白、黑各一个球,它们除了颜色之外没有其他区别,∴随机地从箱子里取出1个球,则取出红球的概率是:;………………3分2画树状得:………………6分∵共有9种等可能的结果,两次取出相同颜色球的有3种情况,∴两次取出相同颜色球的概率为:= . ………………8分20.解:1∵OA=OB,点B的坐标为0,2,∴点A﹣2,0,点A、B在一次函数y=kx+bk≠0的象上,∴ ,解得k=1,b=2,∴一次函数的解析式为y=x+2.………………2分∵B是线段AC的中点,∴点C的坐标为2,4,又∵点C在反比例函数y= k≠0的象上,∴k=8∴反比例函数的解析式为y = .………………4分2 或………………8分21. 解:1本次抽样测试的学生人数是: =40人,………………1分2根据题意得:360°× =54°,答:1中∠α的度数是54°; (2)分C级的人数是:40﹣6﹣12﹣8=14人,:………………3分3根据题意得:35000× =7000人,答:不及格的人数为7000人. ………………4分4根据题意画树形如下:共有12种情况,选中小明的有6种,………………7分则P选中小明= = .………………8分22.解:1当时,;………………3分当时,………………6分2血液中药物浓度不低于4微克/毫升持续时间为6小时. (8)分23.解:1 72mm ………………4分2 mm, mm 或45mm,90mm. ………………8分24.解:1 ∠D=45°………………4分2 ………………8分25.解:1提示:除∠B=∠C外,可证∠ADB=∠DEC.………………3分2提示:由已知及△ABD∽△DCE可得从而y=AC-CE=x2- 其中.………………6分3当∠ADE为顶角时:提示:当△ADE是等腰三角形时,△ABD≌△DCE.可得当∠ADE为底角时:………………8分26.解:1连接OE,如,1,∵Rt△AOE的面积为2,∴k=2×2=4.………………3分2连接AC,1,设Dx,5,E3,,则BD=3﹣x,BE=5﹣,= ,∴ ∴DE∥AC.………………6分3假设存在点D满足条件.设Dx,5,E3,,则CD=x,BD=3﹣x,BE=5﹣,AE= .作EF⊥OC,垂足为F,2,易证△B′CD∽△EFB′,∴ ,即 = ,∴B′F= ,∴OB′=B′F+OF=B′F+AE= + = ,∴CB′=OC﹣OB′=5﹣,在Rt△B′CD中,CB′=5﹣,CD=x,B′D=BD=3﹣x,由勾股定理得,CB′2+CD2=B′D2,5﹣ 2+x2=3﹣x2,解这个方程得,x1=1.5舍去,x2=0.96,∴满足条件的点D存在,D的坐标为D0.96,5.………………10分11 11。
河北省石家庄市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·高新期末) 下列事件为必然事件的是()A . 打开电视,正在播放新闻B . 买一张电影票,座位号是奇数号C . 任意画一个三角形,其内角和是180°D . 掷一枚质地均匀的硬币,正面朝上2. (2分)(2020·河北模拟) 当-2≤x≤1时,二次函数y=-(x-m)2+m²+1有最大值4,则实数m的值为()A .B . 或-C . 2或-D . 2或- 或3. (2分) (2016九上·大石桥期中) 将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A . 4B . 6C . 8D . 104. (2分) (2019九上·黑山期中) 如图显示了用计算机模拟随机投掷一枚图钉的实验结果.随着试验次数的增加,“钉尖向上”的频率总在某个数字附近,显示出一定的稳定性,可以估计“钉尖向上”的概率是()A . 0.620B . 0.618C . 0.610D . 10005. (2分)在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+5x+b的图象可能是()A .B .C .D .6. (2分) (2020九上·陆丰月考) 若抛物线y=x2+2x+m-1与x轴仅有一个交点,则m的值为()A . -1B . 1C . 2D . 37. (2分) (2019九上·泰山期中) 已知二次函数,若自变量x分别取,,,且,则对应的函数值,,的大小关系正确的是()A .B .C .D .8. (2分)下列游戏对双方公平的是()A . 随意转动被等分成3个扇形,且分别均匀涂有红、黄、绿三种颜色的转盘,若指针指向绿色区域,则小明胜,否则小亮胜B . 从一个装有3个红球,2个黄球和2个黑球(这些球除颜色外完全相同)的袋中任意摸出一个球,若是红球,则小明胜,否则小亮胜C . 投掷一枚均匀的正方体形状的骰子,若偶数点朝上,则小明胜,若是奇数点朝上,则小亮胜D . 从分别标有数1,2,3,4,5的五张纸条中,任意抽取一张,若抽到的纸条所标的数字为偶数,则小明胜,若抽到的纸条所标的数字为奇数,则小亮胜9. (2分)(2018·龙岗模拟) 二次函数的图象如图,下列四个结论:;;关于x的一元二次方程没有实数根;为常数.其中正确结论的个数是 )A . 4个B . 3个C . 2个D . 1个10. (2分)(2016·济南) 如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2019九上·诸暨月考) 在一个不透明的盒子里装有除颜色外其余均相同的2个黄色兵乓球和若干个白色兵乓球,从盒子里随机摸出一个兵乓球,摸到黄色兵乓球的概率为,那么盒子内白色兵乓球的个数为________.12. (1分)若二次函数y=2x2的图象向左平移2个单位长度后,得到函数y=2(x+h)2的图象,则h=________ .13. (1分) (2020九上·乐至期末) 如图,假设可以在两个完全相同的正方形拼成的图案中随意取点,那么这个点取在阴影部分的概率是________.14. (1分)(2016·来宾) 已知函数y=﹣x2﹣2x,当________时,函数值y随x的增大而增大.15. (1分)(2020·永嘉模拟) 小林家的洗手台面上有一瓶洗手液(如图1),当手按住顶部A下压时(如图2),洗手液瞬间从喷口B流出,已知瓶子上部分的弧CE和弧FD的圆心分别为D,C,下部分的视图是矩形CGHD,GH=10cm,GC=8cm,点E到台面GH的距离为14cm,点B距台面GH的距离为16cm,且B,D,H三点共线.如果从喷口B流出的洗手液路线呈抛物线形,且该路线所在的抛物线经过C.E两点,接洗手液时,当手心O距DH的水平距离为2cm时,手心O距水平台面GH的高度为________cm.16. (1分)(2020·邗江模拟) 如图,平面直角坐标系中,点,,若抛物线与线段AB(包含A、B两点)有两个不同交点,则a的取值范围是________.三、解答题 (共8题;共104分)17. (5分)通过配方,确定抛物线y=﹣2x2+4x+6的开口方向、对称轴、顶点坐标,再描点画图.18. (15分) (2019九上·白云期中) 已知二次函数y=﹣x2+(m﹣2)x+3(m+1)与x轴交于AB两点(A在B左侧),与y轴正半轴交于点C .(1)当m≠﹣4时,说明这个二次函数的图象与x轴必有两个交点;(2)若OA•OB=6,求点C的坐标;(3)在(2)的条件下,在x轴下方的抛物线上找一点P ,使S△PAC的面积为15,求P点的坐标.19. (15分) (2019九上·余杭期中) 一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同.请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球.(2)搅匀后从中任意摸出2个球,2个都是白球.(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?20. (15分)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.21. (12分)(2017·永新模拟) 国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.泰州市环保局随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了________天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为________°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)22. (10分)某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长(2)请你判断谁的说法正确,为什么?23. (15分) (2019九上·新建期中) “互联网+”时代,网上购物备受消费者青睐,某网店专售一款休闲裤,其成本为每条40元,据市场调查发现每月的销售量与售价的关系如下表:售价(元)…50607080…销售量(条)…250200150100…(1)设每条裤子的售价为元(为正整数),每月的销售量为条.直接写出与的函数关系式(不要求写的取值范围);(2)若每月利润为4000元,且让消费者得到最大的实惠,则定价多少元?(3)设该网店每月获得的利润为元,当销售单价定价多少元时,每月获得的利润最大,最大利润是多少?24. (17分)(2017·石城模拟) 对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图像记作抛物线E,现有点A(2,0)和抛物线E上的点B(﹣1,n),请完成下列任务;(1)【尝试】①当t=2时,抛物线y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)的顶点坐标为________(2)②判断点A是否在抛物线E上;(3)③求n的值.(4)【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,坐标为________.(5)【应用】①二次函数y=﹣3x2+5x+2是二次函数y=x2﹣3x+3和一次函数y=﹣2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由;②以AB为边作矩形ABCD,使得其中一个顶点落在y轴上;若抛物线E经过A,B,C,D其中的三点,求出所有符合条件的t的值.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共104分)答案:17-1、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、答案:21-3、答案:21-4、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、答案:24-4、答案:24-5、考点:解析:。
河北省九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10个小题,每小题3分,共30分.) (共10题;共29分)1. (3分) (2016九上·夏津期中) 下列方程中,是关于x的一元二次方程的为()A . 2x2=0B . 4x2=3yC . x2+ =﹣1D . x2=(x﹣1)(x﹣2)2. (3分)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A .B .C .D .3. (3分) (2019八下·松北期末) 下列方程,是一元二次方程的是()① ,② ,③ ,④A . ①②B . ①②④C . ①③④D . ②④4. (3分) (2020九上·南宁期末) 下列各点在抛物线上的是()A .B .C .D .5. (3分) (2020九上·合浦期中) 方程x2=16的解是()A . 4B . ±4C . ﹣4D . 86. (3分)(2019·信阳模拟) 关于的一元二次方程没有实数根,则整数的最小值是()A . 0B . 1C . 2D . 37. (3分) (2019九上·潘集月考) 把抛物线先向上平移1个单位,再向左平移2个单位后,所得抛物线的解析式为()A .B .C .D .8. (3分) (2021八下·浦江期末) 用配方法解方程:2x2+4x﹣3=0,则配方结果正确的是()A . (x+1)2=B . (x﹣1)2=C . (x+1)2=D . (x﹣1)2=9. (2分) (2019八上·西林期中) 若直线y=kx-5和直线y=-2x+3平行,则k的值为()A . 2B . -2C .D .10. (3分) (2019九上·江津期中) 已知一元二次方程x2﹣6x+8=0的两个解恰好分别是等腰△ABC的底和腰,则△ABC的周长为()A . 10B . 10或8C . 9D . 8二、填空题(本大题共5个小题,每小题3分,共15分) (共5题;共15分)11. (3分)(2019·山西模拟) 已知是关于的二次函数,则m=.12. (3分) (2018九上·泗洪月考) 若a=3﹣,则a2﹣6a﹣3的值为.13. (3分) (2020九上·舒城期末) 请写出一个顶点在原点且开口向下的抛物线解析式.14. (3分)近年来某县加大了对教育经费的投入,2014年投入了2500万元,2016年投入了3500万元,假设该县投入教育经费的年平均增长率为x,根据题意可列方程为.15. (3分)二次函数y=x2-6x+n的部分图象如图所示,若关于x的一元二次方程x2-6x+n=0的一个解为x1=1,则另一个解x2=.三、解答题(本大题共8个小题,共75分.) (共8题;共68分)16. (10分) (2021九上·高邮期末)(1)解方程:(2)计算:17. (6分)(2013·湖州) 已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.18. (7分)如图,已知二次函数y= -x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.(1)求此二次函数关系式和点B的坐标;(2)在x轴的正半轴上是否存在点P,使得△PAB是以AB为底的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.19. (2分) (2019九上·临河期中) 如图,要设计一幅宽20cm ,长30cm的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1,如果要使彩条所占的面积是图案面积的,则竖彩条宽度为多少?20. (8分) (2012九上·吉安竞赛) 已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.21. (10.0分) (2020九上·南平期末) 抛物线的顶点为A,抛物线的顶点为B,其中m≠﹣2,抛物线与相交于点P.(1)当m=﹣3时,在所给的平面直角坐标系中画出C1 , C2的图象;(2)已知点C(﹣2,1),求证:点A,B,C三点共线;(3)设点P的纵坐标为q,求q的取值范围.22. (12分)(2017·郯城模拟) 我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元.(1)求W关于x的函数关系式,并写出自变量x的取值范围;(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,甲乙两团队联合购票比分别购票最多节约3400元,求a的值.23. (13.0分)(2019·安阳模拟) 已知,二次函数的图像与x轴的一个交点为O(0,0),点P (m,0)是x轴正半轴上的一个动点.(1)如图1,求二次函数的图像与x轴另一个交点的坐标;(2)如图2,过点P作x轴的垂线交直线与点C,交二次函数图像于点D,①当PD=2PC时,求m的值;如图3,已知A(3,-3)在二次函数图像上,连结AP,求的最小值;(3)如图4,在第(2)小题的基础上,作直线OD,作点C关于直线OD的对称点C’,当C’落在坐标轴上时,请直接写出m的值.参考答案一、选择题(本大题共10个小题,每小题3分,共30分.) (共10题;共29分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题(本大题共5个小题,每小题3分,共15分) (共5题;共15分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题(本大题共8个小题,共75分.) (共8题;共68分)答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
河北省九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列事件中,不可能事件是()A . 抛掷一枚骰子,出现4点向上B . 五边形的内角和为540°C . 实数的绝对值小于0D . 明天会下雨2. (2分) (2017八下·东台期中) 已知矩形的面积为10,那么它的长y与宽x之间的关系用图象大致可表示为()A .B .C .D .3. (2分) (2019九上·北流期中) 已知二次函数的图象如图,分析下列四个结论:① ② ③ ④ 其中正确的结论有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2018九上·安定期末) 某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()实验次数10020030050080010002000频率0.3650.3280.3300.3340.3360.3320.333A . 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B . 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C . 抛一个质地均匀的正六面体骰子,向上的面点数是5D . 抛一枚硬币,出现反面的概率5. (2分) (2020九上·凤凰期末) 已知二次函数y=ax2+bx+c的图象如图所示,则下列判断确的是()A . a<0,b>0,c>0B . a<0,b<0,c<0C . a<0,b<0,c>0D . a>0,b<0,c>06. (2分) (2018九上·思明期中) 二次函数y=(x﹣1)2+2图象的顶点坐标是()A . (2,﹣1)B . (2,1)C . (﹣1,2)D . (1,2)7. (2分)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A . 函数图象与y轴的交点坐标是(0,﹣3)B . 顶点坐标是(1,﹣3)C . 函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D . 当x<0时,y随x的增大而减小8. (2分)桌子上放着20颗糖果,小明和小军玩游戏,两人商定的游戏规则为:两人轮流拿糖果,每人每次至少要拿1颗,至多可以拿2颗,谁先拿到第10颗谁就获胜,获胜者可以把剩下的10颗糖果全部拿走,其结果是()A . 后拿者获胜B . 先拿者获胜C . 两者都可能胜D . 很难预料9. (2分)(2017·吴忠模拟) 二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A . 1B . 2C . 3D . 410. (2分)二次函数y=﹣(x﹣1)2+2的顶点坐标是()A . (1,﹣2)B . (1,2)C . (﹣1,2)D . (﹣1,﹣2)二、填空题 (共6题;共6分)11. (1分)(2019·岳阳) 分别写有数字、﹣1、0、π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是.12. (1分)若抛物线y1=a(x﹣h)2+k是抛物线y2=﹣2(x+1)2﹣2向上平移2个单位,再向右平移2个单位得到,则y1的函数关系式为.13. (1分) (2021八上·西安开学考) 用如图所示的的正方形网格纸板玩飞镖游戏,若每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等,则飞镖落在阴影区域的概率是 .14. (1分)二次函数y=x2﹣2x+3图象的顶点坐标为 .15. (1分)如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为米.16. (1分) (2020九上·柯桥期中) 如图,抛物线与直线交于,两点,将抛物线沿射线方向平移个单位.在整个平移过程中,抛物线与直线交于点,则点经过的路程为.三、解答题 (共8题;共91分)17. (5分) (2016九上·太原期末) 已知二次函数的图象经过点(1,1)与(2,3)两点.求这个二次函数的表达式及顶点坐标.18. (5分) (2020九上·万州月考) 已知函数,当时, .(1)根据给定的条件,可以确定出该函数的解析式为;(2)当时,,当时,;(3)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,写出该函数的一条性质;(4)要使直线与上述函数图象有4个交点,的取值范围是.19. (15分) (2020八上·让胡路期末) 在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2只,红球1只,黑球1只,它们除了颜色之外没有其它区别(1)从袋中随机地摸出1只球,摸出白球的概率(2)从袋中随机地摸出1只球,摸出黑球的概率(3)向袋中加几只黑球,可以使摸出红球的概率变为20. (10分)如图,抛物线y=a(x﹣1)2+4与x轴交于点A,B,与y轴交于点C,过点C作CD∥x轴交抛物线的对称轴于点D,连接BD,已知点A的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD的面积.21. (15分)(2021·玉州模拟) 随着科技的进步和网络资源的丰富,在线学习已经成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查(每人只选一类),并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2700人,请你估计该校对在线阅读最感兴趣的学生人数.22. (15分) (2016九上·博白期中) 如图,已知抛物线y=ax2+bx+c(a≠0)与x轴相交于点A(﹣2,0)和点B,与y轴相交于点C,顶点D(1,﹣)(1)求抛物线对应的函数关系式;(2)求四边形ACDB的面积;(3)若平移(1)中的抛物线,使平移后的抛物线与坐标轴仅有两个交点,请直接写出一个平移后的抛物线的关系式.23. (11分)(2021·咸宁模拟) 某水产经销商从批发市场以30元每千克的价格收购了1000千克的虾,了解到市场价在30元每千克的基础上一个月内会以每天0.5元每千克的价格上涨,经销商打算先在塘里放养几天后再出售(但不超过一个月).假设放养期间虾的个体质量保持不变,但每天有10千克的虾死去.死去的虾会在当天以20元每千克的价格售出.(1)若放养8天后出售,则活虾的市场价为每千克元.(2)若放养x天后将活虾一次性售出,总共获得的销售总额y元,求y与x的函数关系式;(3)若放养期间,每天会有各种其他的各种费用支出为a元,经销商在放养x天后全部售出,当时,经销商总获利的最大值为1800元,求a的值(总获利=日销售总额-收购成本-其他费用)24. (15分) (2020九上·呼兰期末) 如图,已知直线与轴交于点,与轴交于点,抛物线经过、两点并与轴的另一个交点为,且 .(1)求抛物线的解析式;(2)点为直线上方对称轴右侧抛物线上一点,当的面积为时,求点的坐标;(3)在(2)的条件下,连接,作轴于,连接、,点为线段上一点,点为线段上一点,满足,过点作交轴于点,连接,当时,求的长.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共91分)答案:17-1、考点:解析:答案:18-1、答案:18-2、答案:18-3、答案:18-4、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、考点:解析:。
冀教版九年级数学上册第一次月考考试卷(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .188.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________.2.分解因式:244m m++=___________.3.若式子x1x+有意义,则x的取值范围是_______.4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.先化简,再求值:2443(1)11m mmm m-+÷----,其中22m=-.3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.某商店经销一种学生用双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(个)与销售单价x(元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于42元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、C6、A7、C8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、()22m +3、x 1≥-且x 0≠4、425、360°.6、三、解答题(本大题共6小题,共72分)1、4x =2、22m m-+ 1. 3、(1)略;(2)S 平行四边形ABCD =244、(1)略;(2)AC 的长为5. 5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)w =﹣x 2+90x ﹣1800;(2)当x =45时,w 有最大值,最大值是225;(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.。
河北省石家庄市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·丹东) -5的绝对值等于()A . -5B . 5C .D .2. (2分) (2020八上·岑溪期末) 在平面直角坐标系中,点所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)已知a,b,c为△ABC的三边长,关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0有两个相等的实数根,则△ABC为()A . 等腰三角形B . 等边三角形C . 直角三角形D . 等腰直角三角形4. (2分) (2019九上·云阳期中) 用配方法解一元二次方程x2﹣4x﹣1=0,配方后得到的方程是()A . (x﹣2)2=1B . (x﹣2)2=4C . (x﹣2)2=5D . (x﹣2)2=35. (2分) (2017·石家庄模拟) 常数a,b,c在数轴上的位置如图所示,则关于x的一元二次方程ax2+bx+c=0根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 无实数根D . 无法确定6. (2分)如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=70°,则∠3等于()A . 20°B . 30°C . 40°D . 50°7. (2分)某型号手机原来销售单价是4000元,经过两次降价促销,现在的销售单价是2560元,若两次降价的百分率相同都是n,则可得方程()A . 4000(1﹣n)=2560B . 4000(1﹣2n)=2560C . 4000(1﹣n)2=2560D . 2560(1+n)2=40008. (2分)化简,其结果是()A .B .C .D . ±9. (2分)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A . a<0B . b<0C . c<0D . a+b+c>010. (2分)二次函数y=ax2+bx+c的图象如图所示,则下列各式一定成立的是()A .B .C .D .二、填空题 (共6题;共7分)11. (1分) (2017八上·鞍山期末) 函数y= 的自变量取值范围是________.12. (1分) (2020九上·天津月考) 二次函数向左、下各平移个单位,所得的函数解析式________.13. (1分) (2016九上·临河期中) 若是关于x的一元二次方程(m﹣1)x2+x+|m|﹣1=0有的一个根为0,则m的值是________14. (1分)(2020·长宁模拟) 抛物线y=2x2﹣1在y轴左侧的部分是________.(填“上升”或“下降”)15. (2分) (2016九上·高台期中) 两对角线分别是6cm和8cm的菱形面积是________ cm2 ,周长是________ cm.16. (1分)(2020·南通模拟) 抛物线y=x2+bx+c的对称轴为直线x=1,且经过点(﹣1,0).若关于x的一元二次方程x2+bx+c﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是________.三、解答题 (共8题;共72分)17. (10分) (2019七上·西宁期中) 计算(1)-12+(-18)-7-15(2)(3)(4)18. (10分)解方程(1)(3x﹣4)2﹣x2=0(2) 2x2﹣7x+2=0.19. (5分)先化简,再求值:,其中,a是方程+3x-5=0的根.20. (10分) (2019九上·包河期中) 抛物线的顶点为,它的形状与相同,但开口方向与之相反.(1)直接写出抛物线的解析式;(2)求抛物线与轴的交点坐标.21. (10分) (2019九上·邯郸开学考) 乙知关于x的方程 .(1)试说明无论k取何值时,方程总有两个不相等的实数很;(2)如果方程有一个根为 , 试求的值.22. (10分)如图,在四边形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=AC,△ADC的外接圆⊙O 交BC于点E,连接DE并延长交AB延长线于点F.(1)求证:CF=DB;(2)当AD=时,求AB的长.23. (2分) (2018九上·徐闻期中) 经市场调研发现:某品牌童装平均每天可售出20件,每件盈利40元.在每件降价幅度不超过18元的情况下,若每件童装降价1元,则每天可多售出2件,设降价x元.(1)降价x元后,每件童装盈利是________元,每天销售量是________件;(2)要想每天销售这种童装盈利1200元,那么每件童装应降价多少元?(3)每天能盈利1800元吗?如果能,每件童装应降价多少元?如果不能,请说明理由.24. (15分)如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式.(2)判断直线l与⊙E的位置关系,并说明理由.(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共7分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共72分)答案:17-1、答案:17-2、答案:17-3、答案:17-4、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:。
河北省石家庄市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·临洮期中) 下列方程,是一元二次方程的是()①3x2+x=20,②2x2-3xy+4=0,③x2- =4,④x2=0,⑤x2- +3=0A . ①②B . ①④⑤C . ①③④D . ①②④⑤2. (2分) (2016七上·微山期末) 如果多项式3a﹣2的值为2,那么多项式6a+2的值是()A . ﹣1B . 0C . 8D . 103. (2分) (2019九上·富顺月考) 如图,在△ABC中,∠ABC=90°,AB=4cm , BC=3cm ,动点P , Q 分别从点A , B同时开始移动(移动方向如图所示),点P的速度为 cm/s ,点Q的速度为1cm/s ,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为,则点P运动的时间是()A . 2sB . 3sC . 4sD . 5s4. (2分) (2018八上·重庆期中) 如图,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF 的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()A . 10°B . 20°C . 30°D . 40°5. (2分) (2020八下·汉阳期中) 如图,公路,互相垂直,公路的中点与点被湖隔开.测得的长为,则两点间的距离为()A .B .C .D .6. (2分)(2020·新昌模拟) 小华用一罐黑漆和一罐白漆来漆一些立方体积木,他打算把这些立方体的每一面漆成单一的黑色或白色,如图1和图2是两种不同的漆法,但图2可以经过翻折得到图3,所以图2和图3是相同的漆法.那么他能漆成互不相同的立方体的种数是()A . 10种B . 8种C . 9种D . 6种7. (2分) (2019九上·灌阳期中) 下列各组的四条线段是成比例线段的是()A .B .C .D .8. (2分) (2020八下·重庆期中) 某型号手机原来销售单价是4000元,经过两次降价促销,现在的销售单价是2560元,若两次降价的百分率相同,则平均每次降价()A . 10%B . 15%C . 20%D . 25%9. (2分) (2017八下·宁波期中) 若关于x的一元二次方程(k+2)x2+3x+k2-k-6=0必有一根为0,则k 的值是()A . 3 或-2B . -3或2C . 3D . -210. (2分)(2017·太和模拟) AD是△ABC的高,AC=2 ,AD=4,把△ADC沿着直线AD对折,点C落在点E的位置,如果△ABE是等腰三角形,那么线段BE的长度为()A . 2B . 2 或5C . 2D . 5二、填空题 (共6题;共6分)11. (1分) (2019九上·无锡月考) 若关于x的方程是一元二次方程,则m的值是________.12. (1分)如果一个三角形的三边均满足方程,则此三角形的面积是________。