9.4 总体、样本与抽样方法
- 格式:ppt
- 大小:92.00 KB
- 文档页数:18
第九章 概率与统计初步一、计数原理1、 (分类计数)加法原理:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,……在第n 类办法中有n m 种不同的方法,那么完成这件事情,共有:n m m m N +++= 21种不同的方法;2、 (分步计数)分步乘法原理:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……做第n 步有n m 种不同的方法,那么完成这件事情,共有:n m m m N ⨯⨯⨯= 21种不同的方法;3、 区分做事情的方法是“分类”还是“分步"主要看能否一步做完,能够一步做完的就是分类(用加法原理),不能一步做完的,就是分步(用乘法原理);二、排列与组合1、 排列数公式:从n 个不同的元素中取出()n m m ≤个不同元素的所有排列的个数,叫做从n 个不同的元素中取出m 个不同元素的排列数,用符号n mA 表示,且:2、 n 的阶乘:自然数1到n 的连乘积,叫做n 的阶乘,记作:!n ,且:3、 组合数公式:从n 个不同的元素中取出()n m m ≤个不同元素的所有组合的个数,叫做从n 个不同的元素中取出m 个不同元素的组合数,用符号n mC 表示,且:组合数公式也可写为:4、 组合数的两个性质:()()n m n m n n m n mn n m C C C C C 1121--+-+==5、 排列与组合的区别:排列与顺序有关;组合与顺序无关。
()()()()n m m n n n n A n m ≤+---=,121 ()()10,1221!=⋅--=!规定: n n n n ()()()()()()1,,1221121!0=≤⋅--+---==n n m nmC n m m m m m n n n n m A C 规定: ()!!!m n m n C n m -⋅=()!!m n n A nm -=为:易知排列数公式也可写三、概率1、 基本概念(1) 随机现象:在相同的条件下,具有多种可能的结果,而事先又无法确定会出现哪种结果的现象;(2) 随机试验的特征:可以在相同的条件下重复进行;试验的所有可能结果是可以明确知道的,并且这些可能结果不止一个;每次试验之前不能准确预言哪一个结果会发生;(3) 随机事件:随机试验的结果叫做随机事件,简称事件,常用大写字母A 、B 、C表示; (4) 必然事件:在一次随机试验中必然要发生的事件,用Ω表示(Ω读作“omiga",Ω对应的小写希腊字母是“ω”); (5) 不可能事件:在一次随机试验中不可能发生的事件,用φ表示(φ读作“fai ”); (6) 基本事件:随机事件中不能分解的事件称为基本事件,即:最简单的随机事件;(7) 复合事件:由若干个基本事件组成的事件称为复合事件; 2、 频数与频率(1) 频数:在n 次重复试验中,事件A 发生了m 次()n m ≤≤0,m 叫做事件A 发生的频数;(2) 频率:在n 次重复试验中,事件A 发生的频数在试验总次数中所占的比例nm ,叫做事件A 发生的频率; 3、 概率(1) 一般地,当试验的次数充分大时,如果事件发生的频率总稳定在某个常数附近,那么就把这个常数叫做事件发生的概率,记作:; (2) 概率的性质:i. 对于必然事件Ω:()1=ΩP ii. 对于不可能事件φ:()0=φP iii. ()10≤≤A P4、 古典概型(1) 古典概型:如果一个随机试验的基本事件只有有限个,并且各个基本事件发生的可能性相同,那么称这个随机试验属于古典概型;(2) 概率:设试验共有n 个基本事件,并且每一个基本事件发生的可能性都相同,事件A 包含m 个基本事件,那么事件发生的概率为:(3) 事件的“交”:“B A ”表示B A 、同时发生,记作:AB ;(4) 事件的“并”:“B A ”表示B A 、中至少有一个会发生,又称为事件A 与事件B 的和事件;()nA A P m==基本事件总数包含的基本事件(5) 事件的“否”:A 表示事件A 的对立事件;(A 读作a bar ,“A 拔”)(6) 互为对立的事件:若事件A 是事件B 的对立面,且Ω==B A B A ,φ;(对立事件的理解:在任何一次随机试验中,事件A 与B 有且仅有一个发生) (7) 互斥事件(互不相容事件):不可能同时发生的两个事件,即:φ=B A ;(对立事件是互斥事件,但互斥事件不一定是对立事件)(8) 相互独立事件:在随机试验中,如果事件A 的发生不会影响事件B 发生的可能性的大小,即在事件A 发生的情况下,事件B 发生的概率等于事件B 原来的概率,那么称事件A 与事件B 相互独立;(事件A 发生与否,不影响事件B 的概率) (9) 若A 、B 是互斥事件,则:()()()B P A P B A P +=(10) 若A 、B 是对立事件,则:()()B P A P +=1,即:()()A P A P -=1 (11) 若A 、B 不是互斥事件,则:()()()()B A P B P A P B A P -+= (12) 若A 、B 是相互独立事件,则:()()()()B P A P AB P B A P ⋅==四、总体、样本与抽样方法例1:为了了解全校1120名一年级学生的身高情况,从中抽取100名学生进行测量; 1、 总体:在统计中,所研究对象的全体;例1中“全校1120名一年级学生的身高”是总体;2、 个体:组成总体的每一个对象;例1中“全校每一位一年级学生的身高”是个体;3、 样本:被抽取出来的个体的集合;例1中“抽取的100名一年级学生的身高”是样本;4、 样本容量:样本所含个体的数目;例1中“100”是样本容量;5、 抽样的方法有三种:简单随机抽样、系统抽样、分层抽样;6、 说明:当总体中的个数比较小时,常采取简单随机抽样;当总体中的个数比较多,且其分布没有明显的不均匀情况,常采用系统抽样;当总体由差异明显的几个部分组成时,常采用分层抽样;五、用样本估计总体1、 样本均值:()n x x x nx +++=2112、 样本方差:()()()[]2222121x x x x x x nS n -++-+-= 3、 样本标准差:()()()[]222211x x x x x x nS n -++-+-=4、 说明:均值反映了样本和总体的平均水平;方差和标准差则反映了样本和总体的波动大小程度;5、作频率分布直方图的方法:①把横轴分成若干段,每一线段对应一个组的组距;②然后以此线段为底作一矩形,它的高等于该组的频率/组距;这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率,这些矩形就构成了频率分布直方图。
统计学中的样本与总体在统计学中,样本和总体是两个重要的概念。
样本是指从总体中抽取的一部分观察对象或数据,而总体是指包含所有感兴趣的观察对象或数据的集合。
在进行统计分析时,对样本的研究可以推断出总体的一些特征。
1. 样本的选择与抽样方法选择一个合适的样本是进行统计研究的重要一步。
样本应代表总体的特征,因此需要使用合适的抽样方法。
常见的抽样方法包括简单随机抽样、分层抽样和系统抽样。
简单随机抽样是指每个观察对象被选中的机会相等,而分层抽样是根据总体的不同层次进行分层,然后从每个层次中随机选择样本。
系统抽样是按照某种规律从总体中选取样本。
2. 样本容量与抽样误差样本容量指样本中观察对象或数据的数量。
样本容量越大,对总体的推断越准确。
抽样误差是指样本统计量与总体参数之间的差异。
当样本容量较小时,抽样误差会较大,因此在选择样本容量时需要根据具体问题和资源限制进行权衡和决策。
3. 样本统计量与总体参数样本统计量是对样本数据的总结和描述,例如样本均值、样本标准差等。
总体参数是对总体的特征的度量,例如总体均值、总体标准差等。
样本统计量可以用来估计总体参数,并通过抽样误差的控制来增强估计的准确性。
通过抽样方法和统计推断的方法,可以通过样本来推断总体参数的范围和分布。
4. 中心极限定理与样本分布中心极限定理是统计学中的重要定理之一。
它指出,当样本容量足够大时,样本均值的分布将近似于正态分布,无论总体分布是什么样的。
这意味着即使总体不服从正态分布,通过大样本的方法仍然可以进行统计分析。
中心极限定理为统计学提供了重要的理论基础,使得在实际应用中可以更准确地从样本推断总体的特征。
5. 样本推断与置信区间样本推断是统计学中的一个重要任务,它使用样本数据来对总体进行推断和估计。
置信区间是样本统计量的一个范围,对总体参数的值给予一定的置信水平。
例如,可以用样本均值和标准误差来构建样本均值的置信区间,用于估计总体均值的范围。
6. 样本假设检验与显著性水平样本假设检验是判断样本数据是否支持某个假设的一种方法。
样本与总体的关系及抽样方法在统计学中,样本和总体是两个重要的概念,它们之间存在着密切的关系。
本文将探讨样本与总体之间的关系,并介绍一些常用的抽样方法。
一、样本与总体的定义及关系1. 总体:总体是指研究对象的全体,即我们希望从中获得信息的对象的集合。
例如,如果我们想研究某个国家的人口情况,那么这个国家的所有人口就构成了总体。
2. 样本:样本是从总体中选出的一部分个体,通过对样本的研究和分析,我们可以推断出关于总体的特征和规律。
样本应该是总体的代表,即有一定的代表性。
样本与总体之间的关系可以用以下公式表示:总体 -> 抽取 -> 样本 -> 研究与分析 -> 推断 -> 总体也就是说,通过从总体中抽取样本,我们可以对样本进行研究和分析,从而推断出总体的特征和规律。
二、抽样方法在实际的调查和研究中,我们常常无法对整个总体进行研究,而只能通过对样本的研究来推断总体的情况。
下面介绍几种常用的抽样方法。
1. 简单随机抽样:简单随机抽样是指从总体中按照相同的概率随机抽取样本,保证每个个体被选中的概率相等。
简单随机抽样可以有效地避免个体选择的偏倚,但样本的有限性可能导致抽样误差。
2. 系统抽样:系统抽样是指按照一定的规律从总体中抽取样本。
例如,我们可以每隔一定的间隔选取一个个体作为样本。
系统抽样比简单随机抽样更加方便,但如果总体中存在某种规律性的分布,可能导致样本的偏倚。
3. 分层抽样:分层抽样是指将总体分成若干层,然后从每一层中抽取样本。
这样可以保证每一层都有代表性的样本,从而更好地推断总体的特征。
但分层抽样需要对总体有一定的了解,需要花费较多的成本和时间。
4. 整群抽样:整群抽样是指将总体划分为若干个群组,然后从中随机选择一部分群组作为样本进行研究。
这种抽样方法可以减少数据采集的工作量,但可能导致样本与总体的差异较大。
总之,样本与总体的关系密切,通过对样本的研究和分析,我们可以推断出关于总体的特征和规律。
如何确定抽样方法与样本量在设计一个抽样调查时,我们通常需要做的工作是:定义总体及抽样单元、确定或构置抽样杠、选择样本量的大小、制定实施细节并实施。
在这本小册子中我们着重介绍一下定量研究的抽样和样本量这两个技术环节。
最基本的定量研究的抽样方法分为两类,一类为非概率抽样,一类为概率抽样。
一.非概率抽样非概率抽样是不能计算抽样误差的,因为它是靠调研者个人的判断来进行的抽样。
它包括偶遇抽样或者方便抽样、判断抽样、配额抽样、雪球抽样等。
偶遇抽样(方便抽样)常见的未经许可的街头随方或拦截式访问、邮寄式调查、杂志内问卷调查等都属于偶遇抽样的方式。
偶遇抽样是所有抽样技术中花费最小的(包括经费和时间)。
抽样单元是可以接近的、容易测量的、并且是合作的。
但尽管有许多优点,这种形式的抽样还是有严重的局限性。
许多可能的选择偏差都会存在,如被调查者的自我选择、抽样的主观性偏差等。
这种抽样不能代表总体的推断总体。
因此,当我们在进行街头访问或邮寄调查时,一定要谨慎对待调查结果。
判断抽样判思抽亲是基于调研者对总体的了解和经验,从总体中抽选“有代表性的”“曲型的”单位作为样本,例如从全体企业作为样本,来考察全体企业的经营状况。
如果判断准,这种方法有呆取得具有较好代表性的样本,但这种方法受主观因素影响较大。
配额抽样配额抽样是根据总体的结构特征来给调查员分派定额,以取得一个与总体结构特征大体相似的样本,例如根据人口的性别、年龄构成来给调查员规定不同性别、年龄的调查人数。
配额保证了在这些特征上样本的组成与总体的组成是一致的。
一旦配额分配好了,选择样本元素的自由度就很大了。
唯一的要求闵是所选取的元素要适合所控制的特性。
这种抽样方法的目的是使样本对总体具有更好的代表性,但仍不一定能保证样本就是有代表性的。
如果与问题相关联的某个特征是十分困难的。
另外,用这种方法进行选择严格控制调查员和调查过度程的条件下,可使配额抽样获得与某些概率抽样非常接近的结果。
抽样方法几种分析抽样方法的几种分析1.抽样的基本方法抽样方法基本上可分为随机抽样法和预定抽样法。
2.随机抽样法这种抽样方法是以概率理论的原理为基础的,即基本整体中的每一个具体单元都有相同被抽中的机会(例如:掷骰子)。
⑴简单随机抽样法它直接从基本整体中抽出子样,前提条件是该整体至少能以标记形式来表示(例如:卡片),并可以混合至保证使每个单元都能有相同的被抽样的机会。
简单随机抽样法简单易行,至于整体的某些特征及其分布情况不需要知道。
但如果整体情况比较分散,彼此的差距比较大,则误差就可能较大。
所有的随机抽样方法都是以票箱模型为基础的(如抽彩票),即所有的票单(组成样本的单元)都标上号,装入票箱,封闭,然后抽票。
一张票单在认定结果后再放回票箱,即整体数量保持不变。
用这种方法来确定调查对象,就像用掷骰子来确定对象一样(整体数量不大时可以使用)。
如果将抽样的票单放在一边可以避免出现重复。
当整体数量很大时,常采用下列方法代替票箱模式,因为在实际运用中它们的速度更快,也更完善。
①乱数表抽样。
例如用两只骰子掷数,可得下表所列数字:13、45、65、36、22、24、31、43、61、52、55、16、23、14、25。
每隔两位取一个数字,即可得到:65、24、61、16、25。
从整体中抽出的这些数字就是所取得的子样。
②尾数抽样(根据最后一个数字抽样)。
将整体中的每一个单元都按顺序编上号,然后将例如 7、17、27、37等号抽出作为子样。
③字母抽样。
例如将整体中所有以“P”为姓名的第一个字母的人抽出来作为样本,但条件是必须在整体中所有姓的第一个字母均匀分布情况下得到“P”。
⑵分层随机抽样法分层随机抽样法是将混合着多种主要调查特征的综合性整体,分成不同类型的小组(层次),要求小组成员具有尽可能一致的特征,然后再从这些特征比较一致的小组(层次)中用相应的简单随机抽样法抽出所需的样本。
例如:以一个国家为基本整体,各省份为小组。
《市场调查与预测》课程教学大纲课程名称:市场调查与预测课程代码:1739041课程类型:专业核心课学分:3.5 总学时:64 理论学时:48 实践学时:16先修课程:市场营销学适用专业:市场营销一、课程性质、目的和任务本课程是市场营销专业的专业核心课。
通过本课程的学习,应使学生比较全面系统地掌握市场调研的基础理论和基本方法,在市场营销活动中经常应用的调查、测量方法,同时具备分析基础数据和撰写调查报告的能力。
培养学生严谨的市场调查研究的态度和职业素质。
二、教学基本要求1.知识、能力、素质的基本要求本课程是市场营销专业课程,通过对市场调查的基本概念、调查内容、调查方法技巧、调查过程特点及其每一阶段的具体操作(包括调查方案企划设计、调查抽样、调查实施、调查资料整理设计分析、调查报告书撰写)等方面知识技能的讲解分析与实践训练使学生能够理解掌握现代市场调查的专业知识与专业操作技能技巧,并能比较熟练且规范地开展各种类型的市场调查。
2.教学模式基本要求本课程在学科体系上属于市场营销的一个分支,但其内容又与多种学科相融合,涉及《市场营销学》、《心理学》、《统计学》等多学科的知识,所以,在本课程的教学过程中,应注意其学科特点与学习方法,重点系统论述市场调研与预测的基本理论、方法和技术。
3.考核方法基本要求成绩评定包括平时考查、期中考试和期末考试3种形式。
平时考查成绩占总成绩的20%,期中考试占总成绩的20%,期末考试成绩占总成绩的60%。
其中平时过程性考查主要课堂出勤10分;课后作业、课堂讨论、课内实践等综合评定10分。
平时考核要求作业最少8次,少一次作业扣2分,作业完成质量不高每次扣1分,扣完10分为止;旷课一次扣2分,迟到一次扣1分,扣完10分为止。
三、教学内容及要求第1篇市场调查设计总论第1章市场调研职能1.教学内容1.1 市场调研及其基本分类 1.2 市场调研的功能与价值1.3 市场调研的局限 1.4 市场调研的历史与现状2.教学要求了解市场、市场信息的概念;了解市场调研的历史与现状;理解市场调研的功能与价值;掌握市场调研的含义及基本分类。