冰蓄冷空调系统中控制技术分析
- 格式:pdf
- 大小:318.12 KB
- 文档页数:5
第一讲应用概念一、冰蓄冷空调“冰蓄冷空调”一词大家都一目了解,英文为‘ICE STORAGE’,日文为[冰蓄热],狭义的定义为[制冰蓄冷]的冷气系统。
早期称谓[COOL STORAGE(蓄冷)],此包含了[制冷水蓄冷]的冷气系统。
但在寒带国家降了[蓄冷]外,还要[蓄热],因此,广义的用语为[THERMAL (ENERGY)STORAGE AIR CONDITIONING SYSTEM (缩写为TES)],可译为[蓄能式空调系统]。
对于南方地区仅有夏季(冷气)电力过载的困扰,仅需[蓄冰空调]。
二、关于蓄冷系统的计量在常规的空调系统设计时,冷负荷是按照计算出建筑物所需要的多少“冷吨”、“千瓦”、“大卡/时”来计量,但是蓄冰系统是用“冷吨·小时”、“千瓦·小时”、“大卡”来计量。
图1-1代表100冷吨维持10小时冷却的一个理论上的冷负荷,也就是一个1000“冷吨·小时”的冷负荷。
图上100个方格中的每一格是代表10“冷吨·小时”。
事实上,建筑物的空调系统在全日的制冷周期中是不可能都以100%的容量运行的。
空调负荷的高峰出现多数是在下午2:00--4:00之间,此时室外环境温度最高。
图1-2代表了一幢典型大楼空调系统一个设计工作日中的负荷曲线。
如图可知,100冷吨冷水机组的全部制冷能力在10个小时的“制冷周期”中只有2个小时,在其它8个小时中,冷水机组只在“部分负荷”里操作,如果你数一数小方格的话,你会得到总数为75个方格,每一格代表10“冷吨·小时”,所以此建筑物的实际冷负荷为750“冷吨·小时”,但是常规的空调系统必须选用100冷吨的冷水机组来应付100冷吨的“峰值冷负荷”。
三、冷水机组的“参差率”定义的“参差率”为实际“冷负荷”与“冷水机组的总制冷潜力”之比,即:参差率(%)=(实际冷吨·小时数/总的冷吨·小时潜力)*100%=750/1000*100因此该冷水机组的“参差率”为75%,也就是冷水机组能提供1000“冷吨·小时”,而空调系统只要用750“冷吨·小时”。
冰蓄冷空调系统的应用与经济分析1. 引言1.1 冰蓄冷空调系统介绍冰蓄冷空调系统是一种利用冰的蓄冷效应来降低空调系统运行能耗的节能技术。
通常在夜间电力供应较为充裕时,利用低峰电力时段制冷,将水制成冰块并存储起来。
白天高峰电力时段,通过冰蓄冷系统释放存储的冰块来提供冷却效果,从而降低空调系统的电能消耗。
冰蓄冷空调系统不仅可以减少耗电量,还可以优化电力利用效率,降低用电峰值,减少供电紧张情况发生的可能性。
冰蓄冷空调系统适用于各类建筑物,包括商业建筑、办公楼、酒店、医院等。
它不仅可以为建筑物提供舒适的室内环境,还可以降低空调系统的运行成本,节约能源资源。
由于冰蓄冷空调系统具有节能环保的特点,受到了越来越多企业和政府机构的重视和推广。
通过合理规划和设计,冰蓄冷空调系统可以有效地提高建筑物的能源利用效率,同时降低运行成本,为企业和社会带来可观的经济效益和环境效益。
1.2 冰蓄冷空调系统的优势1. 节能环保:冰蓄冷空调系统采用冷冻水进行储存和循环利用,相比传统空调系统,具有更高的能效比和节能效果。
在峰电时段利用低成本的电力制冷水,然后在用冷却的过程中,据需求释放制冷水中的冷量,降低建筑物的负荷需求,从而有效降低了建筑物的全年度电力需求。
2. 调峰平谷:冰蓄冷空调系统可以根据电网的峰谷电价差异,合理利用低谷时段的电力进行制冷水的储存,从而在高峰时段减少电力需求,降低用电成本。
3. 稳定性强:冰蓄冷空调系统储存的冷水可以提供长时间的稳定制冷效果,避免了传统空调系统频繁启停带来的温度波动,提高了室内舒适度。
4. 声音低:由于制冷机组设在噪音较大的低谷时段运行,采用隔音的冰箱组,可以有效降低室内外的噪音污染。
2. 正文2.1 冰蓄冷空调系统的原理冰蓄冷空调系统的原理是利用冰的蓄冷储能特性,在夜间低峰期通过制冷机组将水冷却至冰点以下并冻结成冰块,然后将这些冰块储存在特殊设计的冰块储存装置中。
白天高峰期,空调系统需要制冷时,冰块被融化而释放出储存的冷量,冷水通过冰块储存装置输送至空调系统的蒸发器,实现空调系统的制冷作用。
冰蓄冷空调系统原理及应用冰蓄冷空调系统是一种先用电动机将冷却剂冷却到低温,然后将其储存在蓄冷设备中的空调系统。
它可以在夜间低电价时段使用电力,将冷却剂冷却到较低温度,然后将其储存下来,白天通过蓄冷设备释放冷量,达到降温的目的。
1.电动机和压缩机:电动机将冷却剂吸入,并将其压缩成高压、高温的气体状态。
2.冷却剂管道和换热器:冷却剂通过管道传输,在换热器中与空气或水进行换热,从而将空气或水的温度降低。
3.蓄冷设备:蓄冷设备是冰蓄冷系统的核心部分,用于储存冷却剂。
在夜间低电价时段,电动机将冷却剂冷却到低温,并将其储存在蓄冷设备中。
白天,通过控制阀门的开启和关闭,冷却剂释放出来,用于降低室内温度。
4.控制系统:冰蓄冷空调系统的控制系统根据室内温度和外界环境条件,控制电动机的启停以及蓄冷设备的开启和关闭,以实现室内温度的精确控制。
1.节约能源:冰蓄冷空调系统通过在夜间低电价时段储存冷却剂,并在白天释放冷量,能够更高效地利用电力资源,减少能源消耗。
2.提高能源利用率:由于低温冷却剂的制备和蓄冷设备的储存,冰蓄冷空调系统能够提高制冷效果和能源利用率,从而降低运行成本。
3.灵活控制:冰蓄冷空调系统的控制系统可以根据室内温度和外界环境条件,实现对室内温度的精确控制。
并且,它可以根据能源价格的变化灵活调整运行模式。
4.方便维护:冰蓄冷空调系统的维护相对简单,只需要定期进行冷却剂的添加和设备的检查维护即可。
冰蓄冷空调系统在建筑物、工厂、商场、酒店等场所有着广泛的应用前景。
由于其节能环保的特点,越来越多的地区和国家开始采用冰蓄冷空调系统来替代传统的空调系统。
它能够有效降低能耗,减少电力需求峰值,提高能源的利用率,同时减少对地球环境的负荷,达到节能减排的目的。
总之,冰蓄冷空调系统通过先用电动机将冷却剂冷却到低温,然后将其储存在蓄冷设备中,通过控制系统实现精确控制。
它具有节约能源、提高能源利用率、灵活控制和方便维护等优点,广泛应用于各个领域中。
冰蓄冷的运行模式和控制策略■运行模式光华创世蓄冰系统通常有四种运行模式:制冷机蓄冰,蓄冰设备供冷,制冷机供冷,制冷机、蓄冰设备联合供冷。
四种模式灵活切换,可以满足建筑供冷需求。
① 制冷机蓄冰在空调系统不运行的时段(夜间谷电期间),制冷机自动转换为蓄冰工况:关闭V2、V4阀门,开启V1、V3阀门,使得-3~-7℃乙二醇溶液在制冷机和蓄冰罐之间循环。
随着制冰时间的延长,使盘管外的水结冰,达到设计厚度。
② 蓄冰设备供冷当需要蓄冰设备通过融冰提供冷量,制冷机停止运行,但是仍作为系统的通路。
通过乙二醇泵将乙二醇溶液送入蓄冰设备,经过降温后的乙二醇溶液进入板换换热。
关闭阀门V3,为了控制进入板换的乙二醇温度,将阀门V1、V2设为调节状态。
③ 制冷机供冷为维持较高的制冰效率,当制冷机需要直接加入制冷时,按空调工况运行。
乙二醇溶液在制冷机和板换之间循环,系统关闭阀门V1、V3和V4,开启阀门V2。
通过板换降温后的冷冻水向用户供冷。
④ 制冷机、蓄冰设备联合供冷为了满足空调高峰期的用冷量,乙二醇溶液经过两次降温,即乙二醇溶液先经过制冷机进行一次降温,然后经过蓄冰设备进行二次降温。
所以乙二醇溶液在板换前后的温差达到7℃。
为了控制进入板换的乙二醇溶液温度,调节V1、V2阀门来达到目的。
■控制策略蓄冷系统的控制,除了保证蓄冷和供冷模式的转换以及空调供水或回水温度控制以外,主要应解决制冷机组与蓄冷设备之间供冷负荷分配问题。
能够自动实现在满足建筑物全天空调要求的条件下将每天所蓄的能量全部用完,最大限度地节省运行费用。
控制系统由下位机(现场控制工作站)与上位机(中央管理工作站)组成,下位机采用可编程序控制器(PLC)与触摸屏,在现场可以进行系统控制、参数设置和数据显示。
上位机采用工业级计算机与打印机,进行远程管理和打印,它包含下位机和触摸屏的所有功能。
系统配置必要的附件如通信设备接口、网卡、调制解调器等,实现蓄冷系统的参数化与全自动智能化运行。
冰蓄冷空调系统运行优化控制摘要:随着社会的发展与进步,重视冰蓄冷空调系统运行优化控制对于现实生活中具有重要的意义。
本文主要介绍冰蓄冷空调系统运行优化控制的有关内容。
关键词空调;系统;原理;蓄冷;优化;控制;策略;中图分类号:tb494 文献标识码:a 文章编号:引言近年来,随着我国经济的快速增长,人们的生活水平较之以往有了很大程度的改善,与此同时,人们对生活及工作环境的舒适性也提出了更高的要求。
为了满足人们的需求,各类建筑中均安装了空调系统。
然而,常规的空调系统由于能耗较大,从而增大了建筑的整体能耗,这不符合我国大力提倡的节能减排政策,为了进一步降低空调能耗,蓄能空调系统应运而生。
冰蓄冷空调作为蓄能空调的一种,它凭借自身诸多的优点被广泛用于各类建筑当中,并且都获得了十分良好的效果。
一.冰蓄冷空调系统概述冰蓄冷空调属于蓄能空调的一种,蓄能空调最大的作用是能够缓解峰谷时段的用电压力,借此来确保电网能够安全稳定运行。
冰蓄冷空调系统主要是利用电制冷机在用电低谷时进行制冰,再通过水的潜热特性将这部分制冷量存储在系统当中,当用电高峰期到来时,将预先存储的冷量释放出来,达到制冷的效果。
冰蓄冷空调系统以其前期投资成本低、设备所占用的空间小、低运行费用等优点,现已成为最常用的空调系统。
目前,冰蓄冷空调系统的种类较为繁多,按照系统制冰形态可将之大致分为两大类:一类是动态型,将生成的冰连续或间断地剥离,最常用的是在若干平行板内通以冷媒,在板面上喷水并使其结冰,待冰层达到适当厚度,再加热板面,使冰片剥离;另一类是静态型,在换热器上结冰与融冰;最常用的为浸水盘管的外制、内融冰方式。
二.冰蓄冷空调系统原理及主要特点2.1 冰蓄冷技术,即是在电力负荷很低的夜间用电低谷期,采用制冷机制冷,利用冰蓄冷介质的显热或者潜热特性,用一定方式将冷量存储起来。
在电力负荷较高的白天,也就是用电高峰期,把储存的冷量释放出来,以满足建筑物空调或生产工艺的需要。
冰蓄冷空调系统原理及其技术冷冻机组是冰蓄冷空调系统的核心组成部分,采用蓄冷装置进行蓄冷。
在低峰电时段,冷冻机组将制冷剂吸热并通过冷凝器将热量散出,使制冷剂冷却并转化为液态,然后将制冷剂送入蓄冷器,将蓄冷器中的水逐渐冷却,冷却后的水变成冰,并储存在蓄冷器内。
在高峰电时段,蓄冷负荷系统将冷负荷循环水泵系统启动,将蓄冷器内的冷水泵入冷源回水系统,通过冷负荷系统传递给需要制冷的场所,实现制冷效果。
冷水循环使用后返回冷却塔进行冷却,然后再次送往蓄冷器进行蓄冷。
在冰蓄冷空调系统的控制系统中,通过对冷冻机组、蓄冷装置和蓄冷负荷系统的控制,可以实现对系统运行状态的监控和调节。
通过控制系统中的传感器和控制器,可以监测和控制系统的温度、湿度、压力等参数,实现自动化的控制和调节。
冰蓄冷空调系统的技术主要包括制冷技术和控制技术两个方面。
制冷技术方面,冰蓄冷空调系统使用了高效、环保的冷冻机组和蓄冷器,通过冷凝器散热,将热量排出系统,从而实现制冷效果。
控制技术方面,冰蓄冷空调系统采用了先进的控制系统,通过对温度、湿度、压力等参数的监测和调节,实现冰蓄冷空调系统的智能化控制和运行。
冰蓄冷空调系统具有多种优点。
首先,冰蓄冷空调系统能够在低峰电时段利用廉价的电力进行制冷,从而节约能源成本。
其次,冰蓄冷空调系统具有较高的制冷效果,能够满足大型建筑物和集中供冷系统的制冷需求。
此外,冰蓄冷空调系统对环境的影响较小,减少了对大气环境的污染。
总结起来,冰蓄冷空调系统是一种具有节能高效、环境友好的空调制冷技术。
通过利用低温物质冰的蓄热特性,实现在低峰时段制冷,高峰时段释放冷量,从而节约能源,减少对环境的影响。
冰蓄冷空调系统的原理及其技术的不断发展和创新将为空调制冷领域的发展带来新的机遇和挑战。
冰蓄冷系统控制策略的探讨随着社会和经济的发展,能源和环境问题日益成为人们关注的焦点。
在这种情况下,冰蓄冷系统作为一种可持续节能的空调制冷系统,其节能效果受到广泛的关注。
在实际应用中,冰蓄冷系统的控制策略是关键之一,它对系统稳定性、能耗以及恢复时间等方面有着重要的影响。
因此,本文将重点探讨冰蓄冷系统的控制策略。
冰蓄冷系统是一种通过蓄冷介质,利用电能来储存冷量,以达到节能目的的制冷系统。
其基本原理为:在峰值用电时间段(例如夏季的高峰期),通过电力系统的低峰期利用电力来制冷,将冷量储存于蓄冷介质(例如水)中,待用电峰值时期到达时,再通过蓄冷介质释放已经储存的冷量,以达到制冷目的。
因此,控制策略的设计需要考虑系统的稳定性以及能耗控制等问题。
首先,对于冰蓄冷系统的控制策略,需要考虑到不同环境下的应用。
在不同的气候条件下,冰蓄冷系统的运行特点也不同。
例如,在寒冷气候下,需要考虑蓄冷介质的冰层厚度、防止介质结冰等问题;而在暖湿型气候下,需要考虑介质的凝露问题等。
因此,对于控制策略的设计需要根据实际情况进行调整。
其次,对于控制策略的设计,需要选取合适的算法和控制器。
现代控制理论中有许多优秀的算法可以应用,如PID、模糊控制、神经网络等。
根据不同的需求和系统的特征,选择不同的算法进行控制。
同时,需要配备可靠的控制器,并考虑控制器的容错能力和灵敏度等因素。
另外,对于控制策略的设计还需要考虑到能耗控制问题。
冰蓄冷系统的节能效果主要体现在电能储存和利用上。
因此,对于控制策略的设计需要充分考虑能量的储存和利用问题。
例如,在低峰期需要尽量多的储存电能,而在峰值期需要合理利用已经储存的冷量。
此外,也需要考虑在实际运行中的能耗监测和评估问题。
最后,在冰蓄冷系统的控制策略中,还需要考虑到系统的恢复时间问题。
当系统出现故障时,需要尽快将系统恢复正常,否则会影响到制冷效果和能耗节约。
因此,在控制策略的设计中,需要考虑到系统的容错能力和故障处理等问题,以保证系统的可靠稳定运行。