代数初步知识
- 格式:docx
- 大小:12.89 KB
- 文档页数:4
代数初步知识一、用字母表示数1 用字母表示数的意义和作用* 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式(1)常见的数量关系路程用s表示,速度v用表示,时间用t表示,三者之间的关系:s=vt v=s/t t=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系: a=bc b=a/c c=a/b(2)运算定律和性质加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:(a+b)c=ac+bc 减法的性质:a-(b+c) =a-b-c (3)用字母表示几何形体的公式长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。
c=2(a+b)s=ab正方形的边长a用表示,周长用c表示,面积用s表示。
c=4a s=a ²平行四边形的底a用表示,高用h表示,面积用s表示。
s=ah三角形的底用a表示,高用h表示,面积用s表示。
s=ah/2梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。
s=(a+b)h/2 s=mh圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。
c=∏d=2∏r s=∏ r²扇形的半径用r表示,n表示圆心角的度数,面积用s表示。
s=∏ nr²/360长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。
v=shs=2(ab+ah+bh) v=abh正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.s=6a² v=a³圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v 表示.s侧=ch s表=s侧+2s底 v=sh圆锥的高用h表示,底面积用s表示,体积用v表示. v=sh/33 用字母表示数的写法数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。
七年级上册数学复习资料:代数初步知识1.代数式:用运算符号"+-'连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用"'乘,或省略不写;(2)数与数相乘,仍应使用"'乘,不用"'乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.有理数1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a0a是正数;a0a是负数;a0a是正数或0a是非负数;a0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3)(4)|a|是重要的非负数,即|a|0;注意:|a||b|=|ab|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a0,那么的倒数是;倒数是本身的数是1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a20;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
一、代数初步知识1.自然数2.正数3.负数4.有理数有理数的分类:5.数轴6.相反数7.绝对值8.比较两个负数的大小9.有理数加法法则10.有理数减法法则11.有理数的乘法法则12.倒数13.有理数除法法则14.乘方二、字母表示数1.字母表示数和运算率加法运算率可以表示成:乘法运算率可以表示成:2.代数式3.用字母表示公式如:长方形的周长长方形的面积4.列代数式5.列代数式步骤6.代数式的值7.同类项8.合并同类项9.合并同类项法则10.合并同类项的步骤11.去括号法则三、一元一次方程1.等式等式分类:2.等式的基本性质3.方程4.方程的解5.解方程6.一元一次方程7.移项8.解一元一次方程的步骤9.解一元一次方程应用题的一般步骤四、整式1.单项式2.单项式的系数3.单项式的次数4.多项式5.多项式的次数6.整式7.整式的加法8.皮克公式9.同底数幂的乘法法则10.幂的乘方法则11.积的乘方法则12.同底数幂的除法13.单项式与单项式相乘法则14.单项式与多项式相乘法则15.多项式与多项式相乘法则16.平方差公式17.完全平方公式18.单项式除以单项式法则19.多项式除以单项式法则五、实数1.算术平方根2.平方根3.平方根的性质4.开平方5.立方根6.开立方7.无理数8.实数9.实数的性质10.实数运算两个规律11.无理数的估算12.实数与数轴13.实数比较大小方法14.非负数15.非负数的三种常见形式16.非负数的性质1.二元一次方程2.二元一次方程的一个解3.二元一次方程组4.二元一次方程组的解5.代入消元法6.用代入消元法解二元一次方程组的步骤7.加减消元法8.用加减消元法解二元一次方程组的步骤10.三元一次方程组的解法步骤11.二元一次方程与一次函数12.二元一次方程组的图像解法步骤七、一元一次不等式和不等式组1不等式2.不等式的性质3.不等式的解4.不等式的解集5.解不等式6.在数轴上表示不等式的解集7.一元一次不等式8.一元一次不等式的解法步骤9.一元一次不等式组10.一元一次不等式组的解集11.解不等式组12.解一元一次不等式组的步骤八、分解因式1.分解因式2.分因式3.提分因式法4.完全平方式5.运用公式法6.因式分解的基本步骤九、分式1.分式2.分式的基本性质3.约分4.最简分式5.分式的乘除法法则6.通分7.最简公分母8.最简公分母的确定方法9.同分母分式加减法法则10.异分母分式加减法法则11.分式的混合运算12.分式方程13.解分式方程的一般步骤14.增根15.列分式方程解应用题的一般步骤十、一元二次方程1.整式方程2.一元二次方程3.一元二次方程的一般形式4.一元二次方程的解法5.配方法6.公式法7.一元二次方程根与系数的关系8.分解因式法9.列一元二次方程解应用题的一般步骤十一、函数及其图像1.变量之间的关系变量与常量自变量与因变量表示自变量与变量之间关系的方法2.位置的确定平面直角坐标系点的坐标象限特殊点的坐标特征图形的变化与坐标的变化3.一次函数函数函数的表示方法函数自变量的限值范围图像由函数关系式作函数图像的步骤一次函数正比例函数一次函数的图像一次函数的性质正比例函数的性质直线的平移待定系数法用待定系数求函数解析式的一般步骤确定一次函数表达式一次函数图像的识别4.反比例函数反比例函数反比例函数的图像反比例函数性质反比例函数关系中的定值问题5.二次函数二次函数二次函数的性质抛物线函数y=ax²+bx+c(a≠0)的系数与其图像之间的关系二次函数的表示方法及特点二次函数y=ax²+bx+c(a≠0)与一元二次方程ax²+bx+c(a≠0)之间的关系(以a>0为例)用二次函数的图像求一元二次方程的方法步骤用二函数解决实际问题的基本思路。
初步认识代数代数作为数学的一个重要分支,是研究符号和符号之间关系的一门学科。
它不仅是数学基础学科,也是自然科学和社会科学的工具。
一、代数的起源与发展代数的起源可以追溯到古希腊和古巴比伦时期。
在古希腊,毕达哥拉斯等数学家已经开始研究代数方程,并建立了一些基本概念和方法。
而在古巴比伦,人们已经使用代数方法来解决一些实际问题。
代数的发展在欧洲文艺复兴时期得到了进一步推动。
伽利略、笛卡尔等科学家和数学家在代数领域的研究为代数学的发展奠定了基础。
到了18世纪,欧拉、拉格朗日等数学家又进一步完善了代数学的理论。
二、代数的基本概念与方法1. 代数的基本概念在代数学中,常见的基本概念包括变量、常数、系数、系数域、多项式等。
- 变量:代数中的未知数,通常用字母表示。
- 常数:代数中的已知数,可以是实数、有理数、无理数或复数。
- 系数:多项式中各个项的系数,可以是常数或表示为其他变量。
- 系数域:定义系数所属的数域或数学结构,如实数域、有理数域等。
- 多项式:由常数或变量及它们的乘积和幂次组成的代数表达式。
2. 代数的基本方法代数的基本方法包括代数运算、方程求解、代数式化简等。
- 代数运算:代数中常见的运算包括加法、减法、乘法、除法和幂运算等。
- 方程求解:代数方程指含有未知数的等式,求解方程就是找出使得方程成立的未知数的值。
- 代数式化简:利用代数运算的性质和规则,将复杂的代数式化简为简洁的形式。
三、代数在实际生活中的应用代数不仅在数学领域中有着重要的作用,也广泛应用于实际生活和其他学科领域。
1. 自然科学中的应用在物理学、化学、生物学等自然科学领域中,代数方法被广泛应用于建立模型、解决实际问题、预测和分析等。
2. 工程技术中的应用代数在工程技术中的应用主要包括电路分析、信号处理、控制系统设计等方面,帮助工程师解决复杂的问题。
3. 经济金融中的应用代数和数学模型在经济学和金融学中有着重要的地位。
它们被用于统计预测、风险控制、投资分析等方面。
七年级数学代数初步数学代数是数学中的一个重要分支,也是初中数学的基础内容之一。
它研究的是数和运算的关系,是数学中的一种广泛应用的工具。
在七年级的数学课程中,我们将初步接触数学代数的基本概念和运算方法。
本文将从以下几个方面来介绍七年级数学代数初步的相关内容。
一、代数式的引入在数学中,我们常常用字母表达一些未知的数或者数之间的关系。
这种用字母表示数的方式称为代数式。
七年级的数学课程中,我们将学习如何表达代数式,并通过一些实际问题来理解代数式的意义。
举个例子,如果我们要求解一个未知数x,可以写出x + 5 = 10的代数式,并通过运算求解出x的值。
二、代数式的运算在代数中,我们可以对代数式进行各种运算,比如加法、减法、乘法和除法。
在七年级数学代数初步中,我们将学习代数式的四则运算,并通过练习题来提高我们对代数式运算的熟练度。
通过这些运算,我们可以简化复杂的代数式,便于进行后续的问题求解。
三、一元一次方程一元一次方程是代数学中非常重要的内容,它是一个未知数的一次多项式等于一个已知数的等式。
在七年级数学代数初步中,我们将学习如何解一元一次方程。
通过将方程转化为等价形式,我们可以通过逆运算将方程化简成最简形式,并求得未知数的值。
这种方法的应用将帮助我们解决一些实际生活中的问题。
四、解实际问题数学代数的运用不仅仅停留在纸上,它可以帮助我们解决许多实际生活中的问题。
在七年级数学代数初步中,我们将学习如何通过代数的方法解决实际问题。
比如,在解题中可以用代数式表示两个数的关系,进而通过方程求解出未知数的值。
这种方法既能提高我们的数学思维能力,又能解决实际问题,有着深远的应用价值。
综上所述,七年级数学代数初步是我们在数学学习中的重要内容。
通过学习代数式的引入、代数式的运算、一元一次方程的解法以及实际问题的应用,我们将对数学代数有更深入的认识和理解。
在这个过程中,我们不仅能提高数学能力,还能培养逻辑思维和解决问题的能力,在日后的学习和生活中受益匪浅。
第三章代数初步知识一、用字母表示数1 用字母表示数的意义和作用* 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式(1)常见的数量关系路程用s表示,速度v用表示,时间用t表示,三者之间的关系:s=vtv=s/tt=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bcb=a/cc=a/b(2)运算定律和性质加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc减法的性质:a-(b+c) =a-b-c(3)用字母表示几何形体的公式长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。
c=2(a+b)s=ab正方形的边长a用表示,周长用c表示,面积用s表示。
c=4as=a²平行四边形的底a用表示,高用h表示,面积用s表示。
s=ah三角形的底用a表示,高用h表示,面积用s表示。
s=ah/2梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。
s=(a+b)h/2s=mh圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。
c=∏d=2∏rs=∏r²扇形的半径用r表示,n表示圆心角的度数,面积用s表示。
s=∏nr²/360长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。
v=shs=2(ab+ah+bh)v=abh正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.s=6a²v=a³圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.s侧=chs表=s侧+2s底v=sh圆锥的高用h表示,底面积用s表示,体积用v表示.v=sh/33 用字母表示数的写法数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。
代数初步知识教学中常见问题及对应教案解决方案。
问题一:学生不理解代数表达式的概念和组成部分在代数初步知识的教学过程中,很多学生常常不理解代数表达式的概念和组成部分。
他们可能会将代数表达式和数学方程式混淆在一起,甚至会把几个数字看成是代数表达式的一部分。
解决方案:在教学中,我们应该先让学生了解什么是代数表达式,并引导他们理解代数表达式的组成部分。
可以通过实际的生活例子,让学生更直观地理解代数表达式。
例如: $x+2$ 就可以解释为某人有 $x$ 个苹果,再买了 $2$ 个苹果,这样可以让学生更好地理解代数表达式和数学方程式的区别。
另外,还可以通过编写代数表达式,让学生更好的理解其组成部分。
问题二:学生不理解代数运算的规则和方法在代数初步知识的教学过程中,许多学生往往会感到绕晕。
他们不理解代数运算的规则和方法,因此常常会犯错。
解决方案:在教学中,我们应该注重代数运算规则和方法的讲解,清晰地解释每一个步骤的含义。
我们可以通过一些较为复杂数学问题来引导学生理解代数运算,例如:$(2x + 5) - (3x - 2)$。
通过演示这个问题的解决过程,让学生更好的掌握代数运算规则和方法。
问题三:学生对变量的概念和使用方法不理解在代数初步知识中,变量的概念是非常重要的。
很多学生对变量的概念和使用方法不理解,容易出错,从而导致混淆和困惑。
解决方案:在教学中,我们应该让学生了解变量的概念和使用方法,并灵活地运用变量。
我们可以通过实际的生活例子来让学生更好地理解变量的概念和使用方法,例如:一个裁缝需要为顾客量身定做一件衣服,他需要记录的数据就是身高和体重,用变量表示为 $h$ 和 $w$。
这样可以使学生更好地理解变量的概念和使用方法。
问题四:学生未能领会代数原理在代数初步知识的教学过程中,许多学生未能领会代数原理的核心概念。
这往往导致他们在进一步的代数学习中遇到麻烦。
解决方案:在教学中,我们应该重点讲解代数原理的核心概念。
初步了解小学数学中的代数概念代数概念在小学数学中起着重要的作用。
它是学生逐步从算术向代数过渡的重要一步。
本文将通过介绍小学数学中的代数概念,帮助读者初步了解代数在数学学科中的基础地位。
一、代数的概念代数是数学中的一个分支,它研究数和运算的规律。
在小学数学中,代数主要以字母表示数,通过字母之间的运算推导出数之间的关系。
二、代数的基本符号和表示方法1. 字母表示数:代数中,我们常用字母表示数,如a、b、x、y等。
字母可以代表任意数,使得问题变得更加灵活和普遍。
2. 数字系数:在代数中,字母和数字往往结合使用,字母前面的数字被称为系数。
例如,在表达式3x中,3即为系数。
3. 代数式和方程式:代数式是由数字、字母和运算符组成的式子。
而方程式是一个等式,它包含了一个或多个未知数。
例如,代数式3x+5,方程式3x+5=10。
三、代数的运算法则代数的运算法则与算术运算类似,但也存在一些区别。
1. 加法和减法:代数中,加法和减法的运算法则与算术中的相同。
例如,a+b和a-b分别表示a和b的和与差。
2. 乘法和除法:代数中,乘法和除法的运算法则也与算术中的类似。
例如,ab表示a与b的乘积,a÷b表示a除以b。
3. 同类项的合并:在代数式中,我们可以合并具有相同字母的项。
例如,3x+2x可以合并为5x。
4. 代数式的展开与因式分解:在代数中,我们可以将一个式子写成一个或多个因子的乘积(展开),或者将一个式子分解为多个因式的和(因式分解)。
四、代数方程的解代数方程是代数学中的一个重要概念。
它是由一个或多个未知数和等号组成的式子。
解代数方程即求出方程中未知数的值,使得方程成立。
1. 一元一次方程:一元一次方程是包含一个未知数和一次幂的方程。
例如,3x+2=8就是一个一元一次方程,其中x为未知数。
2. 方程的求解方法:求解一元一次方程的一种常用方法是移项和化简。
通过逐步变形,可以得到方程的解。
例如,在上述方程中,我们可以先将2移到等号的另一侧,得到3x=8-2,再进行化简即可得到x的值。
代数初步知识
代数初步知识课题一:用字母表示数和简易方程
教学内容:教科书第98—99页的内容和练习
题。
教学目的:
1.使学生加深理解用字母表示数的意义和作用,会用字母表示数和常见的数量关系。
会根据字母所取的值,求含有字母的式子的值。
2.使学生加深理解方程的意义,会解简易方程。
教学过程
【一】用字母表示数
1.复习用字母表示数。
教师:我们知道,用字母表示数可以简明地表达数量关系、运算定律和计算公式.为研究和解决问题带来很多方便;我们通过下面的例子。
边回忆、边总结以前学过的内容和方法教师:大家先想一想.在一个含有字母的式子里.数字与字母、字母与字母相乘,应该怎样写?例如,a乘以4. 5可以怎样写? s
乘以h可以怎样写?(a乘以4. 5可以写成aX4. 5或a • 4。
5或4. 5a。
不可以写成a4.5。
s乘以h可以写成S. H或SH)
教师指出:除了不能写成a4.5以外。
其他都是对的:
例I用示单价.a麦示数量.c表示总价.写出下面的数量关系式。
(1)单价和数量.求总价的公式;
(2)总价和数量,求单价的公式:
(3)总价和单价。
求数量的公式:
⑷ 如果每文圆珠笔的价钱是3, 75,要计算买8支圆珠笔要用多
少钱,应该用上面的哪个公式教师让学生独立解答。
巡视时,注意观察学生用的字母和公式的写法是否正确、发现遗忘的要及时辅导,并纠正错误。
完后,集
教师让学生用字母写出加法和乘法的运算定律,平行四边形和梯形的面积计算公式,长方体、圆柱和圆锥的体积计算公式。
学生写完后指名回答。
教师:用a、b, c、表示三个自然数,那么同分母相加的计算法
那么应该怎样写?( + =.)
例2 一个商店原有80千克桔子,又运来了12筐桔子。
每筐重a
千克。
(1)用式子表示出这个商店里桔子重量的总数。
(2)根据这个式子,求a=15,商店一共有多少千克桔子。
教师指名回答。
(1)80 12a
⑵a = 15 时,80 12a= 80 12X 15= 260
答:商店一共有260千克桔子。
2.做教科书第98页"做一做〃的题目。
第I题.教师让学生自己做。
巡视时,注意观察学生对“a的3
倍〃与“ a的3倍〃的结果是怎样选择的,做完后集体订正。
第2题,让学生独立完成。
做完后集体订正:
【二】简易方程
I,复习方程的概念。
教师出示复习题:
以下等式,哪些是方程,哪些不是方程?并说明理由:
18 25 = 43 5x+4x+8 = 35
4X 3—18-3 = 6 3x 5= 7 a
学生指出:3x 5=7。
5x 4x+8=35 x-2=8是方程。
它们是含
有未知数的等式;其他的不是方程。
教师:我们知道含有未知数的等式叫做方程。
方程的特征是:它
含有未知数。
同时又是一个等式.教师:大家会不会解方程?
起解答方程x 一2= 8。
学生解答后,指名回答方程的解(x = 10). 教师:x=10是方程x 一2= 8的解:使方程左右两边相等的未知
数的值叫做方程的解。
求方程的解的过程叫做解方程。
我们要把方程的解和解方程这两个概念要分辨清楚。
2.复习解简易方程。
例;解以下方程,并写出检验过程。
3X 5= 7 5X 4X 8=35
学生做题时.教师巡视。
注意帮助有困难的学生和及时纠正错误。
集体订正时。
让学生将“ 5X十4X 8= 35〃的解答过程写在黑板(或投影片)上,说明解答过程中运用
到什么运算定律和运算关系。
教师:在解方程的过程中。
我们主要是应用了加、减、乘、除法中各部分间的关系和一些运算定律。
3,做教科书第99页上面的"做一做〃的题目。
第1题,让学生独立完成。
集体订正时,指名回答并说明理由。
第2题.让学生独立完成。
集体订正时着重说明有3道小题,在
解答中出现3x = 150,方程的解都是X= 50
例4 一个数的比这个数的25%多10,这个数是多少?让学生独立解答:订正时,指名用口算检验。
4.做教科书第99页下面的 ''做一做〃的题目。
让学生独立完成。
集体订正时.让学生说明哪一题列方程解比较
容易。
哪一题列算式比较容易。
【三】小结
导学生分别按照复习的过程表达和小结复习的内容。
【四】作业
的第1—4题。