圆与直线第二节
- 格式:ppt
- 大小:930.00 KB
- 文档页数:23
2.5.1直线与圆的位置关系(第二课时)(人教A 版普通高中教科书数学选择性必修第一册)一、教学目标1.掌握利用直线与圆位置关系解决实际问题的一般方法;2. 掌握用坐标法研究几何问题的基本思想及其解题过程;3.激发学生学习数学的兴趣,并体会数学的应用价值。
二、教学重难点1.利用直线与圆的位置关系解决实际问题的一般方法和思想;2.学生的数学抽象、数学转化能力与数学建模能力的培养。
三、教学过程(一)复习回顾1.直线与圆的位置关系的判断方法:直线Ax+By+C=0(A ,B 不同时为0)与圆(x-a )2+(y-b )2=r 2(r>0)的位置关系及判断:2. 直线与圆C 交于A ,B 两点,设弦心距为d ,圆的半径为r ,弦长为|AB|,则有:(|AB|2)2+d 2=r 2,即|AB|=2r2-d2. 3.过某点的圆的切线方程问题: (1)若点P(x0,y 0)在圆上,利用切线和圆心与点P 的连线垂直求解切线方程;(2)求过圆外一点P(x0,y0)的圆的切线,常利用几何方法求解,即:圆心到切线的距离等于半径,设切线方程,利用待定系数法求解。
易错提示:直线方程的点斜式无法表示斜率不存在的直线【设计意图】以提问的方式,帮助学生复习前面所学知识,同时ppt 动态演示复习内容,给学生以直观的感受和提醒,为本节课内容做好铺垫。
(二)问题引入新课台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 地正东40 km 处,则城市B 处于危险区的时间为多少?【设计意图】通过现实生活中的实例,让学生体会到数学源于生活并可以指导生活,感受数学的魅力(三)讲授新课例3.如图是某圆拱形桥一孔圆拱的示意图.圆拱跨度AB =20m,拱高OP =4m,建造时每间隔4m 需要用一根支柱支撑,求支柱A 2P 2的高度(精确到0.01m).问题1.如何建立适当的平面直角坐标系?(大家分组讨论,给出方案)(教师展示学生方案,引导学生回忆建立平面直角坐标系应该遵循的原则,选择最合适的坐标系。
第2节直线与圆的位置关系【选题明细表】一、选择题1.(2012年高考北京卷)如图所示,∠ACB=90°,CD⊥AB于点D,以BD 为直径的圆与BC交于点E,则( A )(A)CE·CB=AD·DB(B)CE·CB=AD·AB(C)AD·AB=CD2(D)CE·EB=CD2解析:根据CD是Rt△ABC的斜边AB上的高及CD是圆的切线求解.在Rt△ABC中,∵∠ACB=90°,CD⊥AB,∴CD2=AD·DB.又CD是圆的切线,故CD2=CE·CB.∴CE·CB=AD·DB.故选A.2.(2013北京市海淀区期末)如图所示,PC与圆O相切于点C,直线PO 交圆O于A,B两点,弦CD垂直AB于E,则下面结论中,错误的结论是( D )(A)△BEC∽△DEA (B)∠ACE=∠ACP(C)DE2=OE·EP (D)PC2=PA·AB解析:由切割线定理可知PC2=PA·PB,所以选项D错误,故选D.二、填空题3.圆内接平行四边形一定是.解析:由于圆内接四边形对角互补,而平行四边形的对角相等,故该平行四边形的内角为直角,即该平行四边形为矩形.答案:矩形4.如图所示,已知☉O的直径AB与弦AC的夹角为30°,过C点的切线与AB的延长线交于P,PC=5,则☉O的半径为.解析:连接OC,则OC⊥CP,∠POC=2∠CAO=60°,Rt△OCP中,PC=5,则OC===.答案:5.如图所示,四边形ABCD是☉O的内接四边形,延长BC到E,已知∠BCD∶∠ECD=3∶2,那么∠BOD等于.解析:由圆内接四边形的性质可知∠A=∠DCE,而∠BCD∶∠ECD=3∶2,故∠ECD=72°,即∠A=72°,故∠BOD=2∠A=144°.答案:144°6.(2013高新一中、交大附中、师大附中、西安中学(五校)高三第三次模拟)以Rt△ABC的直角边AB为直径的圆O交斜边AC于点E,点D 在BC上,且DE与圆O相切.若∠A=56°,则∠BDE= .解析:连接OE,因为∠A=56°,所以∠BOE=112°,又因为∠ABC=90°,DE与圆O相切,所以O、B、D、E四点共圆,所以∠BDE=180°-∠BOE=68°.答案:68°7.(2012年高考湖北卷)如图,点D在☉O的弦AB上移动,AB=4,连接OD,过点D作OD的垂线交☉O于点C,则CD的最大值为.解析:圆的半径一定,在Rt△ODC中解决问题.当D为AB中点时,OD⊥AB,OD最小,此时DC最大,所以DC最大值=AB=2.答案:28.(2012年高考陕西卷)如图所示,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF·DB= .解析:由相交弦定理可知ED2=AE·EB=1×5=5,又由射影定理,得DF·DB=ED2=5.答案:59.(2012宝鸡市高三质检)已知PA是☉O的切线,切点为A,PA=2 cm,AC 是☉O的直径,PC交☉O于点B,AB= cm,则△ABC的面积为cm2.解析:∵AC是☉O的直径,∴AB⊥PC,∴PB==1.∵PA是☉O的切线,∴PA2=PB·PC,∴PC=4,∴BC=3,∴S△ABC=AB·BC=(cm2).答案:10.(2013东阿一中调研)如图所示,AB是☉O的直径,P是AB延长线上的一点,过P作☉O的切线,切点为C,PC=2,若∠CAP=30°,则PB= .解析:连接OC,因为PC=2,∠CAP=30°,所以OC=2tan 30°=2,则AB=2OC=4,由切割线定理得PC2=PB·PA=PB·(PB+BA),解得PB=2.答案:211.(2013年高考天津卷)如图所示,△ABC为圆的内接三角形,BD为圆的弦,且BD∥AC.过点A作圆的切线与DB的延长线交于点E,AD与BC交于点F.若AB=AC,AE=6,BD=5,则线段CF的长为.解析:∵AE为圆的切线,∴由切割线定理,得AE2=EB·ED.又AE=6,BD=5,可解得EB=4.∵∠EAB为弦切角,且AB=AC,∴∠EAB=∠ACB=∠ABC.∴EA∥BC.又BD∥AC,∴四边形EBCA为平行四边形.∴BC=AE=6,AC=EB=4.由BD∥AC,得△ACF∽△DBF,∴==.又CF+BF=BC=6,∴CF=.答案:12.(2013年高考广东卷)如图,AB是圆O的直径,点C在圆O上,延长BC到D使BC=CD,过C作圆O的切线交AD于E.若AB=6,ED=2,则BC= .解析:连接OC,因CE是☉O的切线,所以OC⊥CE,即∠OCE=90°,又因AB是直径,所以∠ACB=∠ACD=90°,即∠OCA+∠ACE=∠ACE+∠ECD=90°,得∠OCA=∠DCE,又因OC=OA,所以∠OCA=∠OAC,则∠BAC=∠DCE,又因AC⊥BD,BC=CD,易证AB=AD,得∠ABC=∠ADC,即∠ABC=∠CDE,所以△ABC∽△CDE,所以=,即BC2=AB·ED=12,所以BC=2.答案:2三、解答题13.(2013山西省康杰中学高三第二次模拟)如图所示,AD平分∠BAC且其延长线交△ABC的外接圆于点E.(1)证明:△ABE∽△ADC;(2)若△ABC的面积S=AD·AE,求∠BAC的大小.(1)证明:由已知条件,可得∠BAE=∠CAD,因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB=∠ACD,故△ABE∽△ADC.(2)解:因为△ABE∽△ADC,所以=,即AB·AC=AD·AE,又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE,则sin∠BAC=1,又∠BAC为三角形内角,所以∠BAC=90°.14.(2013宁夏银川一中第一次月考)如图所示,已知PE切圆O于点E,割线PBA交圆O于A,B两点,∠APE的平分线和AE、BE分别交于点C,D.(1)求证:CE=DE;(2)求证:=.证明:(1)∵PE切圆O于E,∴∠PEB=∠A,又∵PC平分∠APE,∴∠CPE=∠CPA,∴∠PEB+∠CPE=∠A+∠CPA,∴∠CDE=∠DCE,即CE=DE.(2)因为PC平分∠APE,∴=,又PE切圆O于点E,割线PBA交圆O于A,B两点,∴PE2=PB·PA,即=,∴=.15.AF是圆O的直径,B,C是圆上两点,AB与AC的延长线分别交过点F的切线于点D,E.求证:(1)B,C,E,D四点共圆;(2)AB·AD=AC·AE.证明:(1)连接BF,∵AF是圆O的直径,DE与圆O切于点F,∴AF⊥DE.又点B在圆O上,∴∠ABF=90°,∠AFB=∠D.又∠AFB=∠ACB,∴∠ACB=∠D,而∠ACB是四边形BDEC的一个外角,∴B,C,E,D四点共圆.(2)由(1)知B,C,E,D四点共圆,∴AB·AD=AC·AE.16.(2014吉林省白山市第一中学高三8月摸底)如图所示,△ABC内接于☉O,AB=AC,直线MN切☉O于点C,弦BD∥MN,AC与BD相交于点E.(1)求证:△ABE≌△ACD;(2)若AB=6,BC=4,求AE长.(1)证明:∵BD∥MN,∴∠BDC=∠DCN,∵直线MN是圆的切线,∴∠DCN=∠CAD,又∠BAC=∠BDC,∴∠BAC=∠CAD,即∠BAE=∠CAD,在△ABE和△ACD中,AB=AC,∠ABE=∠ACD,∠BAE=∠CAD,∴△ABE≌△ACD.(2)解:∵∠EBC=∠BCM,∠BCM=∠BDC,∴∠EBC=∠BDC=∠BAC,∴BC=CD=4,又∠BEC=∠BAC+∠ABE=∠EBC+∠ABE=∠ABC =∠ACB,∴BC=BE=4,设AE=x,易证△ABE∽△DCE,∴==⇒DE=x.又AE·EC=BE·ED,EC=6-x,∴4·x=x(6-x),解得x=.。
人教版数学九年级上册第二十四章第二节直线和圆的位置关系说课稿《24.2.2直线和圆的位置关系》说课稿沽源县小厂中学宋丽娟各位评委、各位老师:大家好!今天我说课的内容是《直线和圆的位置关系》,这是人教版九年级第二十四章《圆》第二节的内容。
这节课分两个课时,我说的是第一课时。
我将从教材分析、教法学法分析、教学过程分析、教学评价分析这四个方面对本节课进行阐述。
一、教材分析(一)教材的地位和作用“直线和圆的位置关系”是在学习了点和圆的位置关系后学习的内容之一,直线和圆的位置关系及其性质是研究直线型与圆的有关性质的基础,是圆这一章的中心内容。
从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的性质和判定、圆和圆的位置关系的基础。
从数学思想方法的层面上看,它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质。
因此,直线和圆的位置关系在圆一章中起着承上启下的作用。
在直线和圆的位置关系中,相切关系是特殊的位置关系,被广泛地应用于工农业生产、交通运输等方面。
(二)学情分析九年级学生好奇心强,活泼好动、注意力易分散、爱发表见解,希望得到老师的表扬,对亲身体验的事物容易激发求知的渴望。
在教学中应抓住这一心理特征,一方面要创造条件和机会适时提问,让更多的学生敢于发表见解;另一方面要想方设法,引导学生深入思考、主动探究、主动获取新知识。
我根据教材的地位和作用,以及学生特点,制定了如下的教学目标。
(三)教学目标(1)知识目标:1、知道直线和圆相交、相切、相离的定义。
2、能根据定义来判断直线和圆的位置关系3、能根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。
(2)能力目标:体验数学活动中的探索与创造,培养学生的观察、归纳能力,以及分析问题,解决问题的能力。
(3)情感目标:1、体会事物间的相互渗透,初步掌握转化的思想;2、感受数学思维的严谨性,并在合作学习中获得成功的体验。
第2课时导入新课思路1.一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km处,受影响的范围是半径长为30 km的圆形区域.已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?图2分析:如图2,以台风中心为原点O,以东西方向为x轴,建立直角坐标系,其中,取10 km为单位长度.则台风影响的圆形区域所对应的圆心为O的圆的方程为x2+y2=9;轮船航线所在的直线l的方程为4x+7y-28=0.问题归结为圆心为O的圆与直线l有无公共点.因此我们继续研究直线与圆的位置关系.推进新课新知探究提出问题①过圆上一点可作几条切线?如何求出切线方程?②过圆外一点可作几条切线?如何求出切线方程?③过圆内一点可作几条切线?④你能概括出求圆切线方程的步骤是什么吗?⑤如何求直线与圆的交点?⑥如何求直线与圆的相交弦的长?讨论结果:①过圆上一点可作一条切线,过圆x2+y2=r2上一点(x0,y0)的切线方程是x0x+y0y=r2;过圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2.②过圆外一点可作两条切线,求出切线方程有代数法和几何法.代数法的关键是把直线与圆相切这个几何问题转化为联立它们的方程组只有一个解的代数问题.可通过一元二次方程有一个实根的充要条件——Δ=0去求出k的值,从而求出切线的方程.用几何方法去求解,要充分利用直线与圆相切的几何性质,圆心到切线的距离等于圆的半径(d=r),求出k的值.③过圆内一点不能作圆的切线.④求圆切线方程,一般有三种方法,一是设切点,利用①②中的切线公式法;二是设切线的斜率,用判别式法;三是设切线的斜率,用图形的几何性质来解,即圆心到切线的距离等于圆的半径(d=r),求出k的值.⑤把直线与圆的方程联立得方程组,方程组的解即是交点的坐标.⑥把直线与圆的方程联立得交点的坐标,结合两点的距离公式来求;再就是利用弦心距、弦长、半径之间的关系来求.应用示例思路1例1 过点P(-2,0)向圆x2+y2=1引切线,求切线的方程.图3解:如图3,方法一:设所求切线的斜率为k,则切线方程为y=k(x+2),因此由方程组⎪⎩⎪⎨⎧=++=,1),2(22y x x k y 得x 2+k 2(x+2)2=1. 上述一元二次方程有一个实根,Δ=16k 4-4(k 2+1)(4k 2-1)=12k 2-4=0,k=±33, 所以所求切线的方程为y=±33(x+2). 方法二:设所求切线的斜率为k,则切线方程为y=k(x+2),由于圆心到切线的距离等于圆的半径(d=r),所以d=21|2|k k +=1,解得k=±33. 所以所求切线的方程为y=±33(x+2). 方法三:利用过圆上一点的切线的结论.可假设切点为(x 0,y 0),此时可求得切线方程为x 0x+y 0y=1.然后利用点(-2,0)在切线上得到-2x 0=1,从中解得x 0=-21. 再由点(x 0,y 0)在圆上,所以满足x 02+y 02=1,既41+y 02=1,解出y 0=±23. 这样就可求得切线的方程为22102320+--±=+-x y , 整理得y=±33(x+2). 点评:过圆外一点向圆可作两条切线;可用三种方法求出切线方程,其中以几何法“d=r”比较好(简便).变式训练已知直线l 的斜率为k,且与圆x 2+y 2=r 2只有一个公共点,求直线l 的方程.活动:学生思考,观察题目的特点,见题想法,教师引导学生考虑问题的思路,必要时给予提示,直线与圆只有一个公共点,说明直线与圆相切.可利用圆的几何性质求解.图4解:如图4,方法一:设所求的直线方程为y=kx+b,由圆心到直线的距离等于圆的半径,得 d=21||k b +=r,∴b=±r 21k +,求得切线方程是y=kx±r 21k +.方法二:设所求的直线方程为y=kx+b,直线l 与圆x 2+y 2=r 2只有一个公共点,所以它们组成的方程组只有一组实数解,由⎪⎩⎪⎨⎧=++=222,ry x b kx y ,得x 2+k 2(x+b)2=1,即x 2(k 2+1)+2k 2bx+b 2=1,Δ=0得b=±r 21k +,求得切线方程是y=kx±r 21k +.例2 已知圆的方程为x 2+y 2+ax+2y+a 2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a 的取值范围.活动:学生讨论,教师指导,教师提问,学生回答,教师对学生解题中出现的问题及时处理,利用几何方法,点A(1,2)在圆外,即到圆心的距离大于圆的半径.解:将圆的方程配方得(x+2a )2+(y+1)2=4342a -,圆心C 的坐标为(-2a ,-1),半径r=4342a -, 条件是4-3a 2>0,过点A(1,2)所作圆的切线有两条,则点A 必在圆外,即22)12()21(+++a >4342a -. 化简,得a 2+a+9>0,由⎪⎩⎪⎨⎧>->++,034,0922a a a 解得-332<a <332,a ∈R . 所以-332<a <332. 故a 的取值范围是(-332,332).点评:过圆外一点可作圆的两条切线,反之经过一点可作圆的两条切线,则该点在圆外.同时注意圆的一般方程的条件.思路2例1 已知过点M(-3,-3)的直线l 被圆x 2+y 2+4y-21=0所截得的弦长为45,求直线l 的方程. 活动:学生思考或讨论,教师引导学生考虑问题的思路,求直线l 的方程,一般设点斜式,再求斜率.这里知道弦长,半径也知道,所以弦心距可求,如果设出直线的方程,由点到直线的距离等于弦心距求出斜率;另外也可利用弦长公式,结合一元二次方程根与系数的关系求解.解法一:将圆的方程写成标准形式有x 2+(y+2)2=25,所以圆心为(0,-2),半径为5.因为直线l 被圆x 2+y 2+4y-21=0所截得的弦长为45,所以弦心距为22)52(5-=5,圆心到直线的距离为5,由于直线过点M(-3,-3),所以可设直线l 的方程为y+3=k(x+3),即kx-y+3k-3=0. 根据点到直线的距离公式,圆心到直线的距离为5,因此d=1|332|2+-+k k =5,两边平方整理得2k 2-3k-2=0,解得k=21,k=2. 所以所求的直线l 的方程为y+3=21(x+3)或y+3=2(x+3),即x+2y+9=0或2x-y+3=0. 解法二:设直线l 和已知圆x 2+y 2+4y-21=0的交点为A(x 1,y 1),B(x 2,y 2),直线l 的斜率为k,由于直线过点M(-3,-3),所以可设直线l 的方程为y+3=k(x+3),即y=kx+3k-3.代入圆的方程x 2+y 2+4y-21=0,并整理得(1+k 2)x 2+2k(3k-1)x+(3k-1)2-25=0.结合一元二次方程根与系数的关系有x 1+x 2=21)13(2k k k +--,x 1·x 2=22125)13(k k +--. ① |AB|==-+=-+-=-+-22122212221221221))(1()()()()(x x k x x k x x y y x x ]4))[(1(212212x x x x k •-++因为|AB|=45,所以有(1+k 2)[(x 1+x 2)2-4x 1·x 2]=80. ② 把①式代入②式,得(1+k 2){[21)13(2kk k +--]2-422125)13(k k +--}=80.经过整理,得2k 2-3k-2=0,解得k=21,k=2.所以所求的直线l 的方程为y+3=21(x+3)或y+3=2(x+3),即x+2y+9=0或2x-y+3=0.点评:解法一突出了适当地利用图形的几何性质有助于简化计算,强调图形在解题中的作用,加强了数形结合;解法二是利用直线被曲线截得的弦长公式求出斜率后求直线方程,思路简单但运算较繁.变式训练已知圆C :x 2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)设l 与圆C 交于不同两点A 、B,若|AB|=17,求l 的倾斜角;(3)求弦AB 的中点M 的轨迹方程;(4)若定点P(1,1)分弦AB 为PB AP =21,求此时直线l 的方程. 解:(1)判断圆心到直线的距离小于半径即可,或用直线系过定点P(1,1)求解;点P(1,1)在圆内.(2)利用弦心距、半径、弦构成的直角三角形求弦长,得m=±3,所以α=3π或32π. (3)设M 的坐标为(x,y),连结CM 、CP,因为C(0,1),P(1,1),|CM|2+|PM|2=|CP|2,所以x 2+(y-1)2+(x-1)2+(y-1)2=1,整理得轨迹方程为x 2+y 2-x-2y+1=0(x≠1).(4)设A(x 1,y 1),B(x 2,y 2),由PB AP =21,得21212++x x =1. ① 又由直线方程和圆的方程联立消去y,得(1+m 2)x 2-2m 2x+m 2-5=0, (*) 故x 1+x 2=2212m m +,② 由①②,得x 1=2213m m ++,代入(*),解得m=±1. 所以直线l 的方程为x-y=0或x+y-2=0.例2 已知直线l:y=k(x+22)与圆O:x 2+y 2=4相交于A 、B 两点,O 为坐标原点,△ABO 的面积为S,①试将S 表示成k 的函数S(k),并指出它的定义域;②求S 的最大值,并求出取得最大值时的k 值.活动:学生审题,再思考讨论,教师提示学生欲求△ABO 的面积,应先求出直线被圆截得的弦长|AB|,将|AB|表示成k 的函数.图5解:①如图5所示,直线的方程为kx-y+22k=0(k≠0),点O 到l 之间的距离为|OC|=1||222+k k ,弦长|AB|=22222221141842||||k k k k OC OA +-=+-=-, ∴△ABO 的面积S=21|AB|·|OC|=2221)1(24k k k +-•, ∵|AB|>0,∴-1<k <1(k≠0).∴S(k)=`2221)1(24k k k +-•(-1<k <1且k≠0).②△ABO 的面积S=21|OA|·|OB|sin ∠AOB=2sin ∠AOB, ∴当∠AOB=90°时,S max =2,此时|OC|=2,|OA|=2,即1||222+k k =2,∴k=±33. 点评:在涉及到直线被圆截得的弦长时,要巧妙利用圆的有关几何性质,如本题中的Rt △BOC,其中|OB|为圆半径,|BC|为弦长的一半.变式训练已知x,y 满足x 2+y 2-2x+4y=0,求x-2y 的最大值.活动:学生审题,再思考讨论,从表面上看,此问题是一个代数,可用代数方法来解决.但细想后会发现比较复杂,它需把二次降为一次.教师提示学生利用数形结合或判别式法.解法一:(几何解法):设x-2y=b,则点(x,y)既在直线x-2y=b 上,又在圆x 2+y 2-2x+4y=0上,即直线x-2y=b 和圆x 2+y 2-2x+4y=0有交点,故圆心(1,-2)到直线的距离小于或等于半径, 所以5|5|b -≤5.所以0≤b≤10,即b 的最大值是10.解法二:(代数解法):设x-2y=b,代入方程x 2+y 2-2x+4y=0,得(2y+b)2+y 2-2(2y+b)+4y=0,即5y 2+4by+b 2-2b=0.由于这个一元二次方程有解,所以其判别式Δ=16b 2-20(b 2-2b)=40b-4b 2≥0,即b 2-10b≤0,0≤b≤10.所以求出b 的最大值是10.点评:比较两个解法,我们可以看到,数形结合的方法难想但简单,代数法易想但较繁,要多练习以抓住规律.例3 已知圆C :(x -1)2+(y -2)2=25,直线l :(2m+1)x+(m+1)y -7m -4=0(m ∈R ).(1)证明不论m 取什么实数,直线l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最小时l 的方程.活动:学生先思考,然后讨论,教师引导学生考虑问题的方法,由于直线过定点,如果该定点在圆内,此题便可解得.最短的弦就是与过定点与此直径垂直的弦.解:(1)证明:因为l 的方程为(x+y -4)+m(2x+y -7)=0.因为m ∈R ,所以⎩⎨⎧=-+=-+.04,072y x y x ,解得⎩⎨⎧==,1,3y x 即l 恒过定点A(3,1).因为圆心C(1,2),|AC |=5<5(半径),所以点A 在圆C 内,从而直线l 恒与圆C 相交于两点.(2)弦长最小时,l ⊥AC,由k AC =-21,所以l 的方程为2x -y -5=0. 点评:证明直线与圆恒相交,一是可以将直线与圆的方程联立方程组,进而转化为一元二次方程,根据判别式与0的大小来判断,这是通性通法,但过程繁琐,计算量大;二是说明直线过圆内一点,由此直线与圆必相交.对于圆中过A 点的弦,以直径为最长,过A 点与此直径垂直的弦为最短.变式训练求圆x 2+y 2+4x-2y+4=0上的点到直线y=x-1的最近距离和最远距离.解:圆方程化为(x+2)2+(y-1)2=1,圆心(-2,1)到直线y=x-1的距离为d=22)1(1|112|-+---=22,所以所求的最近距离为22-1,最远距离为22+1.知能训练1.已知直线l:y=2x -2,圆C:x 2+y 2+2x +4y +1=0,请判断直线l 与圆C 的位置关系,若相交,则求直线l 被圆C 所截的线段长.活动:请大家独立思考,多想些办法.然后相互讨论,比较解法的不同之处.学生进行解答,教师巡视,掌握学生的一般解题情况.解法一:由方程组⎩⎨⎧=++++-=.0142,2222x x y x x y 解得⎩⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧-==,4,154,53y x y x 或 即直线l 与圆C 的交点坐标为(53,-54)和(-1,-4),则截得线段长为558. 解法二:由方程组(略)消去y,得5x 2+2x -3=0, 设直线与圆交点为A(x 1,y 1),B(x 2,y 2),则AB 中点为(-51,-512), 所以⎪⎪⎩⎪⎪⎨⎧-=•-=+,53,522111x x y x 得(x 1-x 2)2=2564, 则所截线段长为|AB|=(1+k 2)(x 1-x 2)2=558. 解法三:圆心C 为(-1,-2),半径r=2,设交点为A 、B,圆心C 到直线l 之距d=552,所以5542||22=-=d r AB .则所截线段长为|AB|=558. 点评:前者直接求交点坐标,再用两点距离公式求值;后者虽然也用两点距离公式,但借用韦达定理,避免求交点坐标.解法三利用直线与圆的位置关系,抓住圆心到直线之距d 及圆半径r 来求解.反映了抓住本质能很快接近答案的特点.显然,解法三比较简洁.2.已知直线x+2y-3=0交圆x 2+y 2+x-6y+F=0于点P 、Q,O 为原点,问F 为何值时,OP ⊥OQ? 解:由⎪⎩⎪⎨⎧=+-++=-+06,03222F y x y x y x 消去y,得5x 2+10x+4F-27=0,所以x 1x 2=5274-F ,x 1+x 2=-2. 所以y 1y 2=51249)(34)3)(3(212121F x x x x x x +=++-=--. 因为OP ⊥OQ,所以x 1x 2+y 1y 2=0,即5125274F F ++-=0.所以F=3. 点评:(1)解本题之前先要求学生指出解题思路.(2)体会垂直条件是怎样转化的,以及韦达定理的作用:处理x 1,x 2的对称式.在解析几何中经常运用韦达定理来简化计算.拓展提升已知点P 到两个定点M(-1,0)、N(1,0)距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程.解:设点P 的坐标为(x,y),由题设有||||PN PM =2,即22)1(y x ++=2·22)1(y x +-, 整理得x 2+y 2-6x+1=0. ① 因为点N 到PM 的距离为1,|MN|=2,所以∠PMN=30°,直线PM 的斜率为±33. 直线PM 的方程为y=±33(x+1). ② 将②代入①整理,得x 2-4x+1=0.解得x 1=2+3,x 2=2-3.代入②得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y=x -1或y=-x+1.课堂小结1.直线和圆位置关系的判定方法:代数法和几何法.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k 或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.注意弦长公式和圆的几何性质.4.求与圆有关的最值问题,往往利用数形结合,因此抽象出式子的几何意义是至关重要的. 作业课本习题4.2 A 组5、6、7.设计感想本节课是研究直线与圆的位置关系的第二课时,以学生进行自主探索学习为主线,沿用研究问题的科学方法,首先观察探索、寻找规律,最后严格推理求解,很好地体现新课程理念.在教学过程中,打破传统课堂模式,首先由问题引入,强调研究直线与圆的位置关系的重要意义,充分激发学生求知欲望,接着学生回顾刚学过的直线与圆的位置关系的有关知识,并设计两个思路的例题从不同的侧面探索研究,自主地进行学习.例题设置目的在于“以点带面,举一反三”.以直线与圆的位置关系来加深体会数与形的内在联系,比较求解所截线段长的方法,目的在于强化思维的灵活性,突出数形结合思想,在解决问题的过程中,使思路更加清晰、条理更清楚.这样有利于突出教学重点,突破教学难点.本节课除了设置两道巩固练习外,还精心编制多道为教学进一步延伸的问题,给学生课后继续进行自主探索创设问题情境,关注学生的持续学习,培养其自学能力,同时也为后续的教学作好铺垫.充分地体现学生的主体地位.教师关注学生发展的差异,帮助有困难的学生.还通过展示学生探索的成果,促进师生之间互相交流,让学生获得成就感,激发学习的兴趣.。
24.2.2直线与圆的位置关系(第二课时)一、教与学目标1、探索切线的性质与判定。
2、通过应用切线的性质与判定,提高推理判断能力。
二、教与学重点和难点重点:直线与圆相切的判定条件与圆的切线的性质。
难点:直线与圆相切的判定与性质的应用。
三、教与学方法自主探究,合作交流四、教与学过程(一)复习回顾1.直线与圆的位置关系包括:、、。
2.直线与圆的位置关系的区别方法包括种:(a)根据________________的个数来判断;(b)根据_______ __的关系来判断。
若d r,则直线与圆相交;若d r,则直线与圆相切;若d r,则直线与圆相离。
下面,我们重点研究直线和圆相切的情况,观看课件问题导入。
(二)探究新知探究一探索直线与圆相切的另一种判定方法1、由圆心到直线的距离等于半径逆推可知:在⊙O中,经过半径OA的外端点A,作直线l⊥OA,则圆心O到直线l的距离等于半径r,直线l与⊙O相切。
经过半径的外端并且垂直于这条半径的直线是圆的切线切线需满足两条:①经过半径外端;②垂直于这条半径.2、由此我们可以得到直线是圆的切线的三个判定方法:⑴与圆有惟一公共点的直线是圆的切线;⑵与圆心的距离等于半径的直线是圆的切线;⑶经过半径的外端并且垂直于这条半径的直线是圆的切线。
3、学以致用[例1]已知直线AB经过⊙O上的一点C,并且OA=OB,CA=CB,求证:直线AB是⊙O的切线。
思路分析:如图,由于直线AB经过⊙O上一点C,所以连结OC,只要证明OC⊥AB即可.证明:连结OC,∵OA=OB,CA=CB,∴OC是等腰△OAB底边,AB上的中线.∴AB⊥OC又∵点C在⊙O上,∴AB是⊙O的切线.[例2]已知:O为∠BAC平分线上一点,OD⊥AB于D,以O为圆心,OD为半径作⊙O。
求证:⊙O与AC相切。
思考:例1与例2的证法有何不同?探究二探索直线与圆相切的性质1、如图,直线l与⊙O相切于点A,OA是过切点的半径,直线l与半径OA是否一定垂直?你能说明理由吗?一定垂直。
导入新课一艘轮船在沿直线返回港口的途中,接到气象台的台风预报:台风中心位于轮船正西70 km处,受影响的范围是半径长为30 km的圆形区域.已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?图1分析:如图1,以台风中心为原点O,以东西方向为x轴,建立直角坐标系,其中,取10 km为单位长度.则台风影响的圆形区域所对应的圆心为O的圆的方程为x2+y2=9;轮船航线所在的直线l的方程为4x+7y-28=0.问题归结为圆心为O的圆与直线l有无公共点.因此我们继续研究直线与圆的位置关系.推进新课新知探究提出问题①过圆上一点可作几条切线?如何求出切线方程?②过圆外一点可作几条切线?如何求出切线方程?③过圆内一点可作几条切线?④你能概括出求圆切线方程的步骤是什么吗?⑤如何求直线与圆的交点?⑥如何求直线与圆的相交弦的长?讨论结果:①过圆上一点可作一条切线,过圆x2+y2=r2上一点(x0,y0)的切线方程是x0x+y0y=r2;过圆(x-a)2+(y-b)2=r2上一点(x0,y0)的切线方程是(x0-a)(x-a)+(y0-b)(y-b)=r2.②过圆外一点可作两条切线,求出切线方程有代数法和几何法.代数法的关键是把直线与圆相切这个几何问题转化为联立它们的方程组只有一个解的代数问题.可通过一元二次方程有一个实根的充要条件——Δ=0去求出k的值,从而求出切线的方程.用几何方法去求解,要充分利用直线与圆相切的几何性质,圆心到切线的距离等于圆的半径(d=r),求出k的值.③过圆内一点不能作圆的切线.④求圆切线方程,一般有三种方法,一是设切点,利用①②中的切线公式法;二是设切线的斜率,用判别式法;三是设切线的斜率,用图形的几何性质来解,即圆心到切线的距离等于圆的半径(d=r),求出k的值.⑤把直线与圆的方程联立得方程组,方程组的解即是交点的坐标.⑥把直线与圆的方程联立得交点的坐标,结合两点的距离公式来求;再就是利用弦心距、弦长、半径之间的关系来求.应用示例例1 过点P(-2,0)向圆x2+y2=1引切线,求切线的方程.图3解:如图3,方法一:设所求切线的斜率为k,则切线方程为y=k(x+2),因此由方程组⎪⎩⎪⎨⎧=++=,1),2(22y x x k y 得x 2+k 2(x+2)2=1. 上述一元二次方程有一个实根, Δ=16k 4-4(k 2+1)(4k 2-1)=12k 2-4=0,k=±33, 所以所求切线的方程为y=±33(x+2). 方法二:设所求切线的斜率为k,则切线方程为y=k(x+2),由于圆心到切线的距离等于圆的半径(d=r),所以d=21|2|k k +=1,解得k=±33. 所以所求切线的方程为y=±33(x+2). 方法三:利用过圆上一点的切线的结论.可假设切点为(x 0,y 0),此时可求得切线方程为x 0x+y 0y=1.然后利用点(-2,0)在切线上得到-2x 0=1,从中解得x 0=-21. 再由点(x 0,y 0)在圆上,所以满足x 02+y 02=1,既41+y 02=1,解出y 0=±23. 这样就可求得切线的方程为22102320+--±=+-x y ,整理得y=±33(x+2). 点评:过圆外一点向圆可作两条切线;可用三种方法求出切线方程,其中以几何法“d=r”比较好(简便). 变式训练已知直线l 的斜率为k,且与圆x 2+y 2=r 2只有一个公共点,求直线l 的方程.活动:学生思考,观察题目的特点,见题想法,教师引导学生考虑问题的思路,必要时给予提示,直线与圆只有一个公共点,说明直线与圆相切.可利用圆的几何性质求解.图4解:如图4,方法一:设所求的直线方程为y=kx+b,由圆心到直线的距离等于圆的半径,得 d=21||k b +=r,∴b=±r 21k +,求得切线方程是y=kx±r 21k +.方法二:设所求的直线方程为y=kx+b,直线l 与圆x 2+y 2=r 2只有一个公共点,所以它们组成的方程组只有一组实数解,由⎪⎩⎪⎨⎧=++=222,ry x b kx y ,得x 2+k 2(x+b)2=1,即x 2(k 2+1)+2k 2bx+b 2=1,Δ=0得b=±r 21k +,求得切线方程是y=kx±r 21k +. 例2 已知圆的方程为x 2+y 2+ax+2y+a 2=0,一定点为A(1,2),要使过定点A(1,2)作圆的切线有两条,求a 的取值范围.活动:学生讨论,教师指导,教师提问,学生回答,教师对学生解题中出现的问题及时处理,利用几何方法,点A(1,2)在圆外,即到圆心的距离大于圆的半径.解:将圆的方程配方得(x+2a )2+(y+1)2=4342a-,圆心C 的坐标为(-2a ,-1),半径r=4342a -,条件是4-3a 2>0,过点A(1,2)所作圆的切线有两条,则点A 必在圆外,即22)12()21(+++a >4342a -. 化简,得a 2+a+9>0,由⎪⎩⎪⎨⎧>->++,034,0922a a a 解得-332<a <332,a ∈R . 所以-332<a <332. 故a 的取值范围是(-332,332). 点评:过圆外一点可作圆的两条切线,反之经过一点可作圆的两条切线,则该点在圆外.同时注意圆的一般方程的条件. 拓展提升已知点P 到两个定点M(-1,0)、N(1,0)距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程. 解:设点P的坐标为(x,y),由题设有||||PN PM =2,即22)1(y x ++=2·22)1(y x +-,整理得x 2+y 2-6x+1=0.①因为点N 到PM 的距离为1,|MN|=2,所以∠PMN=30°,直线PM 的斜率为±33. 直线PM的方程为y=±33(x+1).②将②代入①整理,得x2-4x+1=0.解得x1=2+3,x2=2-3.代入②得点P的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN的方程为y=x-1或y=-x+1.课堂小结1.直线和圆位置关系的判定方法:代数法和几何法.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题.注意弦长公式和圆的几何性质.4.求与圆有关的最值问题,往往利用数形结合,因此抽象出式子的几何意义是至关重要的.作业课本习题4.2 A组5、6、7.。