三角形内角和定理 公开课获奖学案
- 格式:doc
- 大小:1.16 MB
- 文档页数:9
三角形内角和教学设计导言:三角形内角和是初中数学中一个重要的概念。
了解三角形内角和的概念对学生理解几何学和解题都具有重要意义。
本文将从理论知识的讲解、教学方法和教学过程设计三个方面来探讨三角形内角和的教学设计。
一、理论知识的讲解1. 三角形内角和的定义三角形内角和是指一个三角形的三个内角相加的结果。
任意一个三角形的内角和为180度(即180°)。
2. 三角形内角和的性质三角形内角和具有以下性质:- 任意一个三角形的三个内角和为180°;- 三角形内角和的大小与三角形的形状无关;- 三角形内角和的每个内角都可以用三角形的顶点和另外两个顶点表示。
二、教学方法1. 正面讲解在教学的初期阶段,教师可以通过正面讲解的方式向学生介绍三角形内角和的定义和性质。
教师可以通过示意图和实例来帮助学生理解概念和性质,并引导学生进行思考和讨论。
2. 合作学习在学生对三角形内角和的概念有了初步了解后,可以组织学生进行小组活动。
每个小组可以给出一些具体的三角形问题,让学生在小组内讨论并解决问题。
通过合作学习的方式,学生可以相互促进,共同解决问题,并加深对三角形内角和的理解。
3. 实践活动在学生对三角形内角和的理论知识有了一定掌握后,可以进行一些实践活动来提高学生对概念的应用能力。
教师可以设计一些与实际生活相关的问题,让学生通过测量和计算来解决问题。
这种实践活动可以帮助学生将抽象的理论知识应用到具体的实际问题中,提高他们的数学思维能力和解决问题的能力。
三、教学过程设计1. 导入环节教师可以通过展示一张三角形图片来引入三角形内角和的概念。
教师可以提问学生如下问题:三角形的内角和是多少?为什么三角形的内角和是一定的?2. 理论讲解教师可以在黑板上绘制一个三角形,通过图示和简要文字说明,向学生介绍三角形内角和的定义和性质。
教师可以鼓励学生提问和参与讨论,帮助他们更好地理解概念和性质。
3. 小组活动将学生分为小组,并给每个小组分配一个具体的三角形问题。
数学北师大版八年级上册第七章平行线的证明《三角形内角和定理》一等奖创新教案第2课时(含答案)第七章平行线的证明7.5 三角形内角和定理第2 课时一、教学目标1.掌握三角形内角和定理的两个推理,并能运用这些定理解决简单的问题.2.经历探索与证明的过程,进一步发展推理能力.3.在一题多解、一题多变中,积累解决几何问题的经验,提升解决问题的能力.二、教学重点及难点重点:了解并掌握三角形的外角的定义.难点:掌握三角形内角和定理的两个推论,利用这两个推论进行简单的证明和计算.三、教学用具多媒体课件,三角板、直尺。
四、相关资源《三角形外角》动画,《三角形其他外角》动画.五、教学过程【新知导入】△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.请试着画出△ABC的其他外角.设计意图:外角概念探究意义不大,所以直接明晰这一概念,通过在图中标注其他外角,深化学生对外角概念的理解,同时,在图中标注其他外角的过程也为发现有关外角的结论做了铺垫.【合作探究】图中,∠ACD与其他角有什么关系?请证明你的结论.通过学生讨论,发现:定理三角形的一个外角等于和它不相邻的两个内角的和.定理三角形的一个外角大于任何一个和它不相邻的内角.已知:△ABC.求证:∠ACD=∠A+∠B,∠ACD>∠A,∠ACD>∠B.证明:∵∠A+∠B+∠ACB=180°(三角形内角和定理),∴∠A+∠B=180°-∠ACB(等式的性质),∵∠ACD+∠ACB=180°(平角的定义)∴∠ACD=180°-∠ACB(等式的性质)∴∠ACD=∠A+∠B(等量代换)∴∠ACD>∠A,∠ACD>∠B.在这里,我们通过三角形的内角和定理直接推导出两个新定理.像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论.推论可以当做定理使用.设计意图:希望发现有关外角的两个定理.可以对学生进行适当的引导,关系既可以是不等关系,也可以是等量关系.【典例精析】例1 已知,如图,在△ABC中,∠B=∠C,AD平分外角∠EAC.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC(角平分线的定义)∴∠DAC=∠C(等量代换)∴AD∥BC(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC∴∠DAC=∠C(等量代换)∵∠B+∠BAC+∠C=180°∴∠B+∠BAC+∠DAC=180°即:∠B+∠DAB=180°∴AD∥BC(同旁内角互补,两直线平行)设计意图:例题的图形较复杂,可以给出分析过程,鼓励学生先自行解决,同时对有困难的学生给予必要的指导.“想一想”关注解决问题方法的多样化,通过多种解法,开拓学生思维.例2 如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP,交AC于D,∵∠BPC是△PDC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠PDC是△ABD的外角(外角定义),∴∠PDC>∠A(三角形的一个外角大于任何一个和它不相邻的内角).∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.设计意图:让学生复习“三角形的一个外角大于任何一个和它不相邻的内角”,同时体会某些不等关系的递推和论证过程.鼓励学生寻求多种解法,如还可以连接AP,并延长AP交BC于点D ,这时∠BPC 和∠A分别被分成了两个小角,用“三角形的一个外角大于任何一个和它不相邻的内角”可以证明.【课堂练习】1.判断下列命题的对错.(1)三角形的外角和是指三角形的所有外角的和. ()×(2)三角形的外角和等于它的内角和的2倍. ()√(3)三角形的一个外角等于两个内角的和. ()×(4)三角形的一个外角等于与它不相邻的两个内角的和.()√(5)三角形的一个外角大于任何一个内角. ()×(6)三角形的一个内角小于任何一个与它不相邻的外角.()√2.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )CA.直角三角形B.锐角三角形C.钝角三角形D.无法确定3.如图所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于( )BA.120°B.115°C.110°D.105°4.如图,AB//CD,∠A=37°, ∠C=63°,那么∠F等于()A.26°B.63°C.37°D.60°5.如图,如果∠1=100°,∠2=145°,那么∠3等于( )A.110°B.160°C.137°D.115°解析:方法总结:三角形的外角等于与它不相邻的两个内角的和,而不是等于任意两个内角的和.6.如图,求证:(1)∠BDC>∠A.(2)∠BDC=∠B+∠C+∠A.证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角)∴∠1+∠2>∠3+∠4(不等式的性质)即:∠BDC>∠BAC.(2)连结AD,并延长AD,如图.则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1=∠3+∠B∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质)即:∠BDC=∠B+∠C+∠BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)设计意图:巩固三角形外角定理.六、课堂小结今天这节课你学到了什么知识?1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角设计意图:通过对三角形外角及性质的学习,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.七、板书设计7.5 三角形内角和定理(2)1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角。
三角形内角和教学设计一等奖设计意图:通过具体的例子引入证明三角形内角和定理的方法,让学生更好地理解和掌握证明的思路。
教师活动:给出一个具体的三角形ABC,让学生观察并思考如何证明∠A+∠B+∠C=180°。
学生活动:学生观察三角形ABC,思考证明方法。
教师活动:引导学生发现三角形ABC可以通过添加一条辅助线BD,将三角形分成两个三角形ABD和CBD,进而证明∠A+∠B+∠C=180°。
学生活动:学生跟随教师的引导,理解并掌握证明方法。
设计意图:通过具体的例子引入证明三角形内角和定理的方法,让学生更好地理解和掌握证明的思路。
三)练与拓展教师活动:给学生练题,让学生巩固和拓展所学的知识。
学生活动:学生完成练题,巩固和拓展所学的知识。
四)总结与反思教师活动:对本节课所学的知识进行总结,并引导学生反思自己的研究情况。
学生活动:学生跟随教师的引导,对所学知识进行总结,并反思自己的研究情况。
设计意图:通过总结和反思,让学生更好地理解和掌握所学的知识,并提高自己的研究能力。
设计意图:删除明显有问题的段落,改写每段话以提高表达清晰度和流畅度。
一)导入新知本节课我们将研究三角形内角和定理,这是初中数学中非常重要的一部分,它可以帮助我们更好地理解三角形的性质和特点。
在研究过程中,我们将重点掌握如何通过添加辅助线来证明三角形内角和定理,并且学会一题多解的方法,拓宽我们的思路和解题能力。
二)授课在证明三角形内角和定理时,我们可以通过添加辅助线来简化证明过程。
例如,我们可以将射线CE与CD添加到△ABC中,然后将三角形中三个不同位置的角拼接在一起,最后通过等量代换来证明三角形内角和定理。
这样做有助于培养学生的公理化思想和逻辑思维能力。
三)探索研究一题多解在证明三角形内角和定理时,我们可以通过多种方法来解决问题。
例如,我们可以通过过点A作直PQ∥BC的方法来证明三角形内角和定理。
在这个环节中,我们将让学生自由讨论,探究一题多解的方法,拓宽学生的思路和解题能力。
5. 5三角形内角和定理(1)一、课程标准:掌握三角形内角和定理及推论的证明过程。
二、学习目标:掌握“三角形内角和定理及推论”的证明过程,并能根据这个定理及推论解决实际问题。
三、学习重点难点:重点:三角形内角和定理及推论的证明过程。
难点:如何添加辅助线。
四、突破重难点的设想:五、学前准备:六、学情分析:七、使用说明与学法指导:1、在充分预习自学的前提下,认真完成导学案。
2、将预习中不能解决的问题标注出来,并填写到后面“我的疑问”处。
3、限时完成。
预习案一.自主预习:阅读课本p170—p171内容,思考下列问题:(课前完成)1、三角形的内角和是多少度?你是怎样知道的?2、如何证明此命题是真命题呢?要证三角形三个内角和是180°,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?①平角,②两平行线间的同旁内角。
1A B CD E A B C E D 3、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。
如何把三个角转化为平角或两平行线间的同旁内角呢?预习疑难摘要: 探究案探究一:探究三角形内角和定理1、已知:∠A, ∠B, ∠C 是△ABC 的三个内角。
(尝试独立思考完成)求证:∠A+∠B+∠C=180°。
2、你能用如图所示的的方法证明三角形的内角和吗(小组合作交流)除上述两种方法外,你还能想出这一定理的其他证明方法吗?(看谁的证明方法多)探究二:探讨三角形外角的性质:3问题1:如图,△ABC 中,∠A=70°,∠B=60°,∠ACD 是△ABC 的一个外角,能由∠A 、∠B 求出∠ACD 吗?如果能,∠ACD 与∠A 、∠B 有什么关系?问题2:任意一个△ABC 的一个外角∠ACD 与∠A 、∠B 的大小会有什么关系呢?由学生归纳得出: 推论1: 三角形的一个外角等于和它不相邻的两个内角的和.推论 2:三角形的一个外角大于任何一个和它不相邻的内角._______________________________________________________叫做推论。
三角形的内角和定理教案教学目标:1. 让学生理解三角形的内角和定理。
2. 学会运用三角形的内角和定理解决实际问题。
3. 培养学生的观察能力、操作能力和解决问题的能力。
教学重点:1. 三角形的内角和定理。
2. 运用三角形的内角和定理解决实际问题。
教学难点:1. 三角形的内角和定理的理解和运用。
教学准备:1. 三角形的模型或图片。
2. 量角器。
3. 练习题。
教学过程:一、导入(5分钟)1. 向学生介绍三角形的内角和定理。
2. 引导学生思考为什么三角形的内角和等于180度。
二、新课(15分钟)1. 讲解三角形的内角和定理,并通过模型或图片进行演示。
2. 让学生用量角器测量三角形的角度,验证内角和定理。
3. 引导学生总结三角形的内角和定理的证明过程。
三、练习(10分钟)1. 让学生独立完成练习题,运用三角形的内角和定理计算三角形的角度。
2. 引导学生互相交流解题过程,讨论解题方法。
四、拓展(10分钟)1. 引导学生思考除了三角形,其他多边形的内角和是否也有定理。
2. 讲解多边形的内角和定理,并引导学生进行验证。
五、总结(5分钟)1. 让学生回顾本节课所学的内容,总结三角形的内角和定理。
2. 强调三角形的内角和定理在解决实际问题中的应用。
教学反思:本节课通过导入、新课、练习、拓展和总结环节,让学生掌握了三角形的内角和定理。
在教学过程中,注意引导学生通过观察、操作和思考,加深对内角和定理的理解。
通过练习题的设计,让学生学会运用内角和定理解决实际问题。
在拓展环节,引导学生思考其他多边形的内角和定理,培养学生的发散思维。
总体来说,本节课达到了预期的教学目标。
六、案例分析(10分钟)1. 向学生提供几个实际案例,如建筑设计、道路规划等,让学生运用三角形的内角和定理解决问题。
2. 引导学生分析案例中三角形的角度关系,运用内角和定理进行计算和验证。
七、小组讨论(10分钟)1. 将学生分成小组,让他们讨论如何运用三角形的内角和定理解决实际问题。
《三角形的内角》(一)教学设计教材内容和教材内容解析1教材内容三角形内角和定理。
2教材内容解析本节课实际上是对小学学习“三角形的内角和”的再现和延续,在小学知道三角形的内角和是180°,而不知道为什么,学生仅仅是知其然而不知其所以然,这一节就是对本部分知识深入的研究和学习。
三角形内角和定理是本章重要内容,也是“图形和几何”必备的知识基础。
它从“角”的角度刻画了三角形的特征。
三角形的内角和定理的探究体现了由试验几何到论证几何的研究过程,同时也说明了证明的重要性三角形内角和定理的证明以平行线的相关知识为基础。
定理的验证方法——剪拼图,不仅可以说明证明的必要性,而且也可以从中获得添加辅助线的思路和方法。
定理的证明思路是得出三角形的三个内角与组成平角的三个角分别相等。
基于以上分析,确定本节课的教学重点:探索并证明三角形内角和定理,体会证明的必要性。
学习目标和学习目标解析1学习目标(1)经历探索三角形内角和定理的证明过程,掌握三角形内角和定理(2)应用三角形内角和定理解决一些简单问题2学习目标解析达成目标(1)的标志是:学生能通过度量或剪拼图等试验进一步繁殖三角形内角和等于180°,发现操作试验的局限性,进而了解证明的必要性;在实验的过程中能发现其中蕴含的辅助线,并能运用平行线的性质证明三角形内角和定理。
达成目标(2)的标志是:学生能运用三角形内角和定理解决简单的与三角形中角有关的计算和证明问题。
教学问题诊断分析证明三角形内角和定理需要添加辅助线,这是学生第一次遇到用辅助线证明定理的问题。
由于添加辅助线是一种尝试性活动,规律性不强,学生会感到困难。
教学时,教师要让每个学生都亲自动手进行拼图,引导学生在实验过程中感悟添加辅助线的方法,进而发现思路、证明定理。
本节课的教学难点:如何添加辅助线证明三角形内角和定理。
导学案设计长垣一中初中部“双层四环”教学模式之“基础自清互查课”(简称:“基础课”)三角形的内角一导学案基础自清互查l A B C B A 图② l 图③l【学习目标】★1经历探索三角形内角和定理的证明过程,掌握三角形内角和定理★◆2熟练应用三角形内角和定理解决一些简单问题【学习过程】一、自读文本,整体感知1认真阅读课本11 -12页的内容,探究三角形的三个内角和定理的证明过程:(1)拼一拼: 把一个三角形的三个角剪下来拼在一起有什么结果,试试看(2)想一想:由拼图的方法想一想如何添加辅助线(3)思一思:如何证明三角形的内角和等于180°2认真看例1,自己写解答过程,再与书上的解答过程对比,规范书写步骤3学习例2,1先认真读题,结合图形深入思考,自己独立解决;2)看书上的解答,彻底理解方位角这类问题,仍不懂的和同学讨论或请教老师二、依据学案,梳理知识证一证: 要验证ΔABC 的内角和等于180°,可联想到学过的知识“一个平角是180°” 和“两直线平行,同旁内角互补”, 我们不妨朝着这两个思路将三个角进行剪拼,合在一起组成平角或者构成同旁内角信心满满的同学们, 见证真理的时刻到了!第一种拼合法:如图① ,由此你想出证明的办法了吗已知:如图ΔABC 求证:∠A ∠B ∠C=180° 证明:如右图 ,过A 作 ,使∴ 42∠=∠∠ =∠( )=180°(平角定义)∴ =180°(等量代换)即∠BAC ∠B ∠C=180°第二种拼合法:如图②C B C B A l图①问题:仿照上述证明过程,你能利用图③证明“三角形内角和等于180°”吗[想一想] 你还有其它的证明方法吗三、理解识记,自清互查同桌(或师徒)互查三角形内角和定理的证明过程四、展示竞赛,基础反馈1一副三角板,如图所示叠放在一起,则图中∠ 的度数是( )A .75B .60C .65D .552如图,在△ABC 中,∠BAC=40°,∠ABC=75°,BD 是ΔABC 的角平分线求∠ADB 的度数3如图,从A 处观测C 处时仰角∠CAD=30°,从B 处观测C 处时仰角∠CBD=45°,从C 处观测A 、B 两处时视角∠ACB 是多少【学案整理】 C D B A。
4、三角形内角和教学设计一等奖【设计意图】让学生整体感知三角形内角和的知识,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的"横空出现"。
猜测提出问题:长方形内角和是360°,那么三角形内角和是多少呢?【设计意图】引导学生提出合理猜测:三角形的内角和是180°。
(三)验证(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度。
(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。
(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。
(4)画:根据长方形的内角和来验证三角形内角和是180°。
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。
从长方形的内角和联想到直角三角形的内角和是180°。
【设计意图】利用已经学过的知识构建新的数学知识,这不仅有助于学生理解新的知识,而且是一种非常重要的学习方法。
在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系起来,并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。
在整个探索过程中,学生积极思考并大胆发言,他们的创造性思维得到了充分发挥。
深化质疑:大小不同的三角形,它们的内角和会是一样吗?观察:指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了,但角的大小没有变。
7.5 三角形内角和定理第1课时三角形内角和定理第一环节:情境引入活动内容:(1)用折纸的方法验证三角形内角和定理.实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果(1)(2)(3)(4)试用自己的语言说明这一结论的证明思路。
想一想,还有其它折法吗?(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。
试用自己的语言说明这一结论的证明思路。
想一想,如果只剪下一个角呢?活动目的:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.教学效果:说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。
第二环节:探索新知活动内容:①用严谨的证明来论证三角形内角和定理.②看哪个同学想的方法最多?AD EAB C ED方法一:过A点作DE∥BC∵DE∥BC∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180°∴∠BAC+∠B+∠C=180°(等量代换)方法二:作BC的延长线CD,过点C作射线CE∥BA.∵CE∥BA∴∠B=∠ECD(两直线平行,同位角相等)∠A=∠ACE(两直线平行,内错角相等)∵∠BCA+∠ACE+∠ECD=180°∴∠A+∠B+∠ACB=180°(等量代换)活动目的:用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。
教学效果:添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的.第三环节:反馈练习活动内容:(1)△ABC中可以有3个锐角吗?3个直角呢?2个直角呢?若有1个直角另外两角有什么特点?(2)△ABC中,∠C=90°,∠A=30°,∠B=?(3)∠A=50°,∠B=∠C,则△ABC中∠B=?(4)三角形的三个内角中,只能有____个直角或____个钝角.(5)任何一个三角形中,至少有____个锐角;至多有____个锐角.(6)三角形中三角之比为1∶2∶3,则三个角各为多少度?(7)已知:△ABC中,∠C=∠B=2∠A。
11.2.1三角形的内角 第1课时教学设计教学目标:①探索并证明三角形内角和定理②能运用三角形内角定理解决简单问题教学分析:①证明三角形内角和定理需要添加辅助线,由于添加辅助线是一种尝试性活动,规律性不强,学生会感到困难,教学时要让学生都亲自动手进行操作,引导学生在实验的过程中感悟添加辅助线的方法,进而发现思路,证明定理。
②学生能运用三角形内角和定理解决简单的与三角形角有关的计算和证明问题。
解决问题:能运用所学知识解决简单的问题,训练学生对所学知识的运用能力。
情感态度:进一步体会和理解三角形内角和定理的证明方法,培养学生独立探索,合作交流的精神。
教学重点:探索并证明三角形内角和定理。
教学难点:如何添加辅助证明三角形内角和定理教学方法:引导学生通过实践、推理、交流等活动发现并解决问题,感受教学思维的严谨性教学用具:三角板、三角形纸片 教学过程:创设情境,提出问题问题1:在小学我们已经知道任意一个三角形的内角和等于180,你还记得是怎么发现这个结论的吗?请大家利用手中的三角形纸片,通过折纸和剪拼的方法来验证一下三角形的内角和是否等于180度。
师生活动:问题1师:小组之间可以合作交流一下,看哪组拼图的方法最多。
1.回想撕拼方法,你得到启发,你能想到证明三角形内角和等于180?备用图 学生回答:已知 ABC 求证:∠A+∠B+∠C=1800CB(1)(2)证明:如图(1)延长BC 至D ,过点C 作CF ∥AB∵CF ∥AB ∴∠1=∠A (两直线平行,内错角相等) ∴∠2=∠B (两直线平行,同位角相等)∵∠1+∠2+∠ABC=1800(平角定义) ∴∠A=∠B=∠ACB=1800(等量代换)2.回顾所学知识,还有哪些地方出现过与1800相关的确角呢?又如何证明?3.上述方法是过三角形的顶点作平行线,证明三角形内角和是1800。
是否过三角形边上任上点作平行也可以证明三角形内角和是1800呢?见课件活动3:归纳总结1.掌握三角形内角和定理:三角形内和等180度 2.感悟辅成(虚线)的添加在证明中的作用3.将三角形的三个内角转化为一个平角或同旁内角互补的形式,让学生明白转化思想,在数学中的应用BC活动4:例题剖析例1如图:在△ABC 中,∠BAC=400 ∠B=750,AD 是△ABC 的角平分线,求∠ADB 的度数。
7.5 三角形内角和定理第1课时三角形内角和定理学习目标:[知识与技能目标]:掌握三角形内角和定理的证明和简单应用,初步学会作辅助线证明的基本方法,培养学生观察、猜想、和推理论证能力。
[过程与方法目标]:1、对比过去折纸、撕纸等探索过程,体会思维实验和符号化的理性作用。
2、通过一题多证、一题多变体会思维的多向性。
3、引导学生应用运动变化的观点认识数学。
[情感与态度目标]:通过一题多证、一题多变激发学生勇于探索、合作交流的精神,体验成功的乐趣,引导学生的个性发展。
感悟逻辑推理的价值。
学习重难点:本节课的重点是:探索证明三角形内角和定理的不同方法,利用三角形内角和定理进行简单的计算或证明。
本节课的难点是:应用运动变化的观点认识数学。
从拼图过程中发现并正确引入辅助线是本节课的关键。
学习方法:引导发现法、尝试探究法。
学习过程:一、创设情景、提出问题:“三角形内角和是180°”一定是个真命题吗?你是怎样知道的?(学生回答:是个真命题。
是从度量、折纸、拼角得到的)。
教师指出:任何实验都会有误差,即使全班同学都各自剪出了不同形状的三角形,但也不能就此说明所有的三角形都具有这一共性。
那么怎样才能说明“三角形内角和是180°”的真实性呢?证明由哪些公理、定理、定义可以得到一个角或几个角的和为180°?渗透公理化的思想,自然导入三角形内角和定理证明的学习。
二、探究新知(一)动手操作、探索解法:每个学生画出一个三角形,并将它的内角剪下,分小组做拼角实验。
通过小组合作交流,讨论有几种拼合方法?1、开展小组竞赛(看哪个小组发现多?说理清楚。
),各小组派代表展示拼图,并说出理由。
学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。
归纳:可以搬一个角用“两直线平行,同旁内角互补”来说理,也可以搬两个角、三个角用“平角定义”说明。
引导学生合理添加辅助线(学生讨论,教师点评),为书写证明过程做好铺垫。
2、指导学生写出已知、求证、证明过程(抽两人板演,教师点评,规范证明格式)。
应指出辅助线通常画为虚线,并在证明前交代说明。
添加辅助线不是盲目的,而是证明需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
已知:如图,△ABC求证:∠A+∠B+∠C=180°证明:作BC 的延长线CD ,过点C 作射线CE ∥BA . ∵CE ∥BA∴∠B=∠ECD (两直线平行,同位角相等) ∠A=∠ACE (两直线平行,内错角相等) ∵∠BCA+∠ACE+∠ECD=180° ∴∠A+∠B+∠ACB=180°(等量代换)(二)议一议、开阔思野:‘搬三个角’的特点:把角‘搬’到一起,让顶点重合、两条边形成一条直线,以便利用平角定义。
在证明三角形内角和定理时,可以把三个角集中到三角形的某一个顶点吗?引导学生叙述证明过程。
已知:如图,△ABC 求证:∠A+∠B+∠C=180°ABCEDAB CDE证明:过A点作DE∥BC∵DE∥BC∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180°∴∠BAC+∠B+∠C=180°(等量代换)那么是否可以把三个角集中到三角形的一边上呢?集中在内部任意一点上呢?外部呢?引导学生开阔思维,大胆探索证明方法。
让学生讲解自己的思维过程和解法。
(三)例题解析,强化重点:已知:如图, AB∥CD。
求证:∠ABE+∠BED+∠EDC=360°(用两种方法证明)。
A B A B A BE F E EC D C D C D(四)应用知识,深化主题:学习了以上定理,我们来看看特殊三角形内角和有什么特殊的地方?问题:“直角三角形的两锐角之和是多少度?等边三角形的一个内角是多少度?请证明你的结论。
”(五)探究升化:利用课件演示:1、三角形BC边不动,把顶点A‘压’向BC,∠A越来越大,而∠B与∠C的和越来越小,由此你能想到什么?2、三角形BC边不动,把点A“拉离”BC,∠A就越来越小,而∠B与∠C则越来越大,它们的和越来越接近1800,由此你能想到什么?C C图1 图2三、反馈练习:(1)△ABC 中,∠C=90°,∠A=30°,∠B=? (2)∠A=50°,∠B=∠C ,则△ABC 中∠B=?(3)三角形中三角之比为1∶2∶3,则三个角各为多少度? (4)课本239页随堂练习2,四、回顾小结,课堂延伸:“这节课你学到了哪些知识?你有什么收获?” 五、作业布置:课本180页数学理解1、2、32.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8; (2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】已知x 3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5.方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。