2016聚焦中考数学(辽宁省)复习:第一章数与式自我测试
- 格式:doc
- 大小:48.50 KB
- 文档页数:3
2016年辽宁省中考数学模拟试卷一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.(3分)(2015•丹东)﹣2015的绝对值是()A.﹣2015 B.2015 C.D.﹣2.(3分)(2015•丹东)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()A.2.78×106B.27.8×106C.2.78×105D.27.8×1053.(3分)(2015•丹东)如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体4.(3分)(2015•丹东)如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是()A.5.2 B.4.6 C.4 D.3.65.(3分)(2015•丹东)下列计算正确的是()A.2a+a=3a2B.4﹣2=﹣C.=±3 D.(a3)2=a66.(3分)(2015•丹东)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°7.(3分)(2015•丹东)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()A.2 B.3 C.D.9.(3分)(2015•丹东)一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.4二、填空题(每小题3分,共24分)10.(3分)(2015•丹东)如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.11.(3分)(2015•丹东)如图,∠1=∠2=40°,MN平分∠EMB,则∠3=°.12.(3分)(2015•丹东)分解因式:3x2﹣12x+12=.13.(3分)(2015•丹东)若a<<b,且a、b是两个连续的整数,则a b=.14.(3分)(2015•丹东)不等式组的解集为.15.(3分)(2015•丹东)在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是.16.(3分)(2015•丹东)若x=1是一元二次方程x2+2x+a=0的一个根,那么a=.17.(3分)(2015•丹东)如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为.三、解答题(每小题8分,共16分)18.(8分)(2015•丹东)先化简,再求值:(1﹣)÷,其中a=3.19.(8分)(2015•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.四、(每小题10分,共20分)20.(10分)(2015•丹东)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.21.(10分)(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?五、(每小题10分,共20分)22.(10分)(2015•丹东)一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.23.(10分)(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.六、(每小题10分,共20分)24.(10分)(2015•丹东)如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)25.(10分)(2015•丹东)某商店购进一种商品,每件商品进价30元.试销中发现这种商x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?七、(本题12分)26.(12分)(2015•丹东)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN 中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF 的数量关系.八、(本题14分)27.(14分)(2015•丹东)如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的.每小题3分,共24分)1.(3分)(2015•丹东)﹣2015的绝对值是()A.﹣2015 B.2015 C.D.﹣【解答】解:∵﹣2015的绝对值等于其相反数,∴﹣2015的绝对值是2015;故答案为:2015.2.(3分)(2015•丹东)据统计,2015年在“情系桃源,好运丹东”的鸭绿江桃花观赏活动中,6天内参与人次达27.8万.用科学记数法将27.8万表示为()A.2.78×106B.27.8×106C.2.78×105D.27.8×105【解答】解:将27.8万用科学记数法表示为2.78×105.故选:C.3.(3分)(2015•丹东)如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体【解答】解:圆柱的俯视图是圆,A错误;圆锥的俯视图是圆,且中心由一个实点,B正确;球的俯视图是圆,C错误;正方体的俯视图是正方形,D错误.故选:B.4.(3分)(2015•丹东)如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是()A.5.2 B.4.6 C.4 D.3.6【解答】解:∵这组数据的众数是4,∴x=4,=(2+4+4+3+5)=3.6.故选:D.5.(3分)(2015•丹东)下列计算正确的是()A.2a+a=3a2B.4﹣2=﹣C.=±3 D.(a3)2=a6【解答】解:A、2a+a=3a,故A错误;B、4﹣2==,故B错误;C、,故C错误;D、(a3)2=a3×2=a6,故D正确.故选:D.6.(3分)(2015•丹东)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5° C.20°D.22.5°【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故选A.7.(3分)(2015•丹东)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.若AB=,∠DCF=30°,则EF的长为()A.2 B.3 C.D.【解答】解:∵矩形对边AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,又∵EF⊥AC,∴四边形AECF是菱形,∵∠DCF=30°,∴∠ECF=90°﹣30°=60°,∴△CEF是等边三角形,∴EF=CF,∵AB=,∴CD=AB=,∵∠DCF=30°,∴CF=÷=2,∴EF=2.故选A.9.(3分)(2015•丹东)一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.4【解答】解:设A(t,﹣),∵A、B两点关于原点对称,∴B(﹣t,),把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加得2a﹣6=0,∴a=3.故选C.二、填空题(每小题3分,共24分)10.(3分)(2015•丹东)如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.【解答】解:如图:转动转盘被均匀分成6部分,阴影部分占2份,飞镖落在阴影区域的概率是;故答案为:.11.(3分)(2015•丹东)如图,∠1=∠2=40°,MN平分∠EMB,则∠3=110°.【解答】解:∵∠2=∠MEN,∠1=∠2=40°,∴∠1=∠MEN,∴AB∥CD,∴∠3+∠BMN=180°,∵MN平分∠EMB,∴∠BMN=,∴∠3=180°﹣70°=110°.故答案为:110.12.(3分)(2015•丹东)分解因式:3x2﹣12x+12=3(x﹣2)2.【解答】解:原式=3(x2﹣4x+4)=3(x﹣2)2,故答案为:3(x﹣2)213.(3分)(2015•丹东)若a<<b,且a、b是两个连续的整数,则a b=8.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.14.(3分)(2015•丹东)不等式组的解集为﹣1<x<1.【解答】解:,由①得,x>﹣1,由②得,x<1.所以,不等式组的解集为﹣1<x<1.故答案为﹣1<x<1.15.(3分)(2015•丹东)在菱形ABCD中,对角线AC,BD的长分别是6和8,则菱形的周长是20.【解答】解:AC与BD相交于点O,如图,∵四边形ABCD为菱形,∴AC⊥BD,OD=OB=BD=4,OA=OC=AC=3,AB=BC=CD=AD,在Rt△AOD中,∵OA=3,OB=4,∴AD==5,∴菱形ABCD的周长=4×5=20.故答案为20.16.(3分)(2015•丹东)若x=1是一元二次方程x2+2x+a=0的一个根,那么a=﹣3.【解答】解:将x=1代入得:1+2+a=0,解得:a=﹣3.故答案为:﹣3.17.(3分)(2015•丹东)如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为(3×2n﹣2,×2n﹣2).【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2).故答案为(3×2n﹣2,×2n﹣2).三、解答题(每小题8分,共16分)18.(8分)(2015•丹东)先化简,再求值:(1﹣)÷,其中a=3.【解答】解:原式=×=,当a=3时,原式==.19.(8分)(2015•丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.【解答】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.点B旋转到点B2所经过的路径长为:=π.故点B旋转到点B2所经过的路径长是π.四、(每小题10分,共20分)20.(10分)(2015•丹东)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.【解答】解:(1)69÷23%=300(人)∴本次共调查300人;(2)∵喜欢娱乐节目的人数占总人数的20%,∴20%×300=60(人),补全如图;∵360°×12%=43.2°,∴新闻节目在扇形统计图中所占圆心角的度数为43.2°;(3)2000×23%=460(人),∴估计该校有460人喜爱电视剧节目.21.(10分)(2015•丹东)从甲市到乙市乘坐高速列车的路程为180千米,乘坐普通列车的路程为240千米.高速列车的平均速度是普通列车的平均速度的3倍.高速列车的乘车时间比普通列车的乘车时间缩短了2小时.高速列车的平均速度是每小时多少千米?【解答】解:设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意得,﹣=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米.五、(每小题10分,共20分)22.(10分)(2015•丹东)一个不透明的口袋中装有4个分别标有数字﹣1,﹣2,3,4的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为x;小颖在剩下的3个小球中随机摸出一个小球记下数字为y.(1)小红摸出标有数字3的小球的概率是;(2)请用列表法或画树状图的方法表示出由x,y确定的点P(x,y)所有可能的结果;(3)若规定:点P(x,y)在第一象限或第三象限小红获胜;点P(x,y)在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.【解答】解:(1)小红摸出标有数字3的小球的概率是;故答案为;种,且每种结果出现的可能性相同,其中点(x,y)在第一象限或第三象限的结果有4种,第二象限或第四象限的结果有8种,所以小红获胜的概率==,小颖获胜的概率==.23.(10分)(2015•丹东)如图,AB是⊙O的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.【解答】(1)解:如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD﹣S扇OBD=﹣=4﹣π;(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.六、(每小题10分,共20分)24.(10分)(2015•丹东)如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈,tan37°≈,sin48°≈,tan48°≈)【解答】解:过点C作CE⊥AB交AB于点E,则四边形EBDC为矩形,∴BE=CD CE=BD=60,如图,根据题意可得,∠ADB=48°,∠ACE=37°,∵,在Rt△ADB中,则AB=tan48°•BD≈(米),∵,在Rt△ACE中,则AE=tan37°•CE≈(米),∴CD=BE=AB﹣AE=66﹣45=21(米),∴乙楼的高度CD为21米.25.(10分)(2015•丹东)某商店购进一种商品,每件商品进价30元.试销中发现这种商(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?【解答】解:(1)设该函数的表达式为y=kx+b,根据题意,得,解得:.故该函数的表达式为y=﹣2x+100;(2)根据题意得,(﹣2x+100)(x﹣30)=150,解这个方程得,x1=35,x2=45,故每件商品的销售价定为35元或45元时日利润为150元;(3)根据题意,得w=(﹣2x+100)(x﹣30)=﹣2x2+160x﹣3000=﹣2(x﹣40)2+200,∵a=﹣2<0 则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.七、(本题12分)26.(12分)(2015•丹东)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN 中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF 的数量关系.【解答】解:(1)PE=PF,理由:∵四边形ABCD为正方形,∴∠BAC=∠DAC,又PM⊥AD、PN⊥AB,∴PE=PF;(2)①成立,理由:∵AC、BD是正方形ABCD的对角线,∴OA=OD,∠FAO=∠EDO=45°,∠AOD=90°,∴∠DOE+∠AOE=90°,∵∠MPN=90°,∴∠FOA+∠AOE=90°,∴∠FOA=∠DOE,在△FOA和△EOD中,,∴△FOA≌△EOD,∴OE=OF,即PE=PF;②作OG⊥AB于G,∵∠DOM=15°,∴∠AOF=15°,则∠FOG=30°,∵cos∠FOG=,∴OF==,又OE=OF,∴EF=;③PE=2PF,证明:如图3,过点P作HP⊥BD交AB于点H,则△HPB为等腰直角三角形,∠HPD=90°,∴HP=BP,∵BD=3BP,∴PD=2BP,∴PD=2 HP,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE,又∵∠BHP=∠EDP=45°,∴△PHF∽△PDE,∴==,即PE=2PF,由此规律可知,当BD=m•BP时,PE=(m﹣1)•PF.八、(本题14分)27.(14分)(2015•丹东)如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,∴当△AMN面积最大时,N点坐标为(3,0).参与本试卷答题和审题的老师有:sdwdmahongye;1987483819;1286697702;梁宝华;星期八;gsls;sks;守拙;张其铎;HLing;fangcao;caicl(排名不分先后)菁优网2016年5月19日。
第一章数与式 第1讲实数(时间40分钟满分70分)若|a + 3| = 0,贝U a 的相反数是(A )0 B.“ 2 C .— 2 D.f3 C 表示气温为(B )A .零上3 CB .零下3 CC .零上7 CD .零下7 C6. (2017 •徐州肥皂泡的泡壁厚度大约是0.00000071 米,数字0.00000071 数法表示为(C )A . 7.1 X 107B . 0.71 X 10 一6C . 7.1 X 10 TD . 71 X 10 -81(2017 •成都《九章算术》中注有“今两算得失相反,要令正负以名之” 今有两数若其意义相反,则分别叫做正数与负数,若气温为零上 10 C 记作+ 10意思是: C,则一 、选择题(本大题共10小题,每小题 4分,共40分)1 (2017 •青岛一§的相反数是 (C ) B .— 8 1 c_ 8 (2018 -原创实数— n,— 3.14 , 0 , '2四个数中,最小的是(A ) 7t B .— 3.14 '2 D . 0(2017 •上海下列实数中,无理数是(B ) 用科学记7. (2017 •黄冈计算:3I = (A)31 1A.— B一C . 3 D . —33 38. (2017 •山西2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家. 据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为(C)A. 186 X10 8吨B . 18.6 X109吨C . 1.86 X1010吨D . 0.186 X1011吨9 . C ,8)2的立方根是(A)A . 2B . —2C . 4D . —4P10 .如图,数轴上点P对应的数为p,则数轴上与数一对应的点是(C)4, B P,_1 -------- !-»■——* ——*_L^.-3 -2 -1 0 I 2A .点AB .点BC .点CD .点D二、填空题(本大题共5小题,每小题3分,共15分)11 . A是数轴上一点,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是±4 .13 . (2017 •广东已知实数a , b 在数轴上的对应点的位置如图所示, 则a+ b __>__0.(填4<0^\/3< n __三、解答题(本大题共3个小题,共15分)16 . (5 分)计算:(n — 10) 0+ 2 — 1| + (^)- 1-2sin 45解:原式=1 + ”,2 - 1 + 2 — 2=2.17 . (5 分)(2017 •长沙计算:| — 3| + (n-2017) 0 - 2si n 30解:原式=3 + 1 - 1 + 3=6.解:原式=一 2.-1 « 0 [ b 214 .计算: (n- 1)°+一 4 = __3__.)15 . (2018 •原创将实数3, n, 0, - 4由小到大用“V”号连起来,可表示为 >” ,“v” 或 18 . (5分)(2017 •怀化改编计算: -1 -tan 60 +38. -1| + (2017 - n )0-第 2 讲整式及因式分解( 时间40 分钟满分70 分)一、选择题(本大题共10 小题,每小题 4 分,共40 分)1. (2017 •无锡若a—b = 2, b —c =- 3,贝U a—c 等于(B)A.1 B.-1 C.5 D.-52. (2017 •济宁单项式9x m y3与单项式4x2y n是同类项,则m + n的值是(D) A.2 B.3 C.4 D.53.(2017 •宁波)下列计算正确的是(C)A. a2+ a3= a5B. (2a)2= 4aC. a2a3= a5D . (a2)3= a54.把多项式m2—9m 分解因式,结果正确的是(A)A.m(m—9) B.(m+3)(m—3)C.m(m+3)(m—3) D.(m—3)25. (2017 •南京计算106x(102)3+104的结果是(C)A.103B.107C.108D.1096.下列计算正确的是(C)A. x3+ x2= x5B. 2x3x2= 2x6C. (3 x3)2= 9x6D . x6-x3= x27. (2017 •重庆B)若x=—3, y= 1,则代数式2x—3y + 1的值为(B) A.—10 B.—8 C.4 D.10。
卷1:数与式班级: 姓名: 分数:一、选择题:(1-8题,8×3分=24分)1、与数轴上的点是一一对应的是---------------------------------------( )(A )有理数 (B )实数 (C )无理数 (D )整数2、下列各数中,无理数是---------------------------------------------( )(A )02 (B )122 (C )124 (D )1383、在下列计算中,正确的是-------------------------------------------( )(A )633a a a =+ (B )a a a -=-÷-45)()( (C )54a a a =⋅- (D )632)(a a =-4、化简2)3(-的结果是---------------------------------------------( )(A )-3 (B )3或-3 (C )3 (D )95--------------------------( )(A )(B )(C )(D )6、把23xy x -分解因式,正确的结果是---------------------------------( )(A )))((xy x xy x -+ (B))(22y x x -(C) 2)(y x x - (D)))((y x y x x +-7、若()2120m n -++=,则m n +的值为-----------------------------( ) (A )-1 (B )-3 (C )3 (D )不能确定8、如果a 与-2互为相反数,那么a 等于--------------------------------( )(A )2 (B )12 (C )12- (D )-2 二、填空题:(9-24题,16×4分=64分)9、-5的倒数是 .10= .11、计算=-+)2)(2(b a b a .12、用科学记数法表示-3820000= . 13、当x= 时,分式25-x x没有意义. 14、x 25-有意义,则x . 15、计算=---111x x x . 16、计算52-= .17、计算=÷553. 18、16的平方根是 . 19、化简=-231 .20、因式分解:=-a a 163.21、数轴上一点到原点的距离为5,则该点表示的数为 . 22、若132+-x a与b a x 321+是同类项,则x= . 23、若22x x c ++在实数范围内不能分解因式,则c 的取值范围为______________. 24、一种商品成本价为x 元,按成本价增加25%定出价格销售,则销售价格为 _元. 三、解答题(25-31题,4×8分+3×10分=62分) 25、计算:2161831502-+ 26、211)3(2)31(02-+---+--27、计算:)1)(3()3)(3()12--+-++-x x x x x (28、计算:⎪⎭⎫⎝⎛-÷+-+4)223(2a a a a a a29、化简并求值yx y x +⨯+2)11(,其中x=2,3=y30、化简并求值yx y yx x +--,其中33x y ==31、在实数范围内因式分解:236x x a -+卷1答案:一、选择题1、B2、B3、B4、C5、D6、D7、A8、A 二、填空题9、51- 10、3 11、224b a - 12、61082.3⨯- 13、x =2 14、x ≤5215、-1 16、25- 17、5318、2± 19、23-- 20、)4)(4(-+a a a 21、5± 22、x =1 23、c >1 24、x 45 三、解答题25、29 26、7 27、5632--x x 28、42-a 29、化简得:xy 2=3330、化简得:=-+y x y x 3- 31、当a >3时,236x x a -+在实数范围内不能分解;当a =3时,236x x a -+=()231x -;当a >3时,236x x a -+=⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-+-3393333933a x a x。
2016年辽宁省辽阳市中考数学真题及答案一、选择题(本题共10小题,每小题3分,共30分) 1.-2的倒数数是( )A .2 B .21 C .-2 D .﹣212.下列运算正确的是( ) A .a ﹣(﹣a )=﹣2a B .a 5•(﹣a 3)=a 8 C .(﹣a 2b )3= ﹣a 6b 3D .(a+b )(b ﹣a )=a 2﹣b2 3.如图是由5个相同的小正方体构成的几何体,其左视图是( )A .B .C .D .4. 一组数据﹣3,3,﹣2,3, 1的中位数是( ) A .﹣3 B .﹣2 C .1 D .35.现有3张正面图形分别是等边三角形、平行四边形、正方形的卡片,它们除正面图形不同,其他完全相同,将它们背面朝上洗匀后,从中随机抽取1张卡片,卡片的正面图形是中心对称图形的概率是( )A .31B .32C .61D .656.如图,将一个含有30°角的直角三角尺放置在两条平行线a ,b 上.若∠1=135°,则∠2的度数为( )A .95°B .110°C .105°D .115°7.关于x 的一元二次方程ax 2﹣2x+1=0有两个不相等的实数根,则a 的取值范围是( ) A .a ≤1 B .a <1 C .a ≤1且a ≠0 D .a <1且a ≠08.已知一次函数y=kx+b 的图象如图所示,当y >﹣3时,x 的取值范围是( )9.如图,点A 为反比例函数x y 8=(x >0)图象上一点,点B 为反比例函数xky =(x <0)图象上一点,直线AB 过原点O ,且OA=2OB ,则k 的值为( )A .2 B .4 C .﹣2 D .﹣410.将抛物线c x x y +-=422向左平移2个单位长度得到的抛物线经过三点(﹣4,y 1),(﹣2 ,y 2),(21,y 3),则y 1,y 2,y 3 的大小关系是( )A .y 2>y 3>y 1B .y 1>y 2>y 3C .y 2>y 1>y 3D .y 1>y 3>y 2 二、填空题(本题共8小题,每小题3分,共24分)11.据中国互联网信息中心统计,中国网民数约为688 000 000人,将688 000 000用科学记数法表示为 .12.分解因式:4x 2y ﹣4xy+y= .13.跳远训练时,甲、乙两名同学在相同条件下各跳了10次.统计他们的平均成绩都是5.68m ,且方差分别为S 2甲=0.3和S 2乙=0.4,则成绩较稳定的是 同学.14.在一个不透明的口袋中,装有除颜色外无其他差别的4个白球和n 个黄球.某同学进行了如下实验:从袋中随机摸出1个球记下它的颜色,放回摇匀,为一次摸球实验.记录摸球的次数与摸出白球的次数的列表如下: 根据列表可以估计出n 的值为 .15.如图,在∆ABC 中,∠ACB=90°,BC=1,AC=2.将∆ABC 绕点C 按逆时针方向旋转90°得到∆A 1B 1C ,连接A 1A,则∆A 1B 1A 的面积为 .16.如图,正五边形ABCDE 内接于⊙O ,点F 在CD 上,则∠BFE 的度数为 . 17.如图,将一副三角尺拼成四边形ABCD ,点E 为AB 边的中点,AB=4,则点D 与点E 的距离是 .18观察下列图形:它们是按一定规律排列的,依照此规律,第n 个图中共有 个★. 三、解答题(第19小题10分,第20-25小题各12分,第26小题14分,共96分)19.先化简,再求值:aa a a a a -++÷--22122442,其中a=2cos45°+(π-1)º.20.为进一步发展学生特长,某校要开设编织、摄影、航模、机器人四门校本课程,规定每名学生必须且只能选修一门校本课程,学校对学生选修本课程的情况进行了抽样调查,根据调查结果绘制了下面两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题.(1)本次调查,一共调查了 名学生; (2)补全条形统计图和扇形统计图;摸球实验的次数 100 200 500 100 摸球白球的次数2139102199(3)若该学校共有1700名学生据此估计有多少名学生选修航模;(4)将2名选修摄影的学生和2名选修编织的学生编为一组,从中随机抽取2人,请用列表或画树状图的方法求出2人都选修编织的概率.21.为提高中小学的身体素质,各校大力开展校园足球活动,某体育用品商店抓住这一商机,第一次用30000元购进A,B两种型号的足球,并很快销售完毕,共获利12200元,共进价和售价如下表:(1)该体育用品商店购进A,B两种型号的足球各多少个?(2)该体育用品商店第二次准备用不过超过40000元的资金再次购进A,B两种型号的足球共260个,最少购进A种型号的足球多少个?22.某数学小组开展测量物体高度的实践活动,他们要测量某建筑物上悬挂的电子显示屏的高度.如图所示,他们先在点A测得电子显示屏底端点D的仰角∠DAC=15°,然后向建筑物的方向前进10m到达点B,又测得电子显示屏顶端点E的仰角∠EBC=45°,测得电子显示屏底端点D的仰角∠DBC=30°.(点A,B,C在同一条直线上,且与点D,E在同一平面内,不考虑测角仪高度)(1)求此时他们离建筑的距离BC的长;(2)求电子显示屏DE的高度.(以上结果用含根号的式子表示)23.如图,在△ABC中,AB=AC,点D是BC边长一点,DE⊥AB,垂直为点E,点O在线段ED 的延长线上,且⊙O经过C,D两点.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,CD的长为109π,请求出∠A的度数.24.某商店以每件50元的价格购进一批新型产品,如果按每件60元出售,那么每周可销售500件,根据试销规律,这种产品的销售单价每提高1元,其销售量每周相应减少10件,但每件产品的销售单价不低于60元,且不能高于85元,设每周的销售量为y(件),这种产品的销售单价为x(元),解答下列问题.(1)请直接写出y与x之间的函数关系式;(2)商家要想每周获得8000元的销售利润,销售单价应定为多少元?(3)销售单价为多少元时,每周获得的销售利润最大?最大利润是多少元?25.已知在菱形ABCD中,∠ABC=60∘,对角线AC、BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作菱形AEFG,且∠AEF=60∘.(1)如图1,若点F落在线段BD上,请判断:线段EF与线段DF的数量关系是 .(2)如图2,若点F不在线段BD上,其它条件不变,(1)中的结论是否仍然成立?请给出判断并予以证明;(3)若点C,E,G三点在同一直线上,其它条件不变,请直接写出线段BE与线段BD的数量关系。
第一章数与式 一、选择题(每小题5分,共25分)1.(2015·某某)下列实数中,是有理数的为( D )A .2B .34C .πD .02.(2015·某某)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为(C )A .5×109千克B .50×109千克C .5×1010千克D .×1011千克 3.(某某模拟)若|a -1|=a -1,则a 的取值X 围是( A )A .a ≥1B .a ≤1C .a <1D .a >14.(2015·某某州)下列计算正确的是( C )A .4x 3·2x 2=8x 6B .a 4+a 3=a 7C .(-x 2)5=-x 10D .(a -b)2=a 2-b 25.(某某模拟)如果a +a 2-4a +4=2,那么a 的取值X 围是( B ) A .a ≤0 B .a ≤2 C .a ≥-2 D .a ≥2二、填空题(每小题5分,共25分)6.在代数式2x ,13(x +y),x π-3,5a -x ,x (x -y )x ,x +3(x +1)(x -2)中,分式有__3__个.7.(2015·某某)如图,数轴上点A ,B 所表示的两个数的和的绝对值是__1__.8.(2015·某某)分解因式:8-2x 2=__2(2+x)(2-x)__. 9.(2015·某某)若a <6<b ,且a ,b 是两个连续的整数,则a b=__8__.10.(某某模拟)若分式x 2-2x -3x +1的值为0,则x 的值为__3__. 三、解答题(共50分)11.(10分) 计算:(1)(2015·某某)8+|22-3|-( 13)-1-(2015+2)0; 解:原式=22+3-22-3-1=-1(2)(2015·某某)(-2015)0+|1-2|-2cos45°+8+(-13)-2.解:原式=1+2-1-2×22+22+9=22+912.(6分) 已知x+y=-7,xy=12,求y xy+xyx的值.解:∵x+y=-7<0,xy=12>0,∴x<0,y<0,∴原式=- 2xy=-212=-4 313.(8分)(2013·某某)如图,将长和宽分别是a,b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用含a,b,x的代数式表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.解:(1)ab-4x2(2)依题意得:ab-4x2=4x2,将a=6,b=4,代入上式得x2=3,解得x=3(x=-3舍去),∴正方形边长为 314.(18分) (1)(某某模拟)先化简,再求值:a2-b2a÷(a-2ab-b2a),其中a=2+3,b=2-3;解:原式=(a +b )(a -b )a ÷a 2-2ab +b 2a =(a +b )(a -b )a ·a (a -b )2=a +b a -b,当a =2+3,b =2-3时,原式=2+3+2-32+3-2+3=423=233(2)(2015·达州)化简a a 2-4·a +2a 2-3a -12-a,并求值,其中a 与2,3构成△ABC 的三边,且a 为整数;解:原式=a (a +2)(a -2)·a +2a (a -3)+1a -2=1(a -2)(a -3)+1a -2=1+a -3(a -2)(a -3)=a -2(a -2)(a -3)=1a -3,∵a 与2,3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4,当a =2或a =3时,原式没有意义,则a =4时,原式=1(3)(2015·乌鲁木齐)先化简,再求值:(a +2a 2-2a +1-a a 2-4a +4)÷a -4a,其中a 满足a 2-4a -1=0.解:原式=(a +2)(a -2)+a (1-a )a (a -2)2·a a -4=1(a -2)2,由a 满足a 2-4a -1=0得(a -2)2=5,故原式=1515.(8分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,….解答下列问题:(1)32016的末位数字是多少?(2)3+32+33+33+…+32016的末位数字是多少? 解:(1)由题意可知,3n 的末位数字每4个循环,因为2016÷4=504,∴32016的末位数字是1 (2)由3+9+7+1=20,得504×20=10080,∴末位数字是0。
2.【答案】A
【解析】这个几何体的俯视图为,故选A.
25
=,故选项x x
错误;故选
2)180540
︒=
【提示】根据多边形的内角和公式求出边数即可.
1
+=
m m
(1)
【提示】原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果
613
ED DO
'
或画树状图得:
=,∴四边形CEDB是菱形. ∵BC BD
30 (2)
(3)估计该校2000名学生中约有800名学生最喜欢跳大绳
【解析】(1)2010%200m =÷=,=20040%=80n ⨯,60200=30%÷,30p =,
故答案为:200,80,30;
(2)如图:
(3)200040%=800⨯(名),
估计该校2000名学生中约有800名学生最喜欢跳大绳.
【提示】(1)根据丢沙包的人数和所占的百分比确定m 的值,进而确定n 的值.根据所有项目的百分比之和为1确定p 的值;
(2)根据n 的值补全条形统计图;
(3)以样本的频率作为总体的概率估计全校喜欢跳大绳的人数.
【考点】统计表,条形统计图,利用样本估计总体
21.【答案】(1)证明:连接OD ,如图所示.
∵DF 是⊙O 的切线,D 为切点,∴OD DF ⊥,∴90ODF ∠=︒.
∵BD CD =,OA OB =,∴OD 是△ABC 的中位线,∴OD ∥AC ,∴90CFD ODF ∠=∠=︒,
∴DF AC ⊥.
422
∴13
+=.
BE CE
20
12189S =.
中,
21217)17289222
=.。
2016年辽宁省抚顺市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)3的相反数是()A.﹣B.﹣3 C.3 D.2.(3分)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)函数y=中自变量x的取值范围是()A.x≥3 B.x>3 C.x≤3 D.x<34.(3分)下图所示几何体的主视图是()A.B.C.D.5.(3分)下列运算正确的是()A.a2+4a﹣4=(a+2)2B.a2+a2=a4C.(﹣2ab)2=﹣4a2b2D.a4÷a=a3 6.(3分)一次函数y=2x﹣4的图象与x轴、y轴分别交于A,B两点,O为原点,则△AOB 的面积是()A.2 B.4 C.6 D.87.(3分)下列调查中最适合采用全面调查的是()A.调查某批次汽车的抗撞击能力B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C.调查某班40名同学的视力情况D.调查某池塘中现有鱼的数量8.(3分)下列事件是必然事件的为()A.购买一张彩票,中奖B.通常加热到100℃时,水沸腾C.任意画一个三角形,其内角和是360°D.射击运动员射击一次,命中靶心9.(3分)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4 10.(3分)如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C 在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣12二、填空题(本题共8小题,每小题3分,共24分)11.(3分)2016年我国约有9 400 000人参加高考,将9 400 000用科学记数法表示为.12.(3分)分解因式:a2b﹣2ab+b= .13.(3分)不等式组的解集是.14.(3分)某校九年二班在体育加试中全班所有学生的得分情况如表所示:分数段(分)15﹣1920﹣2425﹣2930人数15925从九年二班的学生中随机抽取一人,恰好是获得30分的学生的概率为.15.(3分)八年三班五名男生的身高(单位:米)分别为1.68,1.70,1.68,1.72,1.75,则这五名男生身高的中位数是米.16.(3分)若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为.17.(3分)如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD 时,点P的坐标为.18.(3分)如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y 轴上,点O是所有等边三角形的中心,则点A2016的坐标为.三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:÷(1+),其中x=﹣1.20.(12分)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某电视台为了解本地区电视节目的收视情况,对部分广州开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图,根据要求回答下列问题:(1)本次问卷调查共调查了名观众;(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为,“综艺节目”在扇形统计图中所对应的圆心角的度数为;(3)补全图①中的条形统计图;(4)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.22.(12分)如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.五、解答题(满分12分)23.(12分)小明要测量公园被湖水隔开的两棵大树A和B之间的距离,他在A处测得大树B在A的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,测得大树B在C的北偏西60°方向.(1)求∠ABC的度数;(2)求两棵大树A和B之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732,≈2.449)六、解答题(满分12分)24.(12分)有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?七、解答题(满分12分)25.(12分)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.八、解答题(满分14分)26.(14分)如图,抛物线y=﹣x2+bx+c经过点A(﹣3,0),点C(0,4),作CD∥x 轴交抛物线于点D,作DE⊥x轴,垂足为E,动点M从点E出发在线段EA上以每秒2个单位长度的速度向点A运动,同时动点N从点A出发在线段AC上以每秒1个单位长度的速度向点C运动,当一个点到达终点时,另一个点也随之停止运动,设运动时间为t秒.(1)求抛物线的解析式;(2)设△DMN的面积为S,求S与t的函数关系式;(3)①当MN∥DE时,直接写出t的值;②在点M和点N运动过程中,是否存在某一时刻,使MN⊥AD?若存在,直接写出此时t 的值;若不存在,请说明理由.2016年辽宁省抚顺市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(2016•抚顺)3的相反数是()A.﹣B.﹣3 C.3 D.【分析】根据相反数的定义即可求解.【解答】解:3的相反数是﹣3,故选B.【点评】本题考查了相反数的定义,熟练相反数的定义是解题的关键.2.(3分)(2016•抚顺)下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、该图形既是轴对称图形又是中心对称图形,故本选项正确;B、该图形是轴对称图形,但不是中心对称图形,故本选项错误;C、该图形是中心对称图形,但不是轴对称图形,故本选项错误;D、该图形既不是中心对称图形,也不是轴对称图形,故本选项错误;故选:A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(2016•抚顺)函数y=中自变量x的取值范围是()A.x≥3 B.x>3 C.x≤3 D.x<3【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得3﹣x≥0,解得x≤3.故选:C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.(3分)(2016•抚顺)下图所示几何体的主视图是()A.B.C.D.【分析】根据主视图的意义和几何体得出即可.【解答】解:几何体的主视图是,故选A.【点评】本题考查了简单几何体的三视图的应用,能理解三视图的意义是解此题的关键.5.(3分)(2016•抚顺)下列运算正确的是()A.a2+4a﹣4=(a+2)2B.a2+a2=a4C.(﹣2ab)2=﹣4a2b2D.a4÷a=a3【分析】根据完全平方公式;合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a2+4a+4=(a+2)2,故A错误;B、a2+a2=2a2,故B错误;C、(﹣2ab)2=4a2b2,故C错误;D、a4÷a=a3,故D正确.故选:D.【点评】本题考查完全平方公式、合并同类项、积的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.6.(3分)(2016•抚顺)一次函数y=2x﹣4的图象与x轴、y轴分别交于A,B两点,O 为原点,则△AOB的面积是()A.2 B.4 C.6 D.8【分析】由直线解析式可求得A、B两点的坐标,从而可求得OA和OB的长,再利用三角形的面积可求得答案.【解答】解:在y=2x﹣4中,令y=0可得x=2,令x=0可得y=﹣4,∴A(2,0),B(0,﹣4),∴OA=2,OB=4,∴S△AOB=OA•OB=×2×4=4,故选B.【点评】本题主要考查一次函数与坐标轴的交点,掌握函数图象与坐标轴的交点的求法是解题的关键.7.(3分)(2016•抚顺)下列调查中最适合采用全面调查的是()A.调查某批次汽车的抗撞击能力B.端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况C.调查某班40名同学的视力情况D.调查某池塘中现有鱼的数量【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、调查某批次汽车的抗撞击能力,破坏力强,适宜抽查;B、端午节期间,抚顺市食品安全检查部门调查市场上粽子的质量情况,范围比较广,适宜抽查;C、调查某班40名同学的视力情况,调查范围比较小,适宜全面调查;D、调查某池塘中现有鱼的数量,调查难度大,适宜抽查,故选C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.(3分)(2016•抚顺)下列事件是必然事件的为()A.购买一张彩票,中奖B.通常加热到100℃时,水沸腾C.任意画一个三角形,其内角和是360°D.射击运动员射击一次,命中靶心【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、购买一张彩票,中奖,是随机事件;B、通常加热到100℃时,水沸腾,是必然事件;C、任意画一个三角形,其内角和是360°,是不可能事件;D、射击运动员射击一次,命中靶心,是随机事件;故选:B.【点评】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(3分)(2016•抚顺)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.【点评】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10.(3分)(2016•抚顺)如图,矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣12【分析】先设D(a,b),得出CO=﹣a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=12,最后根据AB∥OE,得出=,即BC•EO=AB•CO,求得ab的值即可.【解答】解:设D(a,b),则CO=﹣a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数y=(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴=,即BC•EO=AB•CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故选(D).【点评】本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力.解题的关键是将△BCE 的面积与点D的坐标联系在一起,体现了数形结合的思想方法.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)(2016•抚顺)2016年我国约有9 400 000人参加高考,将9 400 000用科学记数法表示为9.4×106.【分析】数据绝对值大于10或小于1时科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:9 400 000=9.4×106;故答案为:9.4×106.【点评】题考查的是科学记数法.任意一个绝对值大于10或绝对值小于1的数都可写成a ×10n的形式,其中1≤|a|<10.对于绝对值大于10的数,指数n等于原数的整数位数减去1.12.(3分)(2016•抚顺)分解因式:a2b﹣2ab+b= b(a﹣1)2.【分析】先提取公因式b,再利用完全平方公式进行二次分解.【解答】解:a2b﹣2ab+b,=b(a2﹣2a+1),…(提取公因式)=b(a﹣1)2.…(完全平方公式)【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.13.(3分)(2016•抚顺)不等式组的解集是﹣7<x≤1 .【分析】分别解出不等式组中两个不等式的解,合在一起即可得出不等式组的解集.【解答】解:.解不等式①,得x≤1;解不等式②,得x>﹣7.∴不等式组的解集为﹣7<x≤1.故答案为:﹣7<x≤1.【点评】本题考查了解一元一次不等式组,解题的关键是熟练掌握解不等式组的方法.本题属于基础题,难度不大,解集该题型题目时,熟练掌握解不等式(或不等式组)的方法是关键.14.(3分)(2016•抚顺)某校九年二班在体育加试中全班所有学生的得分情况如表所示:分数段(分)15﹣1920﹣2425﹣2930人数15925从九年二班的学生中随机抽取一人,恰好是获得30分的学生的概率为.【分析】根据统计表的意义,将各组的频数相加可得班级的总人数;读表可得恰好是获得30分的学生的频数,计算可得答案.【解答】解:该班共有1+5+9+25=40人.P(30)==,故答案为:.【点评】主要考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(3分)(2016•抚顺)八年三班五名男生的身高(单位:米)分别为1.68,1.70,1.68,1.72,1.75,则这五名男生身高的中位数是 1.70 米.【分析】先把这些数从小到大排列,找出最中间的数即可得出答案.【解答】解:把这些数从小到大排列为:1.68,1.68,1.70,1.72,1.75,最中间的数是1.70,则这五名男生身高的中位数是1.70米;故答案为:1.70.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.16.(3分)(2016•抚顺)若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为a≤且a≠1 .【分析】由一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a﹣1≠0,即a≠1,且△≥0,即△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,然后解两个不等式得到a的取值范围.【解答】解:∵一元二次方程(a﹣1)x2﹣x+1=0有实数根,∴a﹣1≠0即a≠1,且△≥0,即有△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,解得a≤,∴a的取值范围是a≤且a≠1.故答案为:a≤且a≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程的定义.17.(3分)(2016•抚顺)如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C 运动,当OP=CD时,点P的坐标为(2,4)或(4,2).【分析】分两种情况①当点P在正方形的边AB上时,根据正方形的性质用HL判断出Rt△OCD≌Rt△OAP,得出AP=2,得出点P的坐标,②当点P在正方形的边BC上时,同①的方法即可.【解答】解:①当点P在正方形的边AB上时,在Rt△OCD和Rt△OAP中,∴Rt△OCD≌Rt△OAP,∴OD=AP,∵点D是OA中点,∴OD=AD=OA,∴AP=AB=2,∴P(4,2),②当点P在正方形的边BC上时,同①的方法,得出CP=BC=2,∴P(2,4)∴P(2,4)或(4,2)故答案为(2,4)或(4,2)【点评】此题是全等三角形的判定和性质,主要考查了正方形的性质,全等三角形的判定和性质,解本题的关键是判断出Rt△OCD≌Rt△OAP.18.(3分)(2016•抚顺)如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n (n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2016的坐标为(0,448).【分析】先关键等边三角形的性质和已知条件得出A3的坐标,根据每一个三角形有三个顶点确定出A2016所在的三角形,再求出相应的三角形的边长以及A2016的纵坐标的长度,即可得解;【解答】解:∵,△A1A2A3为等边三角形,边长为2,点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,∴A3的坐标为(0,),∵2016÷3=672,∴A2016是第672个等边三角形的第3个顶点,∴点A 2016的坐标为(0,×),即点A2016的坐标为(0,448);故答案为:(0,448).【点评】本题是点的变化规律的考查,主要利用了等边三角形的性质,确定出点A3和A2016所在三角形是解题的关键.三、解答题(第19题10分,第20题12分,共22分)19.(10分)(2016•抚顺)先化简,再求值:÷(1+),其中x=﹣1.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.20.(12分)(2016•抚顺)如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.【分析】(1)首先根据角平分线的性质得到∠DAC=∠BAC,∠ABD=∠DBC,然后根据平行线的性质得到∠DAB+∠CBA=180°,从而得到∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,得到答案∠AOD=90°;(2)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案.【解答】解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.【点评】本题考查了等腰三角形的性质,平行四边形的判定,菱形的判定的应用,能得出四边形ABCD是平行四边形是解此题的关键.四、解答题(第21题12分,第22题12分,共24分)21.(12分)(2016•抚顺)某电视台为了解本地区电视节目的收视情况,对部分广州开展了“你最喜爱的电视节目”的问卷调查(每人只填写一项),根据收集的数据绘制了下面两幅不完整的统计图,根据要求回答下列问题:(1)本次问卷调查共调查了200 名观众;(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为25% ,“综艺节目”在扇形统计图中所对应的圆心角的度数为63°;(3)补全图①中的条形统计图;(4)现有最喜爱“新闻节目”(记为A),“体育节目”(记为B),“综艺节目”(记为C),“科普节目”(记为D)的观众各一名,电视台要从四人中随机抽取两人参加联谊活动,请用列表或画树状图的方法,求出恰好抽到最喜爱“B”和“C”两位观众的概率.【分析】(1)用喜欢科普节目的人数除以它所占的百分比即可得到调查的总人数;(2)用喜爱“新闻节目”的人数除以调查总人数得到它所占的百分比,然后用360度乘以喜欢“综艺节目”的人数所占的百分比得到综艺节目”在扇形统计图中所对应的圆心角的度数;(3)用调查的总人数分别减去喜欢新闻、综艺、科普的人数得到喜欢体育的人数,然后补全图①中的条形统计图;(4)画树状图展示所有12种等可能的结果数,再找出抽到最喜爱“B”和“C”两位观众的结果数,然后根据概率公式求解.【解答】解:(1)本次问卷调查共调查的观众数为45÷22.5%=200(人);(2)图②中最喜爱“新闻节目”的人数占调查总人数的百分比为50÷200=25%;“综艺节目”在扇形统计图中所对应的圆心角的度数为360°×=63°;故答案为200,25%,63°;(3)最喜爱“新闻节目”的人数为200﹣50﹣35﹣45=70(人),如图,(4)画树状图为:共有12种等可能的结果数,恰好抽到最喜爱“B”和“C”两位观众的结果数为2,所以恰好抽到最喜爱“B”和“C”两位观众的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.22.(12分)(2016•抚顺)如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,∠MAC=∠CAB,作CD⊥AM,垂足为D.(1)求证:CD是⊙O的切线;(2)若∠ACD=30°,AD=4,求图中阴影部分的面积.【分析】(1)先证明OC∥AM,由CD⊥AM,推出OC⊥CD即可解决问题.(2)根据S阴=S△ACD﹣(S扇形OAC﹣S△AOC)计算即可.【解答】解:(1)连接OC.∵OA=OC.∴∠OAC=∠OCA,∵∠MAC=∠OAC,∴∠MAC=∠OCA,∴OC∥AM,∵CD⊥AM,∴OC⊥CD,∴CD是⊙O的切线.(2)在RT△ACD中,∵∠ACD=30°,AD=4,∠ADC=90°,∴AC=2AD=8,CD=AD=4,∵∠MAC=∠OAC=60°,OA=OC,∴△AOC是等边三角形,∴S阴=S△ACD﹣(S扇形OAC﹣S△AOC)=×4×4﹣(﹣×82)=24﹣π.【点评】本题考查切线的判定、扇形的面积,解题的关键是熟练掌握切线的判定方法,学会利用分割法求面积,属于中考常考题型.五、解答题(满分12分)23.(12分)(2016•抚顺)小明要测量公园被湖水隔开的两棵大树A和B之间的距离,他在A处测得大树B在A的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,测得大树B在C的北偏西60°方向.(1)求∠ABC的度数;(2)求两棵大树A和B之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732,≈2.449)【分析】(1)先利用平行线的性质得∠ACM=∠DA C=15°,再利用平角的定义计算出∠ACB=105°,然后根据三角形内角和计算∠ABC的度数;(2)作CH⊥AB于H,如图,易得△ACH为等腰直角三角形,则AH=CH=AC=100,在Rt△BCH中利用含30度的直角三角形三边的关系得到BH=CH=100,AB=AH+BH=100+100,然后进行近似计算即可.【解答】解:(1)∵CM∥AD,∴∠ACM=∠DAC=15°,∴∠ACB=180°﹣∠BCN﹣∠ACM=180°﹣60°﹣15°=105°,而∠BAC=30°+15°=45°,∴∠ABC=180°﹣45°﹣105°=30°;(2)作CH⊥AB于H,如图,∵∠BAC=45°,∴△ACH为等腰直角三角形,∴AH=CH=AC=×200=100,在Rt△BCH中,∵∠HBC=30°,∴BH=CH=100,∴AB=AH+BH=100+100≈141.4+244.9≈386.答:两棵大树A和B之间的距离约为386米.【点评】本题考查了解直角三角形的应用﹣方向角问题:在解决有关方向角的问题中,一般要根据题意理清图形中各角的关系,有时所给的方向角并不一定在直角三角形中,需要用到两直线平行内错角相等或一个角的余角等知识转化为所需要的角.解决此题的关键作CH⊥AB构建含特殊角的直角三角形.六、解答题(满分12分)24.(12分)(2016•抚顺)有一家苗圃计划植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图①所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图②所示的正比例函数y2=kx.(1)分别求出利润y1(万元)和利润y2(万元)关于投资成本x(万元)的函数关系式;(2)如果这家苗圃以10万元资金投入种植桃树和柏树,桃树的投资成本不低于2万元且不高于8万元,苗圃至少获得多少利润?最多能获得多少利润?【分析】(1)利用待定系数法求两个函数的解析式;(2)根据总投资成本为10万元,设种植桃树的投资成本x万元,总利润为W万元,则种植柏树的投资成本(10﹣x)万元,列函数关系式,发现是二次函数,画出函数图象,找出当2≤x≤8时的最小利润和最大利润.【解答】解:(1)把(4,1)代入y1=ax2中得:16a=1,a=,∴y1=x2,把(2,1)代入y2=kx中得:2k=1,k=,∴y2=x;(2)设种植桃树的投资成本x万元,总利润为W万元,则种植柏树的投资成本(10﹣x)万元,则W=y1+y2=x2+(10﹣x)=(x﹣4)2+4,由图象得:当2≤x≤8时,当x=4时,W有最小值,W小=4,当x=8时,W有最大值,W大=(8﹣4)2+4=5,答:苗圃至少获得4万元利润,最多能获得5万元利润.【点评】本题是二次函数和一次函数的应用,考查了利用待定系数法求函数的解析式;对于二次函数,在求最值问题时,不一定都是顶点坐标,要根据实际情况和图象结合考虑,得出结论.七、解答题(满分12分)25.(12分)(2016•抚顺)如图,在△ABC中,BC>AC,点E在BC上,CE=CA,点D在AB上,连接DE,∠ACB+∠ADE=180°,作CH⊥AB,垂足为H.(1)如图a,当∠ACB=90°时,连接CD,过点C作CF⊥CD交BA的延长线于点F.①求证:FA=DE;②请猜想三条线段DE,AD,CH之间的数量关系,直接写出结论;(2)如图b,当∠ACB=120°时,三条线段DE,AD,CH之间存在怎样的数量关系?请证明你的结论.【分析】(1)①根据ASA证明△AFC≌△EDC,可得结论;②结论是:DE+AD=2CH,根据CH是等腰直角△FCD斜边上的中线得:FD=2CH,再进行等量代换可得结论;(2)如图b,根据(1)作辅助线,构建全等三角形,证明△FAC≌△DEC得AF=DE,FC=CD,得等腰△FDC,由三线合一的性质得CH,是底边中线和顶角平分线,得直角△CHD,利用三角函数得出HD与CH的关系,从而得出结论.【解答】证明:(1)①∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠FCA+∠ACD=∠ACD+∠DCE,∴∠FCA=∠DCE,∵∠FAC=90°+∠B,∠CED=90°+∠B,∴∠FAC=∠CED,∵AC=CE,∴△AFC≌△EDC,∴FA=DE,②DE+AD=2CH,理由是:∵△AFC≌△EDC,。
第一章 数与式自我测试
一、选择题(每小题5分,共25分)
1.(2015·上海)下列实数中,是有理数的为( D )
A . 2
B .3 4
C .π
D .0
2.(2015·安顺)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心,据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( C )
A .5×109千克
B .50×109千克
C .5×1010千克
D .0.5×1011千克
3.(大连模拟)若|a -1|=a -1,则a 的取值范围是( A )
A .a ≥1
B .a ≤1
C .a <1
D .a >1
4.(2015·恩施州)下列计算正确的是( C )
A .4x 3·2x 2=8x 6
B .a 4+a 3=a 7
C .(-x 2)5=-x 10
D .(a -b)2=a 2-b 2
5.(辽阳模拟)如果a +a 2-4a +4=2,那么a 的取值范围是( B )
A .a ≤0
B .a ≤2
C .a ≥-2
D .a ≥2
二、填空题(每小题5分,共25分)
6.在代数式2x ,13(x +y),x π-3,5a -x ,x (x -y )x ,x +3(x +1)(x -2)
中,分式有__3__个.
7.(2015·烟台)如图,数轴上点A ,B 所表示的两个数的和的绝对值是__1__.
8.(2015·无锡)分解因式:8-2x 2=__2(2+x)(2-x)__.
9.(2015·丹东)若a <6<b ,且a ,b 是两个连续的整数,则a b =__8__.
10.(盘锦模拟)若分式x 2-2x -3x +1
的值为0,则x 的值为__3__. 三、解答题(共50分)
11.(10分) 计算:
(1)(2015·梅州)8+|22-3|-( 13
)-1-(2015+2)0; 解:原式=22+3-22-3-1=-1
(2)(2015·毕节)(-2015)0+|1-2|-2cos 45°+8+(-13
)-2. 解:原式=1+2-1-2×22+22+9=22+9
12.(6分) 已知x +y =-7,xy =12,求y x y +x y x
的值. 解:∵x +y =-7<0,xy =12>0,∴x <0,y <0,∴原式=- 2xy =-212=-
43
13.(8分)(2013·衢州)如图,将长和宽分别是a ,b 的矩形纸片的四个角都剪去一个边长为x 的正方形.
(1)用含a ,b ,x 的代数式表示纸片剩余部分的面积;
(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.
解:(1)ab -4x 2 (2)依题意得:ab -4x 2=4x 2
,将a =6,b =4,代入上式得x 2=3,解
得x =3(x =-3舍去),∴正方形边长为3
14.(18分) (1)(铁岭模拟)先化简,再求值: a 2-b 2a ÷(a -2ab -b 2a
),其中a =2+3,b =2-3;
解:原式=(a +b )(a -b )a ÷a 2-2ab +b 2a =(a +b )(a -b )a ·a (a -b )2=a +b a -b
,当a =2+3,b =2-3时,原式=2+3+2-32+3-2+3=423
=233
(2)(2015·达州)化简a a 2-4·a +2a 2-3a -12-a
,并求值,其中a 与2,3构成△ABC 的三边,且a 为整数;
解:原式=a (a +2)(a -2)·a +2a (a -3)+1a -2=1(a -2)(a -3)+1a -2
=1+a -3(a -2)(a -3)=a -2(a -2)(a -3)=1a -3
,∵a 与2,3构成△ABC 的三边,且a 为整数,∴1<a <5,即a =2,3,4,当a =2或a =3时,原式没有意义,则a =4时,原式=1
(3)(2015·乌鲁木齐)先化简,再求值:(a +2a 2-2a +1-a a 2-4a +4
)÷a -4a ,其中a 满足a 2-4a -1=0.
解:原式=(a +2)(a -2)+a (1-a )a (a -2)2·a a -4=1(a -2)
2,由a 满足a 2-4a -1=0得(a -2)2=5,故原式=15
15.(8分)观察下列等式:
31=3,32=9,33=27,34=81,35=243,36=729,37=2187,….
解答下列问题:
(1)32016的末位数字是多少?
(2)3+32+33+33+…+32016的末位数字是多少?
解:(1)由题意可知,3n的末位数字每4个循环,因为2016÷4=504,∴32016的末位数字是1 (2)由3+9+7+1=20,得504×20=10080,∴末位数字是0。