直线与圆锥曲线的交点教学案
- 格式:doc
- 大小:50.00 KB
- 文档页数:2
利用直线和圆锥曲线的交点解题直线和圆锥曲线是解题中常用的数学工具,通过它们的交点可以得到问题的解答。
在本篇文章中,将探讨如何利用直线和圆锥曲线的交点解题,以及一些相关的应用案例。
一、直线和圆锥曲线的基本概念在开始解题之前,我们首先了解一下直线和圆锥曲线的基本概念。
直线是两个点之间的最短路径,由无数个点组成,可以用一条无限延伸的箭头表示。
圆锥曲线是由一个圆锥和一个平面相交而形成的曲线。
常见的圆锥曲线有椭圆、抛物线和双曲线。
椭圆由一个圆锥和一个截去一部分的平面相交而形成;抛物线由一个圆锥和一个平行于其侧面的平面相交;双曲线由一个圆锥和一个斜截面相交而形成。
二、利用直线和圆锥曲线的交点解题的方法当遇到问题需要利用直线和圆锥曲线的交点来解答时,可以采用以下方法:1.方程求解法:通过列出直线和圆锥曲线的方程,求解它们的交点坐标。
比如,假设有一条直线的方程为y = ax + b,圆锥曲线的方程为x^2 + y^2 = r^2,我们可以将它们代入方程,求解x和y的值,得到交点的坐标。
2.几何图形法:通过在坐标平面上画出直线和圆锥曲线的图形,找到它们的交点。
这种方法适用于直线和圆锥曲线的方程较为简单的情况。
我们可以通过观察图形的交点位置来求解问题。
3.数学公式法:利用一些数学公式来求解问题。
比如,对于椭圆和抛物线,可以利用其几何性质和参数方程来求解交点。
三、应用案例下面通过一些具体的应用案例来演示如何利用直线和圆锥曲线的交点解题。
案例一:求直线与圆的交点坐标已知一条直线的方程为y = 2x + 1,圆的方程为x^2 + y^2 = 9。
求直线与圆的交点坐标。
利用方程求解法,将直线和圆的方程代入联立求解,得到x和y的值。
将直线的方程代入圆的方程,得到x^2 + (2x + 1)^2 = 9。
化简方程,得到5x^2 + 4x - 4 = 0。
求解该方程,得到x的值为-1和0.8。
将x的值代入直线的方程,得到y的值为-1和2.6。
①掌握点与椭圆、双曲线、抛物线位置关系的判定方法:代数方法②掌握直线与椭圆、双曲线、抛物线位置关系(交点个数) 的判定方法:代数方法和几何法(数型结合方法)。
③掌握直线与椭圆、双曲线、抛物线位置关系的常见题型的解题思路与方法,会根据直线与圆锥曲线的位置确定参数的值(或范围)。
①培养学生运算能力、探索能力,分析问题解决问题的能力;②培养学生数形结合思想、转化思想函数方程思想及分类讨论思想。
①培养学生运动变化观点;②培养学生认识事物的特殊性与一般性规律。
直线与圆锥曲线位置关系的判定是高中数学的重点内容,是高考数学考查的重要内容,在高考试卷中占有相当的分量。
该内容经常与方程组的解的讨论、方程的区间根、直线的斜率,以及数形结合思想,分类讨论思想、转化化归思想、函数方程思想方法等知识相结合。
该内容知识的综合性、应用性较强,是学生学习的难点之一。
点、直线与圆锥曲线位置关系的判定方法,以及判定方法的灵活应用。
直线与圆锥曲线在某个区间内有交点的问题。
求参数的取值范围。
根据本内容的特点结合学生的实际,采用讲解和学生讨论探索,最后教师总结归纳的教学方法。
指导学生掌握通性,同时注重对一题多解和一题多变的训练,培养思维能力。
<>1、给出下列曲线:① 4x+2y-1=0 , ② ,③⑤=2x. 其中与直线 y=-2x-3 有交点的所有曲线是(A .①③ B.②④⑤ C.①②③ D.②③④2①若题目中没给出直线方程,假设直线方程时应对直线方程的斜率存在和不存在两种情况进行分类讨论。
②对于研究给定区间的位置关系问题,应转化为方程ax2+bx+c=0 的区间根问题,结合二次函数图象加以解决。
联立方程,消去x或y,得到关于x (或y)的方程ax2+bx+c=0 (或ay2+by+c=0)。
(1)当a=0 时 (2)当 a ≠0 时3<1>判断直线与圆锥曲线交点个数;<2>证明直线与圆锥曲线的位置关系;<3>已知直线与圆锥曲线的位置关系,求直线方程(或确定参数的值);<4>已知直线与圆锥曲线的位置关系,求参数的取值范围。
直线与圆锥曲线的位置关系教案一、教学目标1. 理解直线与圆锥曲线的位置关系,掌握相关概念和性质。
2. 能够运用直线与圆锥曲线的位置关系解决实际问题。
3. 培养学生的逻辑思维能力和数学解决问题的能力。
二、教学内容1. 直线与圆锥曲线的基本概念和性质。
2. 直线与圆锥曲线的相切、相离和相交情况。
3. 直线与圆锥曲线的交点个数与判别式。
4. 直线与圆锥曲线的应用问题。
三、教学方法1. 采用讲解、案例分析、练习相结合的教学方法。
2. 通过图形演示和实际例子,引导学生直观理解直线与圆锥曲线的位置关系。
3. 鼓励学生进行自主学习和合作学习,提高解决问题的能力。
四、教学准备1. 教学课件和教学素材。
2. 直尺、圆规等绘图工具。
3. 练习题和答案。
五、教学过程1. 引入:通过简单的例子,引导学生思考直线与圆锥曲线的位置关系。
2. 讲解:讲解直线与圆锥曲线的基本概念和性质,解释相切、相离和相交情况的定义。
3. 案例分析:分析具体的直线与圆锥曲线的位置关系案例,引导学生通过判别式判断交点个数。
4. 练习:让学生进行相关的练习题,巩固所学知识。
6. 作业布置:布置相关的练习题,巩固所学知识。
六、教学拓展1. 探讨直线与圆锥曲线的位置关系在实际问题中的应用,如光学、工程等领域。
2. 介绍直线与圆锥曲线位置关系在现代数学中的研究进展和应用。
七、课堂小结1. 回顾本节课所学内容,直线与圆锥曲线的位置关系及其应用。
2. 强调重点概念和性质,提醒学生注意在实际问题中的应用。
八、作业布置1. 完成课后练习题,巩固所学知识。
2. 选择一道与直线与圆锥曲线位置关系相关的综合应用题,进行练习。
九、课后反思1. 学生对本节课内容的掌握程度,哪些方面需要加强。
2. 教学方法的适用性,是否达到预期教学效果。
十、教学评价1. 学生作业、练习题和课堂表现的评价。
2. 对学生掌握直线与圆锥曲线位置关系知识的程度的评价。
3. 教学反馈,了解学生对教学内容的满意度和建议。
一、教材内容及其解析1.内容类比直线与圆的关系,探究直线与圆锥曲线的位置关系,圆锥曲线的弦长问题,与双曲线有关的中点弦问题,与抛物线有关的最值问题.2.内容解析直线与圆锥曲线的位置关系是圆锥曲线知识应用的重点内容,本节课是学生在学习了直线与圆的位置关系,圆锥曲线的方程和简单的几何性质的基础上,进一步研究直线与圆锥曲线的位置关系,让学生感悟数形结合及方程思想的运用.学生可以类比直线与圆的三种位置关系的探究过程,学习从代数的角度归纳直线与圆锥曲线位置关系.弦长公式的推导使用了两点间距离公式,从公式本身可以发现弦长与交点的确定坐标无关,因此可以大大简化计算.中点弦问题考查的内容较为综合,点差法是学生需重点掌握的方法.与弦长有关的问题,从不同的角度体现了根的判别式、根与系数关系、点差法等知识在判断位置关系中的作用.坐标法作为连接“形”与“数”的桥梁,集中地体现了数形结合的数学思想,这种思想贯穿了整个“圆锥曲线的方程”一章,是学生应重点掌握的基本数学方法.通过本节的学习,学生可以巩固前面所学的圆锥曲线的性质以及直线的基本知识,从而培养逻辑思维能力、运算能力、分析和解决问题的能力等.知识的上下位关系:双曲线和抛物线由于图形不是封闭的,学生容易完全借鉴直线与圆的位置关系,认为有一个交点就是相切.直线斜率与双曲线渐近线斜率的关系对交点个数的影响,学生容易讨论不完全或斜率范围取错.中点弦问题中,学生在已知信息中只能发现中点坐标与斜率的一部分关系,难以建立它们之间的联系.3.问题解决策略通过改变直线斜率,直观感受它对直线与双曲线位置关系的影响;中点弦的问题中,设置层层递进的问题串,带领学生挖掘题目中的隐含信息,发现交点、中点、斜率彼此之间的关系. 4.教学难点点差法求中点弦问题,体会直线斜率和中点坐标的内在联系. 四、教学支持条件分析使用GGB 软件作图,展示直线斜率对交点个数的影响 五、课堂活动设计 【本课时教学流程图】【一】复习回顾【引言】前面我们学习了直线的方程、圆的方程,并且探讨直线与直线、直线与圆、圆与圆的位置关系的问题,那么判断直线与圆的位置关系的方法有什么? 【教师引导,学生回忆】生:几何法,利用圆心到直线的距离d 与圆的半径r 之间的关系.生:代数法,将直线方程与圆方程联立,通过判别式化为方程组的解的问题. 生:利用几何性质,当直线过定点,定点在圆的内部,此时直线与圆一定相交. 请你回忆并补充下表: 位置关系公共点个数图形判断方法(几何)判断方法(代数)相交 2d r < 0∆>类比直线与圆的位置关系从数和形的角度探究直线与双曲线的位置关系 探究求弦长的两种方法探究中点弦问题,体会“点差法”探究抛物线的最值问题相切1d r =0∆=相离d r >0∆<师:在初中,我们判断直线与圆的位置关系是看公共点的个数,这种判定是直观地定性描述,当直线与圆无限接近时,从图形上我们无法判断,因此我们无法做到严格地定量刻画.现在我们应用了方程思想和数形结合的思想通过判别式的情况来判断直线与圆的位置关系,它们是否可以推广应用到直线与圆锥曲线的位置关系中,我们继续来研究下面的例题.直线与圆锥曲线也有相应的位置关系,是不是一样可以从数和形的角度来判断呢?来看下面的例题.【二】例题导学任务一:探究直线与圆锥曲线的位置关系【例1】 判断双曲线22136x y -=与过其右焦点2F ,倾斜角为30︒的直线的位置关系.问题1:如何判断二者的位置关系,说说你的想法. 师:如果此时直线的斜率是2,你有什么发现? 生:直线与双曲线只有一个交点.师:前面我们知道了,与双曲线渐近线平行的直线和双曲线只交与一点.若此时直线的倾斜角变为30︒,斜率为33,你能从图形上说说这一变化吗? 生:直线倾斜角变小,又经过右焦点,所以与双曲线左右两支各交于1点.追问1:当直线仍过右焦点,请你结合图像,讨论直线斜率与交点个数的关系?(GGB 演示) ① 2个交点:当b b k k aa<->或时,与右支双曲线有2交点;当b b k aa -<<时,与两支各有1交点;设计意图:复习判断直线与圆的位置关系的方法,再一次明确位置关系可以从几何和代数两个角度判断,提出直线与圆锥曲线位置关系的判定问题.当二次项系数为0时,此时bk a=±.追问2:这时直线的斜率会对位置关系产生什么影响?生:直线斜率与双曲线渐近线的斜率相等,因此直线与双曲线只有一个公共点.师:需要注意,直线与圆,直线与椭圆只有一个公共点时是相切的位置关系.当直线与双曲线渐近线平行时,有一个公共点,此时我们叫做直线与双曲线相交.追问3:你能说说判断直线与圆锥曲线的位置关系一般方法吗?需要特别注意什么?师生共同总结:判断位置关系,既可以从代数角度:联立方程组→判断Δ与0的关系→公共点的个数→直线与圆锥曲线的位置关系.特别需要注意,当二次项系数为0时,直线与双曲线的渐近线平行,直线与双曲线有一个公共点.还可以数形结合,当直线过定点时,根据定点位置和直线斜率和双曲线渐近线斜率的大小关系确定其位置关系.课下思考题:探究直线y kx m =+与抛物线22y px =的位置关系. 当直线和圆锥曲线相交于两点时,就有了弦,那么如何来求弦长呢? 任务二:探究弦长公式, 体会“设而不求”【例2】 如图,过双曲线22136x y -=的右焦点2F ,倾斜角为30︒的直线交双曲线,A B 两点,求AB .问题3:当直线与双曲线相交时,如何求两点间的弦长? 【教师引导学生思考、交流,学生动手实践】生:直接求出交点坐标,利用两点间距离公式进行求解.方法一:由双曲线的标准方程可知,双曲线的焦点分别为12(3,0),(3,0)F F -, 因为直线AB 的倾斜角是30︒,且直线经过右焦点2F ,所以直线AB 的方程为3(3)3y x =- 由223(3)3136y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩消去y ,得256270x x +-=. 解方程,得1293,,5x x =-=将12,x x 的值分别带入直线方程,得122323,,5y y =-=- 于是,A B 两点的坐标分别为923(3,23),(,),55---所以22222121923163||()()(3)(23).555AB x x y y =-+-=--+-+=(3,1)A-当3k=-4故所求直线方程为师:(若学生没想到,教师适当引导)③弦解法二(点差法):设1122(,),(,)M x y N x y ,,M N 均在双曲线上,221122221414x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减,得2222212121212121,44()x x y y x x y y x x y y --+=-∴=-+, A MN 点平分,12123=6,4x x y y k ∴++∴=-,=-2, 31(3),3450.4y x x y +=--+-=即经验证,该直线MN 存在.故所求直线方程为31(3),3450.4y x x y +=--+-=即师:我们又一次发现,虽然设了交点坐标,但并没有解出它们,而是在它们与我们需要的直线斜率之间搭了一个桥梁,“设而不求”解决中点弦问题.像这样设直线与圆锥曲线的交点(弦的端点)坐标1122(,),(,)A x y B x y ,将这两点带入圆锥曲线方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量,我们称这种代点作差的方法为“点差法”.存在中点弦的区域:事实上,如图,双曲线和渐近线将平面直角坐标系分成如下3个区域,若点M 在区域①内,不存在以该点为中点的弦;若点M 在区域②或③,存在以该点为中点的弦.因此对本题而言,如图,当3x =时,渐近线上32y =-,双曲线上52y =-,因此点(3,1)M -在双曲线右设计意图:本题主要考查了直线与双曲线的综合问题,解题的关键是充分运用数形结合、方程和转化的数学思想来解决较为复杂的综合问题.,在学生相互交流讨论,师生的互动交流中,感受点差法“设而不求”的巧妙,将弦所在直线的斜率,弦的中点坐标联系起来相互转化,体会数学的严谨性,使学生综合问题的解决能力得到训练.支内部,存在以M 为中点的弦.思考题.已知双曲线2212yx -=过点(1,1)P 的直线l 与双曲线相交于A ,B 两点, P 能否是线段AB 的中点?为什么?解: 假设存在过点(1,1)P 的直线l 与双曲线相交于A ,B 两点,且点P 是线段AB 的中点. 设过(1,1)P 的直线方程为1(1)y k x -=-,A ,B 两点的坐标分别为1122(,),(,)A x y B x y ,则221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,①,② ①-②得12121212()()()()02y y y y x x x x +-+--=.由P 为AB 的中点,则12122,()2,x x y y +=+=则12122y y x x -=-, 即直线AB 的方程为12(1)y x -=-,即21y x =-,代入双曲线2212y x -=,可得22430,x x -+=检验判别式16240∆=-<,方程无解.故不存在过点(1,1)P 的直线l 与双曲线相交于A ,B 两点,且点P 是线段AB 的中点.拓展:(1)证明在椭圆22221(0)x y a b a b +=>>中,以00(,)P x y 为中点的弦所在直线的斜率20020(0)b x k y a y =-≠,22OP b k k a⨯=-(P 不是坐标原点).(2)证明在双曲线22221(0,0)x y a b a b-=>>中,以00(,)P x y 为中点的弦所在直线的斜率20020(0)b x k y a y =≠.设计意图:点差法来解决中点弦问题时计算量较少,但有一个弊端,不能保证直线与圆锥曲线一定有两个交点,因此需要用判别式加以检验.⊥是否成立,并说明理由OA OB已知抛物线22=y x6。
课题: 直线与圆锥曲线的交点【三维目标】1、知识与技能:能从“数”和“形”角度判断直线和圆锥曲线的位置关系。
2、过程与方法:培养学生提出问题和解决问题的能力;培养学生的自主探索精神和创新能力。
3、情感态度与价值观:通过课堂中和谐、民主的师生关系,让学生在平等、尊重、信任、理解和宽容的氛围中受到激励和鼓舞,培养学生严谨的科学态度。
【教学重点、难点与关键】1、重点:利用“代数”或“几何”的方法解决直线和圆锥曲线的位置关系。
2、难点:在开放式教学中让学生自己发现问题,提出问题。
3、关键点:帮助学生寻找“数”、“形”之间的联系。
【教学方法与手段】教学方法:开放式、探究式教学。
教学手段:利用教学软件几何画板辅助教学。
【教学过程及说明】一、引例:已知椭圆C :24x +22y =1,直线l :y=ax+b ①请你具体给出a ,b 的一组值,使直线l 和椭圆C 相交。
②直线l 和椭圆C 相交时,a ,b 应满足什么关系?③若a+b=1,试判定直线和椭圆C 的位置关系。
分析:y=ax+b②联立方程:24x +22y =1,消去y ,得:(1+2a 2)x 2+4abx+2b 2-4=0 (*) 则△=(4ab )2-4(1+2a 2)(2b 2-4)>0 整理得: b 2-4a 2<2③思路一:(1-a )2-4a 2=-3a 2-2a+1=3(a+31)2+34<2恒成立。
所以直线l 和椭圆相交。
思路二:直线y=ax+(1-a )过点(1,1)而点(1,1)在椭圆内部,所以直线和椭圆相交。
引例设计说明:问题①是个开放题,结果不唯一。
学生可以分别从形与数这两个角度考虑这个问题,给出一组符合题意的a ,b 的值。
问题②是在问题①基础上的提升,探求直线和椭圆相交时的一般情况。
切入本节课的主题。
也为后面比较直线和双曲线位置关系的代数处理的异同点,做个铺垫。
问题③的提出,是对问题①②的呼应。
它可以从“直线l 过定点(1,1)”的几何角度去解。
第4讲 直线与圆锥曲线的位置关系考纲展示 命题探究1 直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元二次方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0,消去y 得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切或相交; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.2 直线与圆锥曲线的相交弦的弦长(1)将直线方程与圆锥曲线方程联立,消去y (或x )后得到关于x (或y )的一元二次方程ax 2+bx +c =0(或ay 2+by +c =0).(2)当Δ>0时,直线与圆锥曲线有两个交点A (x 1,y 1),B (x 2,y 2),由根与系数的关系求出x 1+x 2=-b a ,x 1x 2=ca ,则弦长为|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+1k 2|y 1-y 2|=1+1k 2·(y 1+y 2)2-4y 1y 2(k 为直线的斜率且k ≠0),当A ,B 两点坐标易求时也可直接用|AB |=(x 1-x 2)2+(y 1-y 2)2求出.3 圆锥曲线以P (x 0,y 0)(y 0≠0)为中点的弦所在直线的斜率椭圆:x 2a 2+y 2b 2=1(a >0,b >0) k =b 2x 0a 2y 0双曲线:x 2a 2-y 2b 2=1(a >0,b >0)k =b 2x 0a 2y 0抛物线:y 2=2px (p >0)k =p y 0其中k =y 1-y 2x 1-x 2(x 1≠x 2),(x 1,y 1),(x 2,y 2)为弦的端点坐标.注意点 直线与圆锥曲线的相切与只有一个公共点的关系 直线与椭圆(圆)只有一个公共点是直线与椭圆(圆)相切的充要条件,而直线与双曲线(抛物线)只有一个公共点,只是直线与双曲线(抛物线)相切的必要不充分条件.1.思维辨析(1)直线l 与椭圆C 相切的充要条件是:直线l 与椭圆C 只有一个公共点.( )(2)直线l 与双曲线C 相切的充要条件是:直线l 与双曲线C 只有一个公共点.( )(3)直线l 与抛物线C 相切的充要条件是:直线l 与抛物线C 只有一个公共点.( )(4)如果直线x =ty +a 与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则弦长|AB |=1+t 2|y 1-y 2|.( )(5)若抛物线C 上存在关于直线l 对称的两点,则需满足直线l 与抛物线C 的方程联立消元后得到的一元二次方程的判别式Δ>0.( )答案 (1)√ (2)× (3)× (4)√ (5)×2.椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则ab 的值为( )A.32B.233C.932D.2327答案 A解析 联立椭圆方程与直线方程,得ax 2+b (1-x )2=1,即(a +b )x 2-2bx +b -1=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2ba +b ,y1+y 2=1-x 1+1-x 2=2-2b a +b =2aa +b ,AB 中点坐标为⎝ ⎛⎭⎪⎫b a +b ,a a +b ,AB 中点与原点连线的斜率k =aa +b b a +b=a b =32.故选A.3.直线l 经过抛物线y 2=4x 的焦点F ,与抛物线相交于A ,B 两点,若|AB |=8,则直线l 的方程为________.答案 x -y -1=0或x +y -1=0解析 设直线l 的斜率为k ,则方程为y =k (x -1),与y 2=4x 联立得:k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2, |AB |=x 1+x 2+p =2k 2+4k 2+2=8得k 2=1,∴k =±1,∴l 的方程为:x -y -1=0或x +y -1=0.[考法综述] 直线与圆锥曲线位置关系的判断、相交弦的弦长计算、中点弦问题等是考查热点,同时与函数、数列、平面向量等知识综合考查,难度较大.命题法1 直线与圆锥曲线的位置关系典例1 (1)若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-153,153 B.⎝ ⎛⎭⎪⎫0,153 C.⎝⎛⎭⎪⎫-153,0 D.⎝⎛⎭⎪⎫-153,-1 (2)若直线l :y =(a +1)x -1与曲线C :y 2=ax 恰好有一个公共点,则实数a 的取值为( )A.⎩⎨⎧⎭⎬⎫-1,-45,0 B .{-1,0}C.⎩⎨⎧⎭⎬⎫-1,-45 D.⎩⎨⎧⎭⎬⎫-45,0 [解析] (1)由⎩⎪⎨⎪⎧y =kx +2x 2-y 2=6,得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0Δ=16k 2-4(1-k 2)×(-10)>0x 1+x 2=4k 1-k2>0x 1x 2=-101-k 2>0解得-153<k <-1.(2)因为直线l 与曲线C 恰好有一个公共点,所以方程组⎩⎪⎨⎪⎧y =(a +1)x -1y 2=ax有唯一一组实数解,消去y ,得[(a +1)x -1]2=ax ,整理得(a +1)2x 2-(3a +2)x +1=0 ①(ⅰ)当a +1=0,即a =-1时,方程①是关于x 的一元一次方程,解得x =-1,这时,原方程组有唯一解⎩⎪⎨⎪⎧x =-1y =-1.(ⅱ)当a +1≠0,即a ≠-1时,方程①是关于x 的一元二次方程,判别式Δ=(3a +2)2-4(a +1)2=a (5a +4),令Δ=0,解得a =0或a =-45.当a =0时,原方程组有唯一解⎩⎪⎨⎪⎧x =1y =0;当a =-45时,原方程组有唯一解⎩⎪⎨⎪⎧x =-5y =-2.综上,实数a 的取值集合是⎩⎨⎧⎭⎬⎫-1,-45,0.故选A.[答案] (1)D (2)A【解题法】 直线与圆锥曲线位置关系的判断(1)直线与圆锥曲线相交或相离时,可直接联立直线与曲线的方程,结合消元后的一元二次方程求解.(2)直线与圆锥曲线相切时,尤其是对于抛物线与双曲线,要结合图形,数形结合求解.(3)当条件中含有参数时,要注意对参数进行讨论,尤其是在双曲线与抛物线中,必须要保证联立后的方程为二次方程才能由“Δ”进行判定.命题法2 直线与圆锥曲线的弦长问题典例2 已知椭圆E 的中心在坐标原点、对称轴为坐标轴,且抛物线x 2=-42y 的焦点是它的一个焦点,又点A (1,2)在该椭圆上.(1)求椭圆E 的方程;(2)若斜率为2的直线l 与椭圆E 交于不同的两点B 、C ,当△ABC 的面积最大时,求直线l 的方程.[解] (1)由已知得抛物线的焦点为(0,-2),故设椭圆方程为y 2a 2+x 2a 2-2=1(a >2). 将点A (1,2)代入方程得2a 2+1a 2-2=1,整理得a 4-5a 2+4=0,解得a 2=4或a 2=1(舍去), 故所求椭圆方程为y 24+x 22=1.(2)设直线l 的方程为y =2x +m ,B 、C 的坐标分别为(x 1,y 1),(x 2,y 2),由⎩⎨⎧y =2x +m ,y 24+x 22=1,得4x 2+22mx +m 2-4=0,则Δ=8m 2-16(m 2-4)=8(8-m 2)>0, ∴0≤m 2<8.由x 1+x 2=-22m ,x 1x 2=m 2-44, 得|BC |=3|x 1-x 2|=3·16-2m 22. 又点A 到BC 的距离为d =|m |3, 故S △ABC =12|BC |·d =m 2(16-2m 2)4≤142·2m 2+(16-2m 2)2=2, 当且仅当2m 2=16-2m 2,即m =±2时取等号. 当m =±2时,满足0≤m 2<8. 故直线l 的方程为y =2x ±2.【解题法】 直线与圆锥曲线相交时弦长的求法(1)定义法:过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义可优化解题.(客观题常用)(2)点距法:将直线的方程与圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长.(不常用)(3)弦长公式法:它体现了解析几何中的设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系.(常用方法)命题法3 中点弦问题典例3 平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.[解] (1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1.由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎨⎧x +y -3=0,x 26+y 23=1解得⎩⎨⎧x =433,y =-33或⎩⎪⎨⎪⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝ ⎛⎭⎪⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎨⎧y =x +n ,x 26+y 23=1,得3x 2+4nx +2n 2-6=0.于是x 3,4=-2n ±2(9-n 2)3. 因为直线CD 的斜率为1,所以|CD |=2|x 4-x 3|=43 9-n 2.由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863. 所以四边形ACBD 面积的最大值为863. 【解题法】 弦中点问题的解题策略(1)涉及直线与圆锥曲线相交弦的中点和弦所在直线的斜率问题时,常用“点差法”“设而不求法”,并借助一元二次方程根的判别式、根与系数的关系、中点坐标公式及参数法求解.但在求得直线方程后,一定要代入原方程进行检验.(2)点差法求解弦中点问题的基本步骤为: ①设点:即设出弦的两端点坐标. ②代入:即代入圆锥曲线方程.③作差:即两式相减,再用平方差公式把上式展开. ④整理:即转化为斜率与中点坐标的关系式,然后求解. 1.过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A 、B 两点,且|P A |=12|AB |,则点A 到抛物线C 的焦点的距离为( )A.53B.75 C.97 D .2答案 A解析 设A (x 1,y 1)、B (x 2,y 2),分别过点A 、B 作直线x =-2的垂线,垂足分别为点D 、E .∵|P A |=12|AB |,∴⎩⎪⎨⎪⎧ 3(x 1+2)=x 2+2,3y 1=y 2,又⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得x 1=23,则点A 到抛物线C 的焦点的距离为1+23=53.2.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334B.938 C.6332 D.94答案 D解析 由已知得F ⎝⎛⎭⎪⎫34,0,故直线AB 的方程为y =tan30°·⎝⎛⎭⎪⎫x -34,即y =33x -34.设A (x 1,y 1),B (x 2,y 2),联立 将①代入②并整理得13x 2-72x +316=0, ∴x 1+x 2=212,∴线段|AB |=x 1+x 2+p =212+32=12.又原点(0,0)到直线AB 的距离为d =3413+1=38. ∴S △OAB =12|AB |d =12×12×38=94.3.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,过点A 的直线与C 在第一象限相切于点B ,记C 的焦点为F ,则直线BF 的斜率为( )A.12B.23C.34D.43答案 D解析 由题意可知准线方程x =-p2=-2,∴p =4,∴抛物线方程为y 2=8x .由已知易得过点A 与抛物线y 2=8x 相切的直线斜率存在,设为k ,且k >0,则可得切线方程为y -3=k (x +2).联立方程⎩⎪⎨⎪⎧y -3=k (x +2),y 2=8x ,消去x 得ky 2-8y +24+16k =0.(*)由相切得Δ=64-4k (24+16k )=0,解得k =12或k =-2(舍去),代入(*)解得y =8,把y =8代入y 2=8x ,得x =8,即切点B 的坐标为(8,8),又焦点F 为(2,0),故直线BF 的斜率为43.4.已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728 D.10答案 B解析 设AB 所在直线方程为x =my +t .由⎩⎪⎨⎪⎧x =my +t ,y 2=x ,消去x ,得y 2-my -t =0. 设A (y 21,y 1),B (y 22,y 2)(不妨令y 1>0,y 2<0), 故y 21+y 22=m ,y 1y 2=-t .而OA →·OB →=y 21y 22+y 1y 2=2. 解得y 1y 2=-2或y 1y 2=1(舍去). 所以-t =-2,即t =2. 所以直线AB 过定点M (2,0).而S △ABO =S △AMO +S △BMO =12|OM ||y 1-y 2|=y 1-y 2,S△AFO=12|OF|×y1=12×14y1=18y1,故S△ABO+S△AFO=y1-y2+18y1=98y1-y2.由98y1-y2=98y1+(-y2)≥298y1×(-y2)=298×2=3,得S△ABO+S△AFO的最小值为3,故选B.5.在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c 的最大值为________.答案2 2解析直线x-y+1=0与双曲线x2-y2=1的一条渐近线x-y=0平行,这两条平行线之间的距离为22,又P为双曲线x2-y2=1右支上的一个动点,点P到直线x-y+1=0的距离大于c恒成立,则c≤22,即实数c的最大值为22.6.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点.若|FQ|=2,则直线l 的斜率等于________.答案±1解析设直线AB方程为x=my-1(m≠0),A(x1,y1),B(x2,y2),联立直线和抛物线方程,整理得,y2-4my+4=0,由根与系数关系得y1+y2=4m,y1y2=4.故Q(2m2-1,2m).由|FQ|=2知(2m)2+(2m2-1-1)2=2,解得m2=1或m2=0(舍去),故直线l的斜率等于±1(此时直线AB与抛物线相切,为满足题意的极限情况).7.已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,点(2,2)在C上.(1)求C的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.解 (1)由题意有a 2-b 2a =22,4a 2+2b 2=1, 解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1.(2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1得 (2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1.于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.8.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,2),且离心率e =22. (1)求椭圆E 的方程;(2)设直线l :x =my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝⎛⎭⎪⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由. 解 解法一:(1)由已知得,⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2.解得⎩⎪⎨⎪⎧a =2,b =2,c = 2.所以椭圆E 的方程为x 24+y 22=1.(2)设点A (x 1,y 1),B (x 2,y 2),AB 的中点为H (x 0,y 0).由⎩⎨⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0,所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而y 0=mm 2+2.所以|GH |2=⎝ ⎛⎭⎪⎫x 0+942+y 20=⎝ ⎛⎭⎪⎫my 0+542+y 20=(m 2+1)y 20+52my 0+2516. |AB |24=(x 1-x 2)2+(y 1-y 2)24=(1+m 2)(y 1-y 2)24 =(1+m 2)[(y 1+y 2)2-4y 1y 2]4=(1+m 2)(y 20-y 1y 2),故|GH |2-|AB |24=52my 0+(1+m 2)y 1y 2+2516=5m 22(m 2+2)-3(1+m 2)m 2+2+2516=17m 2+216(m 2+2)>0,所以|GH |>|AB |2.故点G ⎝ ⎛⎭⎪⎫-94,0在以AB 为直径的圆外. 解法二:(1)同解法一.(2)设点A (x 1,y 1),B (x 2,y 2),则GA →=⎝⎛⎭⎪⎫x 1+94,y 1,GB →=⎝⎛⎭⎪⎫x 2+94,y 2.由⎩⎨⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0,所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2,从而GA →·GB →=⎝⎛⎭⎪⎫x 1+94⎝⎛⎭⎪⎫x 2+94+y 1y 2=⎝⎛⎭⎪⎫my 1+54⎝⎛⎭⎪⎫my 2+54+y 1y 2=(m 2+1)y 1y 2+54m (y 1+y 2)+2516=-3(m 2+1)m 2+2+52m2m 2+2+2516=17m 2+216(m 2+2)>0,所以cos 〈GA →,GB →〉>0.又GA →,GB →不共线,所以∠AGB 为锐角.故点G ⎝ ⎛⎭⎪⎫-94,0在以AB 为直径的圆外.9.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解 (1)设F (c,0),由条件知,2c =233,得c = 3. 又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2).将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时, x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0. 所以,当△OPQ 的面积最大时,l 的方程为 y =72x -2或y =-72x -2.10.圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).双曲线C 1:x 2a 2-y 2b 2=1过点P 且离心率为 3.(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点,若以线段AB 为直径的圆过点P ,求l 的方程.解 (1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4.此时,两个坐标轴的正半轴与切线围成的三角形面积为S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0,知当且仅当x 0=y 0=2时x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).由题意知⎩⎨⎧2a 2-2b2=1,a 2+b 2=3a 2,解得a 2=1,b 2=2,故C 1的方程为x 2-y 22=1.(2)由(1)知C 2的焦点坐标为(-3,0),(3,0),由此设C 2的方程为x 23+b 21+y 2b 21=1,其中b 1>0.由P (2,2)在C 2上,得23+b 21+2b 21=1, 解得b 21=3.因此C 2的方程为x 26+y 23=1.显然,l 不是直线y =0.设l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x =my +3,x 26+y 23=1,得(m 2+2)y 2+23my -3=0,又y 1,y 2是方程的根,因此⎩⎪⎨⎪⎧y 1+y 2=-23mm 2+2, ①y 1y 2=-3m 2+2. ②由x 1=my 1+3,x 2=my 2+3,得因为AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2). 由题意知AP →·BP →=0,所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0.⑤ 将①,②,③,④代入⑤式整理,得 2m 2-26m +46-11=0,解得m =362-1或m =-62+1.因此直线l 的方程为x -⎝ ⎛⎭⎪⎫362-1y -3=0或x +⎝ ⎛⎭⎪⎫62-1y -3=0. 11.如图,已知两条抛物线E 1:y 2=2p 1x (p 1>0)和E 2:y 2=2p 2x (p 2>0),过原点O 的两条直线l 1和l 2,l 1与E 1,E 2分别交于A 1,A 2两点,l 2与E 1,E 2分别交于B 1,B 2两点.(1)证明:A 1B 1∥A 2B 2;(2)过O 作直线l (异于l 1,l 2)与E 1,E 2分别交于C 1,C 2两点.记△A 1B 1C 1与△A 2B 2C 2的面积分别为S 1与S 2,求S 1S 2的值.解 (1)证明:设直线l 1,l 2的方程分别为y =k 1x ,y =k 2x (k 1,k 2≠0),则由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 1x ,得A 1⎝ ⎛⎭⎪⎫2p 1k 21,2p 1k 1,由⎩⎪⎨⎪⎧y =k 1x ,y 2=2p 2x ,得A 2⎝ ⎛⎭⎪⎫2p 2k 21,2p 2k 1.同理可得B 1⎝ ⎛⎭⎪⎫2p 1k 22,2p 1k 2,B 2⎝ ⎛⎭⎪⎫2p 2k 22,2p 2k 2. 所以A 1B 1→=⎝⎛⎭⎪⎫2p 1k 22-2p 1k 21,2p 1k 2-2p 1k 1=2p 1⎝ ⎛⎭⎪⎫1k 22-1k 21,1k 2-1k 1.A 2B 2→=⎝⎛⎭⎪⎫2p 2k 22-2p 2k 21,2p 2k 2-2p 2k 1=2p 2⎝ ⎛⎭⎪⎫1k 22-1k 21,1k 2-1k 1.故A 1B 1→=p 1p 2A 2B 2→,所以A 1B 1∥A 2B 2.(2)由(1)知A 1B 1∥A 2B 2,同理可得B 1C 1∥B 2C 2,C 1A 1∥C 2A 2.所以△A 1B 1C 1∽△A 2B 2C 2.因此S 1S 2=⎝ ⎛⎭⎪⎪⎫|A 1B 1→||A 2B 2→|2.又由(1)中的A 1B 1→=p 1p 2A 2B 2→知|A 1B 1→||A 2B 2→|=p 1p 2.故S 1S 2=p 21p 22.已知抛物线y 2=4x 的焦点为F ,过F 作两条相互垂直的弦AB ,CD ,设弦AB ,CD 的中点分别为M ,N .求证:直线MN 恒过定点.[错解][错因分析] 直线恒过定点是指无论直线如何变动,必有一个定点的坐标适合这条直线的方程,问题就归结为用参数把直线的方程表示出来,无论参数如何变化这个方程必有一组常数解.本题容易出错的地方有两个:一是在用参数表示直线MN 的方程时计算错误;二是在得到了直线系MN 的方程后,对直线恒过定点的意义不明,找错方程的常数解.[正解] 设M (x M ,y M ),A (x 1,y 1),B (x 2,y 2).由题设,知F (1,0),直线AB 的斜率存在且不为0,设直线AB 的斜率为k ,其方程为y =k (x -1)(k ≠0),代入y 2=4x ,得k 2x 2-2(k 2+2)x +k 2=0,得x M =x 1+x 22=k 2+2k 2,又y M =k (x M -1)=2k ,故M ⎝ ⎛⎭⎪⎫k 2+2k2,2k .设直线CD 的斜率为k ′,因为CD ⊥AB ,所以k ′=-1k .同理,可得N (2k 2+1,-2k ).所以直线MN 的方程为⎝⎛⎭⎪⎫2k 2+1-k 2+2k 2(y +2k )=⎝ ⎛⎭⎪⎫-2k -2k (x -2k 2-1),化简整理,得yk 2+(x -3)k -y =0,该方程对任意k 恒成立,故⎩⎪⎨⎪⎧y =0,x -3=0,-y =0,解得⎩⎪⎨⎪⎧x =3,y =0.故不论k 为何值,直线MN 恒过定点(3,0). [心得体会]………………………………………………………………………………………………时间:90分钟基础组1.[2016·衡水二中预测]抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8答案 C解析 ∵y 2=4x ,∴F (1,0),l :x =-1,过焦点F 且斜率为3的直线l 1:y =3(x -1),与y 2=4x 联立,解得A (3,23),∴AK =4,∴S △AKF =12×4×23=4 3.故选C.2.[2016·枣强中学月考]已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点C ,过双曲线中心的直线交双曲线于A ,B 两点,记直线AC ,BC 的斜率分别为k 1,k 2,当2k 1k 2+ln |k 1|+ln |k 2|最小时,双曲线离心率为( )A. 2B. 3C.2+1 D .2答案 B解析 设点A (x 1,y 1),C (x 2,y 2),由于点A ,B 为过原点的直线与双曲线的交点,所以根据双曲线的对称性可得A ,B 关于原点对称,即B (-x 1,-y 1).则k 1·k 2=y 2-y 1x 2-x 1·y 2-(-y 1)x 2-(-x 1)=y 22-y 21x 22-x 21, 由于点A ,C 都在双曲线上,故有x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,两式相减,得x 21-x 22a 2-y 21-y 22b 2=0,所以k 1k 2=y 21-y 22x 21-x 22=b 2a 2>0.则2k 1k 2+ln |k 1|+ln |k 2|=2k 1k 2+ln (k 1k 2),对于函数y =2x+ln x (x >0)利用导数法可以得到当x =2时,函数y =2x +ln x (x >0)取得最小值.故当2k 1k 2+ln |k 1|+ln |k 2|取得最小值时,k 1k 2=b 2a 2=2,所以e=1+b 2a 2=3,故选B.3.[2016·衡水二中猜题]斜率为1的直线l 与椭圆x 24+y 2=1相交于A 、B 两点,则|AB |的最大值为( )A .2 B.455 C.4105 D.8105答案 C解析 设A 、B 两点的坐标分别为(x 1,y 1)、(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t 消去y ,得5x 2+8tx +4(t 2-1)=0. Δ=(2t )2-5(t 2-1)>0,即t 2<5. 则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5. ∴|AB |=1+k 2|x 1-x 2|=1+k 2· (x 1+x 2)2-4x 1x 2=2·⎝ ⎛⎭⎪⎫-85t 2-4×4(t 2-1)5 =4255-t 2,当t =0时,|AB |max =4105.4. [2016·衡水二中一轮检测]直线y =kx -2与抛物线y 2=8x 交于A 、B 两点,且AB 中点的横坐标为2,则k 的值是________.答案 2解析 设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -2,y 2=8x ,消去y 得k 2x 2-4(k +2)x +4=0,由题意得⎩⎨⎧Δ=[-4(k +2)]2-4×k 2×4>0,x 1+x 2=4(k +2)k 2=2×2,∴⎩⎪⎨⎪⎧k >-1,k =-1或k =2,即k =2. 5.[2016·冀州中学周测]已知两定点M (-1,0),N (1,0),若直线上存在点P ,使|PM |+|PN |=4,则该直线为“A 型直线”.给出下列直线,其中是“A 型直线”的是________(填序号).①y =x +1;②y =2;③y =-x +3;④y =-2x +3. 答案 ①④解析 由题意可知,点P 的轨迹是以M ,N 为焦点的椭圆,其方程是x 24+y 23=1,①把y =x +1代入x 24+y 23=1并整理得,7x 2+8x -8=0, ∵Δ=82-4×7×(-8)>0,直线与椭圆有两个交点, ∴y =x +1是“A 型直线”.②把y =2代入x 24+y 23=1,得x 24=-13不成立,直线与椭圆无交点,∴y =2不是“A 型直线”.③把y =-x +3代入x 24+y 23=1并整理得,7x 2-24x +24=0,Δ=(-24)2-4×7×24<0,∴y =-x +3不是“A 型直线”.④把y =-2x +3代入x 24+y 23=1并整理得,19x 2-48x +24=0,∵Δ=(-48)2-4×19×24>0,∴y =-2x +3是“A 型直线”.6.[2016·冀州中学热身]已知焦点在y 轴上的椭圆C 1:y 2a 2+x 2b 2=1经过点A (1,0),且离心率为32.(1)求椭圆C 1的方程;(2)过抛物线C 2:y =x 2+h (h ∈R )上点P 的切线与椭圆C 1交于两点M 、N ,记线段MN 与P A 的中点分别为G 、H ,当GH 与y 轴平行时,求h 的最小值.解 (1)由题意可得⎩⎪⎨⎪⎧1b 2=1,c a =32,a 2=b 2+c 2,解得a =2,b =1,所以椭圆C 1的方程为y 24+x 2=1. (2)设P (t ,t 2+h ),由y ′=2x ,得抛物线C 2在点P 处的切线斜率为k =y ′|x =t =2t , 所以MN 的方程为y =2tx -t 2+h , 代入椭圆方程得4x 2+(2tx -t 2+h )2-4=0, 化简得4(1+t 2)x 2-4t (t 2-h )x +(t 2-h )2-4=0. 又MN 与椭圆C 1有两个交点,故 Δ=16[-t 4+2(h +2)t 2-h 2+4]>0,①设M (x 1,y 1),N (x 2,y 2),MN 中点的横坐标为x 0,则 x 0=x 1+x 22=t (t 2-h )2(1+t 2),设线段P A 中点的横坐标为x 3=1+t2, 由已知得x 0=x 3,即t (t 2-h )2(1+t 2)=1+t2,②显然t ≠0,所以h =-⎝ ⎛⎭⎪⎫t +1t +1,③ 当t >0时,t +1t ≥2,当且仅当t =1时取等号,此时h ≤-3,不满足①式,故舍去;当t <0时,(-t )+⎝⎛⎭⎪⎫-1t ≥2,当且仅当t =-1时取等号,此时h ≥1,满足①式.综上,h 的最小值为1.7. [2016·枣强中学周测]已知圆O :x 2+y 2=49,直线l :y =kx +m与椭圆C :x 22+y 2=1相交于P 、Q 两点,O 为原点.(1)若直线l 过椭圆C 的左焦点,与圆O 交于A 、B 两点,且∠AOB =60°,求直线l 的方程;(2)若△POQ 的重心恰好在圆上,求m 的取值范围.解 (1)左焦点坐标为F (-1,0),设直线l 的方程为y =k (x +1),由∠AOB =60°,得圆心O 到直线l 的距离d =13,又d =|k |k 2+1,∴|k |k 2+1=13,解得k =±22. ∴直线l 的方程为y =±22(x +1).(2)设P (x 1,y 1),Q (x 2,y 2),由⎩⎨⎧x 22+y 2=1,y =kx +m得(1+2k 2)x 2+4kmx +2m 2-2=0.由Δ>0得1+2k 2>m 2①,且x 1+x 2=-4km1+2k 2.∵△POQ 的重心恰好在圆x 2+y 2=49上, ∴(x 1+x 2)2+(y 1+y 2)2=4, 即(x 1+x 2)2+[k (x 1+x 2)+2m ]2=4, 即(1+k 2)(x 1+x 2)2+4km (x 1+x 2)+4m 2=4. ∴16(1+k 2)k 2m 2(1+2k 2)2-16k 2m 21+2k2+4m 2=4, 化简得m 2=(1+2k 2)24k 2+1,代入①式得2k 2>0,∴k ≠0,又m 2=(1+2k 2)24k 2+1=1+4k 44k 2+1=1+44k 2+1k 4.∵k ≠0,∴m 2>1,∴m >1或m <-1.8.[2016·冀州中学预测]已知F 1、F 2是双曲线x 2-y 215=1的两个焦点,离心率等于45的椭圆E 与双曲线x 2-y215=1的焦点相同,动点P (m ,n )满足|PF 1|+|PF 2|=10,曲线M 的方程为x 22+y 22=1.(1)求椭圆E 的方程;(2)判断直线mx +ny =1与曲线M 的公共点的个数,并说明理由;当直线mx +ny =1与曲线M 相交时,求直线mx +ny =1截曲线M 所得弦长的取值范围.解 (1)∵F 1、F 2是双曲线x 2-y 215=1的两个焦点,∴不妨设F 1(-4,0),F 2(4,0).∵椭圆E 与双曲线x 2-y215=1的焦点相同,∴设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),根据已知得⎩⎨⎧c =4,c a =45,b 2=a 2-c 2,解方程组得⎩⎪⎨⎪⎧c =4,a =5,b 2=9.∴椭圆E 的方程为x 225+y 29=1.(2)∵动点P (m ,n )满足|PF 1|+|PF 2|=10, ∴P (m ,n )是椭圆E 上的点.∴m 225+n 29=1. ∵m 225+n 29≤m 29+n 29=m 2+n 29,∴m 2+n 2≥9. ∵曲线M 是圆心为(0,0),半径r =2的圆,圆心(0,0)到直线mx +ny =1的距离d =1m 2+n 2≤13<2,∴直线mx +ny =1与曲线M 有两个公共点.设直线mx +ny =1截曲线M 所得弦长为l ,则l =22-1m 2+n2. ∵m 225+n 225≤m 225+n 29=1, ∴m 2+n 2≤25.∴9≤m 2+n 2≤25.∴125≤1m 2+n 2≤19,∴179≤2-1m 2+n 2≤4925. ∴173≤2-1m 2+n 2≤75. ∴2173≤l ≤145.∴直线mx +ny =1截曲线M 所得弦长的取值范围为⎣⎢⎡⎦⎥⎤2173,145. 9.[2016·衡水二中期中]如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程; (2)若线段|AB |=20,求直线l 的方程.解 (1)由已知得焦点坐标为F (1,0).因为线段AB 的中点在直线y =2上,所以直线l 的斜率存在,设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),则⎩⎨⎧x 0=x 1+x 22,y 0=y 1+y 22.由⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,得 (y 1+y 2)(y 1-y 2)=4(x 1-x 2),所以2y 0k =4. 又y 0=2,所以k =1,故直线l 的方程是y =x -1.(2)设直线l 的方程为x =my +1,与抛物线方程联立得⎩⎪⎨⎪⎧x =my +1,y 2=4x ,消元得y 2-4my -4=0,所以y 1+y 2=4m ,y 1y 2=-4,Δ=16(m 2+1)>0.|AB |=m 2+1|y 1-y 2| =m 2+1·(y 1+y 2)2-4y 1y 2=m 2+1·(4m )2-4×(-4)=4(m 2+1). 所以4(m 2+1)=20,解得m =±2, 所以直线l 的方程是x =±2y +1, 即x ±2y -1=0.10.[2016·枣强中学模拟]已知点A 、B 的坐标分别是(-1,0)、(1,0).直线AM ,BM 相交于点M ,且它们的斜率之积为-2.(1)求动点M 的轨迹方程;(2)若过点N ⎝ ⎛⎭⎪⎫12,1的直线l 交动点M 的轨迹于C 、D 两点,且N 为线段CD 的中点,求直线l 的方程.解 (1)设M (x ,y ).因为k AM ·k BM =-2,所以y x +1·yx -1=-2(x ≠±1),化简得2x 2+y 2=2(x ≠±1),即为动点M 的轨迹方程. (2)设C (x 1,y 1),D (x 2,y 2).当直线l ⊥x 轴时,直线l 的方程为x =12,则C ⎝ ⎛⎭⎪⎫12,62,D ⎝ ⎛⎭⎪⎫12,-62,此时线段CD 的中点不是点N ,不合题意.故设直线l 的方程为y -1=k ⎝ ⎛⎭⎪⎫x -12.将C (x 1,y 1),D (x 2,y 2)代入2x 2+y 2=2(x ≠±1),得2x 21+y 21=2,① 2x 22+y 22=2.②①-②整理得k =y 1-y 2x 1-x 2=-2(x 1+x 2)y 1+y 2=-2×12=-1.所以直线l 的方程为y -1=-⎝ ⎛⎭⎪⎫x -12,即2x +2y -3=0.11.[2016·衡水二中期末]已知定点G (-3,0),S 是圆C :(x -3)2+y 2=72上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M .(1)求M 的方程;(2)是否存在斜率为1的直线l ,使得l 与曲线M 相交于A ,B 两点,且以AB 为直径的圆恰好经过原点?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题意,知|EG |=|ES |,∴|EG |+|EC |=|ES |+|EC |=62, 又|GC |=6<62,∴点E 的轨迹是以G ,C 为焦点,长轴长为62的椭圆.故动点E 的轨迹M 的方程为x 218+y 29=1.(2)假设存在符合题意的直线l 与椭圆M 相交于A (x 1,y 1),B (x 2,y 2)两点,其方程为y =x +m ,由⎩⎨⎧y =x +m ,x 218+y 29=1,消去y ,化简得3x 2+4mx +2m 2-18=0.∵直线l 与椭圆M 相交于A ,B 两点, ∴Δ=16m 2-12(2m 2-18)>0, 化简得m 2<27,解得-33<m <33, ∴x 1+x 2=-4m3,x 1x 2=2(m 2-9)3. ∵以线段AB 为直径的圆恰好经过原点, ∴OA →·OB →=0,∴x 1x 2+y 1y 2=0,又y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,∴x 1x 2+y 1y 2=2x 1x 2+m (x 1+x 2)+m 2=4(m 2-9)3-4m 23+m 2=0,解得m =±23,由于±23∈(-33,33),∴符合题意的直线l 存在,所求的直线l 的方程为 y =x +23或y =x -2 3.12.[2016·武邑中学猜题]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,F 为椭圆在x 轴正半轴上的焦点,M ,N 两点在椭圆C 上,且MF →=λFN →(λ>0),定点A (-4,0).(1)求证:当λ=1时,MN →⊥AF →;(2)若当λ=1时有AM →·AN →=1063,求椭圆C 的方程;(3)在(2)的条件下,M ,N 两点在椭圆C 上运动,当AM →·AN →·tan ∠MAN 的值为63时,求出直线MN 的方程.解 (1)证明:设M (x 1,y 1),N (x 2,y 2),F (c,0), 则MF →=(c -x 1,-y 1),FN →=(x 2-c ,y 2), 当λ=1时,MF →=FN →, ∴-y 1=y 2,x 1+x 2=2c , 由M ,N 两点在椭圆上, ∴x 21=a 2⎝⎛⎭⎪⎫1-y 21b 2,x 22=a 2⎝⎛⎭⎪⎫1-y 22b 2,∴x 21=x 22.若x 1=-x 2,则x 1+x 2=0≠2c (舍去), ∴x 1=x 2,∴MN →=(0,2y 2),AF →=(c +4,0),MN →·AF →=0, ∴MN →⊥AF →.(2)当λ=1时,不妨设M ⎝ ⎛⎭⎪⎫c ,b 2a ,N ⎝ ⎛⎭⎪⎫c ,-b 2a ,∴AM →·AN →=(c +4)2-b 4a 2=1063, ∵c a =63,∴a 2=32c 2,b 2=c 22, ∴56c 2+8c +16=1063, ∴c =2,a 2=6,b 2=2, 故椭圆C 的方程为x 26+y 22=1.(3)因为AM →·AN →·tan ∠MAN =2S △AMN =|AF ||y M -y N |=63, 由(2)知点F (2,0),所以|AF |=6,即得|y M -y N |= 3.当MN ⊥x 轴时,|y M -y N |=|MN |=2b 2a =2×26≠3,故直线MN 的斜率存在,不妨设直线MN 的方程为y =k (x -2)(k ≠0).联立⎩⎨⎧y =k (x -2),x 26+y 22=1,得(1+3k 2)y 2+4ky -2k 2=0,y M +y N =-4k 1+3k 2,y M ·y N =-2k 21+3k 2,∴|y M -y N |=24k 4+24k 21+3k 2=3,解得k =±1.此时,直线MN 的方程为x -y -2=0或x +y -2=0.能力组13.[2016·冀州中学仿真]已知F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右两个焦点,以线段F 1F 2为直径的圆与双曲线的一条渐近线交于点M ,与双曲线交于点N (设点M 、N 均在第一象限),当直线MF 1与直线ON 平行时,双曲线的离心率的取值为e 0,则e 0所在的区间为( )A .(1,2)B .(2,3)C .(3,2)D .(2,3)答案 A解析 由⎩⎨⎧x 2+y 2=c 2,x 2a 2-y2b 2=1,x >0,y >0可得N ⎝⎛⎭⎪⎫a b 2+c 2c ,b 2c , 由⎩⎨⎧x 2+y 2=c 2,y =ba x ,x >0,y >0可得M (a ,b ),又F 1(-c,0),则kMF 1=ba +c,k ON =b 2a b 2+c2,∵MF 1∥ON , ∴b a +c =b 2a b 2+c 2,∴a b 2+c 2=b (a +c ),又b 2=c 2-a 2,∴2a 2c -c 3=2ac 2-2a 3,∴2e 0-e 30=2e 20-2,设f (x )=x 3+2x 2-2x -2,f ′(x )=3x 2+4x -2,当x >1时,f ′(x )>0,所以f (x )在(1,+∞)上单调递增,即f (x )在(1,+∞)上至多有1个零点,f (1)=1+2-2-2<0,f (2)=22+4-22-2>0,∴1<e 0< 2.故选A.14.[2016·武邑中学预测]已知中心在坐标原点的椭圆和双曲线有公共焦点(左、右焦点分别为F 1、F 2),它们在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1e 2的取值范围是( )A .(0,+∞)B.⎝ ⎛⎭⎪⎫13,+∞ C.⎝ ⎛⎭⎪⎫15,+∞ D.⎝ ⎛⎭⎪⎫19,+∞ 答案 B解析 设椭圆的长轴长为2a ,双曲线的实轴长为2m ,焦距为2c ,则有⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ,|PF 1|-|PF 2|=2m ,得|PF 2|=a -m ,又|PF 2|=|F 1F 2|=2c ,∴a -m =2c ,又由e 1=c a ,e 2=c m ,得a =c e 1,m =c e 2,从而有c e 1-c e 2=2c ,得e 2=e 11-2e 1,从而e 1e 2=e 1·e 11-2e 1=e 211-2e 1,由e 2>1,且e 2=e 11-2e 1,可得13<e 1<12,令1-2e 1=t ,则0<t <13,e 1e 2=⎝ ⎛⎭⎪⎫1-t 22t =14⎝ ⎛⎭⎪⎫t +1t -2.又f (t )=t +1t -2在⎝ ⎛⎭⎪⎫0,13上为减函数,则0<t <13时,f (t )>f ⎝ ⎛⎭⎪⎫13,∴0<t <13时,f (t )>43,故e 1e 2>13.15.[2016·衡水二中模拟]如图,F 是椭圆的右焦点,以点F 为圆心的圆过原点O 和椭圆的右顶点,设P 是椭圆上的动点,点P 到椭圆两焦点的距离之和等于4.(1)求椭圆和圆的标准方程;(2)设直线l 的方程为x =4,PM ⊥l ,垂足为M ,是否存在点P ,使得△FPM 为等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.解 (1)由题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得2a =4,a =2c ,解得a =2,c =1,b 2=a 2-c 2=3.∴椭圆的标准方程为x 24+y 23=1,圆的标准方程为(x -1)2+y 2=1.(2)设P (x ,y ),则M (4,y ),F (1,0),其中-2≤x ≤2,∵P (x ,y )在椭圆上,∴x 24+y 23=1,∴y 2=3-34x 2.∴|PF |2=(x -1)2+y 2=(x -1)2+3-34x 2=14(x -4)2,|PM |2=|x -4|2,|FM |2=32+y 2=12-34x 2. ①若|PF |=|FM |,则14(x -4)2=12-34x 2,解得x =-2或x =4(舍去),当x =-2时,P (-2,0),此时P 、F 、M 三点共线,不符合题意,∴|PF |≠|FM |;②若|PM |=|PF |,则(x -4)2=14(x -4)2,解得x =4,不符合题意; ③若|PM |=|FM |,则(x -4)2=12-34x 2,解得x =4(舍去)或x =47,当x =47时,y =±3157,∴P ⎝ ⎛⎭⎪⎫47,±3157,满足题意. 综上可得,存在点P ⎝ ⎛⎭⎪⎫47,3157或⎝ ⎛⎭⎪⎫47,-3157,使得△FPM 为等腰三角形.16.[2016·枣强中学期末]如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左,右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.解 (1)设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F 2(c,0).因为△AB 1B 2是直角三角形,又|AB 1|=|AB 2|,所以∠B 1AB 2为直角,因此|OA |=|OB 2|,则b =c 2,又c 2=a 2-b 2,所以4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =255. 在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c 2·b =b 2.由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意知直线l 的倾斜角不为0,故可设直线l 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0.设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根,因此y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5. 又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2),所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16=-16(m 2+1)m 2+5-16m 2m 2+5+16 =-16m 2-64m 2+5, 由PB 2⊥QB 2,得B 2P →·B 2Q →=0,即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0.。
直线与圆锥曲线的交点一、教学目标1、知识教学点:使学生掌握点、直线与圆锥曲线的位置及其判定,重点掌握直线与圆锥曲线相交的有关问题.2、能力训练点:通过对点、直线与圆锥曲线的位置关系的研究,培养学生综合运用直线、圆锥曲线的各方面知识的能力.3、学科渗透点:通过点与圆锥曲线的位置及其判定,渗透归纳、推理、判断等方面的能力.二、教材分析1.重点:直线与圆锥曲线的相交的有关问题.(解决办法:先引导学生归纳出直线与圆锥曲线的位置关系,再加以应用.)2.难点:圆锥曲线上存在关于直线对称的两点,求参数的取值范围.(解决办法:利用判别式法和内点法进行讲解.)3.疑点:直线与圆锥曲线位置关系的判定方法中△=0不是相切的充要条件.(解决办法:用图形向学生讲清楚这一点.)三、教学方法:探析归纳,讲练结合四、教学过程(一)问题提出1.点P(x0,y0)和圆锥曲线C:f(x,y)=0有哪几种位置关系?它们的条件是什么?引导学生回答,点P与圆锥曲线C的位置关系有:点P在曲线C上、点P在曲线C内部(含焦点区域)、点P在曲线的外部(不含焦点的区域).那么这三种位置关系的条件是什么呢?这是我们要分析的问题之一.2.直线l:Ax+By+C=0和圆锥曲线C:f(x,y)=0有哪几种位置关系?引导学生类比直线与圆的位置关系回答.直线l与圆锥曲线C的位置关系可分为:相交、相切、相离.那么这三种位置关系的条件是什么呢?这是我们要分析的问题之二.(二)讲授新课1.点M(x0,y0)与圆锥曲线C:f(x,y)=0的位置关系的焦点为F1、F2,y2=2px(p>0)的焦点为F,一定点为P(x0,y0),M点到抛物线的准线的距离为d,则有:(由教师引导学生完成,填好小黑板)上述结论可以利用定比分点公式,建立两点间的关系进行证明.2.直线l∶Ax+Bx+C=0与圆锥曲线C∶f(x,y)=0的位置关系:直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可引导学生归纳为:注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件.3.应用求m的取值范围.解法一:考虑到直线与椭圆总有公共点,由直线与圆锥曲线的位置关系的充要条件可求.由一名同学演板.解答为:由椭圆方程及椭圆的焦点在x轴上,知:0<m<5.又∵直线与椭圆总有公共点,即(10k)2-4x(m+5k2)×5(1-m)≥0,亦即5k2≥1-m对一切实数k成立.∴1-m≤0,即m≥1.故m的取值范围为m∈(1,5).解法二:由于直线过定点(0,1),而直线与椭圆总有公共点,所以定点(0,1)必在椭圆内部或边界上,由点与椭圆的位置关系的充要条件易求.另解:由椭圆方程及椭圆的焦点在x轴上知:0<m<5.又∵直线与椭圆总有公共点.∴ 直线所经过的定点(0,1)必在椭圆内部或边界上.故m的取值范围为m∈(1,5),小结:解法一由直线与圆锥曲线的位置关系的充要条件求,思路易得,但计算量大;解法二由点与圆锥曲线的位置关系的充要条件求,思路灵活,且简捷.称,求m的取值范围.解法一:利用判别式法.并整理得:∵直线l′与椭圆C相交于两点,解法二:利用内点法.设两对称点为P1(x1,y1),P2(x2,y2),P1P2的中点为M(x0,y0),∴y1+y2=3(x1+x2).(1)小结:本例中的判别式法和内点法,是解决圆锥曲线上存在两点关于直线的对称的一般方法,类似可解抛物线、双曲线中的对称问题.练习1:(1)直线过点A(0,1)且与抛物线y2=x只有一个公共点,这样的直线有几条?(2)过点P(2,0)的直线l与双曲线x2-y2=1只有一个公共点,这样的直线有几条?由学生练习后口答:(1)3条,两条切线和一条平行于x轴的直线;(2)2条,注意到平行于渐近线的直线与双曲线只有一个交点,故这样的直线也只有2条.练习2:求曲线C∶x2+4y2=4关于直线y=x-3对称的曲线C′的方程.由教师引导方法,学生演板完成.解答为:设(x′,y′)是曲线C上任意一点,且设它关于直线y=x-3的对称点为(x,y).又(x′,y′)为曲线C上的点,∴(y+3)2+4(x-3)2=4.∴曲线C的方程为:4(x-3)2+(y+3)2=4.(三)小结:本课主要研究了点、直线与圆锥曲线的三种位置关系及重要条件.(四)、布置作业的值.2.k取何值时,直线y=kx与双曲线4x2-y2=16相交、相切、相离?3.已知抛物线x=y2+2y上存在关于直线y=x+m对称的相异两点,求m的取值范围.作业答案:1.由弦长公式易求得:k=-4当4-k2=0,k=±2,y=±2x为双曲线的渐近线,直线与双曲线相离当4-k2≠0时,△=4(4-k2)×(-6);(1)当△>0,即-2<k<2时,直线与双曲线有两个交点;(2)当△<0,即k<-2或k>2时,直线与双曲线无交点;(3)当△=0,即k=±2时,为渐近线,与双曲线不相切。
直线与圆锥曲线的位置关系教案教学目标:1. 理解直线与圆锥曲线的位置关系;2. 学会运用直线与圆锥曲线的性质解决问题;3. 提高推理能力和解决问题的能力。
教学重点:1. 直线与圆锥曲线的位置关系的判定;2. 直线与圆锥曲线的性质及应用。
教学难点:1. 直线与圆锥曲线的位置关系的判定;2. 直线与圆锥曲线的性质的灵活运用。
教学准备:1. 教材或教学资源;2. 投影仪或白板;3. 粉笔或教学板书。
教学过程:第一章:直线与圆锥曲线的位置关系简介1.1 引入通过展示一些实际问题,引导学生思考直线与圆锥曲线的位置关系,例如:在平面直角坐标系中,给定一个圆锥曲线(如椭圆、双曲线、抛物线),如何判断一条给定的直线与该圆锥曲线的位置关系(相交、切线、平行、远离)?1.2 讲解讲解直线与圆锥曲线的位置关系的判定方法,包括:(1)相交:直线与圆锥曲线有两个不同的交点;(2)切线:直线与圆锥曲线有一个交点,且该交点为切点;(3)平行:直线与圆锥曲线没有交点;(4)远离:直线与圆锥曲线相离,没有交点。
1.3 练习给出一些练习题,让学生运用所学知识判断直线与圆锥曲线的位置关系,并解释原因。
1.4 小结总结本章内容,强调直线与圆锥曲线的位置关系的判定方法及应用。
第二章:直线与圆锥曲线的性质2.1 引入通过展示一些实际问题,引导学生思考直线与圆锥曲线的性质,例如:在平面直角坐标系中,给定一条直线和一个圆锥曲线(如椭圆、双曲线、抛物线),如何描述它们的交点、切点等特征?2.2 讲解讲解直线与圆锥曲线的性质,包括:(1)交点的坐标:根据直线和圆锥曲线的方程,求出它们的交点坐标;(2)切点的坐标:根据直线和圆锥曲线的方程,求出它们的切点坐标;(3)斜率:直线与圆锥曲线相交时,交点的切线斜率与直线的斜率的关系;(4)距离:直线与圆锥曲线的距离公式。
2.3 练习给出一些练习题,让学生运用所学知识描述直线与圆锥曲线的交点、切点等特征,并计算相关距离和斜率。
3.4.3 直线与圆锥曲线交点
【学习目标】
1.了解直线与圆锥曲线的三种位置关系;
2.掌握求解有关直线与圆锥曲线的问题的方法。
【重点难点】
直线与圆锥曲线相交的弦长与中点弦问题。
【自主探究】
直线与圆锥曲线的位置关系有哪几种?如何判断?
【合作探究】
探究1. 直线与圆锥曲线的交点个数问题
例1.已知直线l :2y x m =+,椭圆C :1242
2=+y x ,试问当m 取何值
时,直线l 与椭圆C :
(1)有两个不同的公共点? (2)有且只有一个公共点?
(3)没有公共点?
探究2. 直线与圆锥曲线恒有公共点问题
例2.若直线1y kx =+和椭圆22
125x y m +=恒有公共点,求实数m 的取值范围。
探究3. 弦长问题
例3.斜率为1的直线经过抛物线24y x =的焦点,与抛物线相交于,A B 两点,
则||AB = 。
探究4.中点弦问题
例4.已知(4,2)是直线l 被椭圆362x +92
y =1所截得的线段的中点,求l 的方程?
【应用探究】
1.抛物线与直线有一个公共点是直线与抛物线相切的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2.过点(2,4)作直线与抛物线x y 82=只有一个公共点,这样的直线有( )
A.1条
B.2条
C.3条
D.4条
3.已知双曲线C :142
2
=-y x ,过点P (0,1)作直线l ,使l 与C 有且只有一个公共点,则满足上述条件的直线l 共有( )
A.1条
B.2条
C.3条
D.4条
4.已知椭圆
2224x y +=,则以(1,1)为中点的弦的长度是( ) ()A 32 ()B 23 ()C 303 ()D 36
2
5.已知双曲线132
2
=-y x ,过P (2,1)点作一直线交双曲线于A 、B 两点,并使P 为AB 的中点,则直线AB 的斜率为____________。
【延伸探究】
6.求过点(0,2)的直线被椭圆
2222=+y x 所截弦的中点的轨迹方程。
【教学反思】。