专题11 一元二次方程的解集及其根与系数的关系(解析版)
- 格式:doc
- 大小:895.00 KB
- 文档页数:10
中考专题一元二次方程根与系数关系解析1、如果方程ax 2+bx+c=0(a ≠0)的两根是x 1、x 2,那么x 1+x 2= ,x 1·x 2= 。
2、已知x 1、x 2是方程2x 2+3x -4=0的两个根,那么:x 1+x 2= ;x 1·x 2= ;2111x x + ;x 21+x 22= ;(x 1+1)(x 2+1)= ;|x 1-x 2|= 。
3、以2和3为根的一元二次方程(二次项系数为1)是 。
4、如果关于x 的一元二次方程x 2+2x+a=0的一个根是1-2,那么另一个根是 ,a 的值为 。
5、如果关于x 的方程x 2+6x+k=0的两根差为2,那么k= 。
6、已知方程2x 2+mx -4=0两根的绝对值相等,则m= 。
7、一元二次方程px 2+qx+r=0(p ≠0)的两根为0和-1,则q ∶p= 。
8、已知方程x 2-mx+2=0的两根互为相反数,则m= 。
9、已知关于x 的一元二次方程(a 2-1)x 2-(a+1)x+1=0两根互为倒数,则a= 。
10、已知关于x 的一元二次方程mx 2-4x -6=0的两根为x 1和x 2,且x 1+x 2=-2,则m= ,(x 1+x 2)21x x ⋅= 。
11、已知方程3x 2+x -1=0,要使方程两根的平方和为913,那么常数项应改为 。
12、已知一元二次方程的两根之和为5,两根之积为6,则这个方程为 。
13、若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程为 。
(其中二次项系数为1)14、已知关于x 的一元二次方程x 2-2(m -1)x+m 2=0。
若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。
15、已知方程x 2+4x -2m=0的一个根α比另一个根β小4,则α= ;β= ;m= 。
16、已知关于x 的方程x 2-3x+k=0的两根立方和为0,则k= 17、已知关于x 的方程x2-3mx+2(m -1)=0的两根为x 1、x 2,且43x 1x 121-=+,则m= 。
微专题11二次函数根的分布问题【方法技巧与总结】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系(1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=<2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题一般情况下需要从以下4个方面考虑:(1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负.设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示.根的分布图像限定条件12m x x <<02()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩12x m x <<()0f m <12x x m<<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩在区间(,)m n 内没有实根∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩在区间(,)m n 内有且只有一个实根()0()0f m f n >⎧⎨<⎩()0()0f mf n<⎧⎨>⎩在区间(,)m n内有两个不等实根2()0()0bm naf mf n∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩【题型归纳目录】题型一:正负根问题题型二:根在区间的分布问题题型三:整数根问题题型四:范围问题【典型例题】题型一:正负根问题例1.(2022·河南·郑州市回民高级中学高一阶段练习)已知m为实数,命题甲:关于x的不等式240mx mx+-<的解集为R;命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根.若甲、乙至少有一个为真命题,求实数m的取值范围为_______.【答案】(20,0]-【解析】由命题甲:关于x的不等式240mx mx+-<的解集为R,当0m=时,不等式40-<恒成立;当0m≠时,则满足2160mm m<⎧⎨∆=+<⎩,解得160m-<<,综上可得160m-<≤.由命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根,则满足2121244(20)020200m m x x m x x m ⎧∆=-+>⎪+=<⎨⎪=+>⎩,整理得2200020m m m m ⎧-->⎪<⎨⎪>-⎩,所以45020m m m m <->⎧⎪<⎨⎪>-⎩或,解得204m -<<-.所以甲、乙至少有一个为真命题时,有160m -<≤或204m -<<-,可得200m -<≤,即实数m 的取值范围为(20,0]-.故答案为:(20,0]-.例2.(2022·全国·高一单元测试)关于x 的方程2210ax x ++=的实数根中有且只有一个负实数根的充要条件为____________.【答案】0a ≤或1a =【解析】若方程2210ax x ++=有且仅有一个负实数根,则当0a =时,12x =-,符合题意.当0a ≠时,方程2210ax x ++=有实数根,则440a ∆=-≥,解得1a ≤,当1a =时,方程有且仅有一个负实数根1x =-,当1a <且0a ≠时,若方程有且仅有一个负实数根,则10a<,即0a <.所以当0a ≤或1a =时,关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根.综上,“关于x 的方程2210ax x ++=的实数根中有且仅有一个负实数根”的充要条件为“0a ≤或1a =”.故答案为:0a ≤或1a =.例3.(2022·甘肃·兰化一中高一阶段练习)若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________.【答案】125k ≤-或3k >【解析】首先0k ≠,设方程2330kx kx k ++-=的两根为12,x x ,则12121200,00x x x x x x +<⎧<<⇔⎨>⎩,所以2Δ94(3)03030k k k kkk k⎧⎪=--≥⎪⎪-<⎨⎪-⎪>⎪⎩,又0k ≠,解得125k ≤-或3k >.故答案为:125k ≤-或3k >.例4.(2022·全国·高一专题练习)已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____.【答案】112m -<<【解析】由题意知,二次方程有一正根和一负根,得2101021m m m +≠⎧⎪-⎨<⎪+⎩,解得112m -<<.故答案为:112m -<<例5.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113x x ⎧⎫-<<⎨⎬⎩⎭∣,求,a b 的值;(2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围.【解析】(1)由题意可得1-和13是方程210+-=ax bx 的两个实根,则11,31113b a a ⎧-+=-⎪⎪⎨-⎪-⨯=⎪⎩解得3,2a b ==.(2)因为31b a =--,所以()23110ax a x -+-=,由题可知Δ0>,则1a <-或19a >-,由题意,方程有两个负根,即310,10,a a a +⎧<⎪⎪⎨-⎪>⎪⎩解得103-<<a .综上,实数a 的取值范围是109aa ⎧⎫-<<⎨⎬⎩⎭∣.例6.(2022·辽宁·沈阳市第八十三中学高一阶段练习)已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)若1x 、2x 均为正根,求实数k 的取值范围;(2)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不能存在,请说明理由.【解析】(1)由题意,一元二次方程有两个正根1x 、2x 故20,(4)16(+1)0k k k k ≠∆=-≥,即0k ≤,且121210104x x k x x k +=>⎧⎪+⎨=>⎪⎩,解得:1k <-.(2)由题意,当0∆≥,即0k ≤时,有121211,4k x x x x k++==()()2221212121212129(1)93222+252()92442k k x x x x x x x x x x x x k k ++--=-=+-=-=-=-解得:95k =,与0k ≤矛盾.故不存在实数k ,使得()()12123222x x x x --=-成立题型二:根在区间的分布问题例7.(2022·全国·高一专题练习)已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________.【答案】5(,2)2--【解析】设f (x )=x 2+ax +1,由题意知(0)10(1)20(2)520f f a f a =>⎧⎪=+<⎨⎪=+>⎩,解得-52<a <-2.故答案为:5(,2)2--.例8.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=.(1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3?(3)当a 为何值时,方程的两个根都大于0?【解析】(1)二次函数22y x x a =-+的图象是开口向上的抛物线,故方程220x x a -+=的一个根大于1,另一个根小于1,则2120a -+<,解得1a <,所以a 的取值范围是{}1a a <.(2)方程220x x a -+=的一个根大于1-且小于1,另一个根大于2且小于3,作满足题意的二次函数22y x x a =-+的大致图象,由图知,120120440960a a a a ++>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩,解得30a -<<.所以a 的取值范围是{}30a a -<<.(3)方程220x x a -+=的两个根都大于0,则Δ4400a a =-≥⎧⎨>⎩,解得01a <≤,所以a 的取值范围是{}01a a <≤.例9.(2022·全国·高一专题练习)已知关于x 的一元二次方程2220x ax a -++=,当a 为何值时,该方程:有不同的两根且两根在(1,3)内.【解析】令2()22f x x ax a =-++,因为方程2220x ax a -++=有不同的两根且两根在(1,3)内,所以213Δ44(2)0(1)30(3)1150a a a f a f a <<⎧⎪=-+>⎪⎨=->⎪⎪=->⎩,解得1125<<a ,故答案为:112,5⎛⎫⎪⎝⎭例10.(2022·江苏·高一专题练习)已知二次函数()2221R y x tx t t =-+-∈.(1)若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥;(2)若关于x 的方程22210x tx t -+-=的两个实根均大于2-且小于4,求实数t 的取值范围.【解析】(1)设二次函数()2221y x tx t t =-+-∈R 的两个零点分别为1x ,2x ,由已知得120x x +=,而122x x t +=,所以20t =,故0=t ,不等式22210x tx t -+-≥即210x -≥,解得1≥x 或1x ≤-,故不等式的解集为{1x x ≥或}1≤-x .(2)因为方程22210x tx t -+-=的两个实根均大于2-且小于4,所以()()()()222222Δ2t 4t 102t 422t 2t 1042t 4t 10⎧=---≥⎪⎪-<<⎨⎪--⨯-+->⎪-⨯+->⎩,即2240244308150t t t t t ≥⎧⎪-<<⎪⎨++>⎪⎪-+>⎩,解得:13t -<<,即实数t 的取值范围为{}13t t -<<.例11.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221 260.x m x m +-++=(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根 αβ,,且满足014αβ<<<<;(3)至少有一个正根.【答案】(1)1m <-(2)7554m -<<-(3)1m ≤-【分析】设()()22126y f x x m x m ==+-++,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定.(1)设()()22126y f x x m x m ==+-++.依题意有()20f <,即()441260m m +-++<,得1m <-.(2)设()()22126y f x x m x m ==+-++.依题意有()()()02601450410140f m f m f m ⎧=+>⎪=+<⎨⎪=+>⎩,解得7554m -<<-.(3)设()()22126y f x x m x m ==+-++.方程至少有一个正根,则有三种可能:①有两个正根,此时可得()()Δ0002102f m ⎧⎪≥⎪⎪>⎨⎪-⎪>⎪-⎩,即153.311m m m m m ≤-≥⎧⎪>-∴-<≤-⎨⎪<⎩或.②有一个正根,一个负根,此时可得()00f <,得3m <-.③有一个正根,另一根为0,此时可得()6203210m m m +=⎧∴=-⎨-<⎩,.综上所述,得1m ≤-.例12.(2022·上海市七宝中学高一阶段练习)方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________.【答案】()()2,13,4--【解析】令()()227132f x x a x a a =-++--,因为程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,所以()()()001020f f f ⎧>⎪<⎨⎪>⎩,即()22220713202821320a a a a a a a a ⎧-->⎪--+--<⎨⎪-++-->⎩,解得21a -<<-或34a <<,所以实数a 的取值范围为()()2,13,4--.故答案为:()()2,13,4--.例13.(2022·全国·高一专题练习)关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.【答案】16(5,]3【解析】关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,令()()214f x x a x =--+,则有()()()2Δ1160113216031630a a f a f a ⎧=-->⎪-⎪<<⎪⎨⎪=-≥⎪=-≥⎪⎩,解得1653a <≤,所以实数a 的取值范围是16(5,]3.故答案为:16(5,]3例14.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数 a 的取值范围是_____.【答案】54a -<≤-【解析】由题意,方程()2250x a x a +=---的两根都大于 2,令()()225f x x a x a =+---,可得()020222f a⎧⎪≥⎪>⎨⎪-⎪>⎩,即2165024a a a ⎧≥⎪+>⎨⎪->⎩,解得54a <≤--.故答案为:54a -<≤-.例15.(2022·全国·高一专题练习)已知关于x 的方程220ax x ++=的两个实根一个小于0,另一个大于1,则实数a 的取值范围是_____.【答案】()3,0-【解析】显然0a ≠,关于x 的方程220ax x ++=对应的二次函数()22f x ax x =++当0a >时,二次函数()22f x ax x =++的图象开口向上,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧<⎪⎨<⎪⎩,即2030a <⎧⎨+<⎩,解得a ∈∅;②当0a <时,二次函数()22f x ax x =++的图象开口向下,因为220ax x ++=的两个实根一个小于0,另一个大于1等价于二次函()22f x ax x =++的图象与x 轴的两个零点一个小于0,另一个大于1,所以()()0010f f ⎧>⎪⎨>⎪⎩,即2030a >⎧⎨+>⎩,解得30a -<<.;综上所述,实数a 的范围是()3,0-.故答案为:()3,0-.例16.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______.【答案】()0,1.【解析】方程()()()()2211010x a x a a x a x a ⎡⎤+++=⇒--+=⎣⎦-∴方程两根为12,1x a x a ==+,若要满足题意,则01113a a <<⎧⎨<+<⎩,解得01a <<,故答案为:()0,1.例17.(2022·上海·高一专题练习)方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______【答案】5[2,)2【解析】2240x ax -+=的两个根都大于121520Δ4160a a a >⎧⎪∴->⎨⎪=-≥⎩,解得522a ≤<可求得实数a 的取值范围为5[2,2故答案为:5[2,)2例18.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,那么a 的取值范围是()A .2275a -<<B .25a >C .27a <-D .2011a -<<【答案】D【解析】当0a =时,()2290ax a x a +++=即为20x =,不符合题意;故0a ≠,()2290ax a x a +++=即为22190x x a ⎛⎫+++= ⎪⎝⎭,令2219y x x a ⎛⎫=+++ ⎪⎝⎭,由于关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x <<,则()229y ax a x a =+++与x 轴有两个交点,且分布在1的两侧,故1x =时,0y <,即211190a ⎛⎫++⨯+< ⎪⎝⎭,解得211a<-,故2011a -<<,故选:D例19.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是()A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D.{12,623⎛⎤⋃- ⎥⎝⎦【答案】D【解析】方程2(2)210x m x m +-+-=对应的二次函数设为:()2(2)21f x x m x m =+-+-因为方程2(2)210x m x m +-+-=恰有一根属于(0,1),则需要满足:①()()010f f ⋅<,()()21320m m --<,解得:1223m <<;②函数()f x 刚好经过点()0,0或者()1,0,另一个零点属于(0,1),把点()0,0代入()2(2)21f x x m x m =+-+-,解得:12m =,此时方程为2302x x -=,两根为0,32,而()30,12∉,不合题意,舍去把点()1,0代入()2(2)21f x x m x m =+-+-,解得:23m =,此时方程为23410x x -+=,两根为1,13,而()10,13∈,故符合题意;③函数与x 轴只有一个交点,横坐标属于(0,1),()2(2)4210m m ∆=---=,解得6m =±当6m =+2(2)210x m x m +-+-=的根为2-若6m =-2(2)210x m x m +-+-=2,符合题意综上:实数m的取值范围为{12,623⎛⎤⋃- ⎥⎝⎦故选:D题型三:整数根问题例20.(2022·上海市实验学校高一开学考试)已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由;(2)求使12212x x x x +-的值为整数的实数k 的整数值.【解析】(1)假设存在实数k ,使得()()12123222x x x x --=-成立,一元二次方程24410kx kx k -++=的两个实数根,()2400Δ(4)441160k k k k k k ≠⎧∴⇒<⎨=--⋅+=-⎩,(不要忽略判别式的要求),由韦达定理得1212114x x k x x k +=⎧⎪+⎨=⎪⎩,()()()()2221212121212129322252942k x x x x x x x x x x x x k +∴--=+-=+-=-=-,95k ⇒=但0k <,∴不存在实数k ,使得()()12123222x x x x --=-成立.(2)()22212121221121244224411x x x x x x k x x x x x x k k +++-==-=-=-++,∴要使其值是整数,只需要1k +能被4整除,故1124k +=±±±,,,即021335k =---,,,,,,0k <,235k ∴=---,,.例21.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是()A .13B .18C .21D .26【答案】C【解析】设2()6f x x x a =-+,其图象为开口向上,对称轴为3x =的抛物线,根据题意可得,3640a ∆=->,解得9a <,因为()0f x ≤解集中有且仅有3个整数,结合二次函数的对称性可得(2)0(1)0f f ≤⎧⎨>⎩,即4120160a a -+≤⎧⎨-+>⎩,解得58a <≤,又,a Z ∈所以a =6,7,8,所以符合题意的a 的值之和6+7+8=21.故选:C例22.(多选题)(2022·全国·高一课时练习)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是()A .5B .6C .7D .9【答案】BC【解析】设()26f x x x a =-+,函数图象开口向上,且对称轴为3x =,因此关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数时,需满足()()2010f f ⎧≤⎪⎨>⎪⎩,即2226201610a a ⎧-⨯+≤⎨-⨯+>⎩,解得58a <≤,又因为a ∈Z ,所以6a =或7或8,故选:BC.例23.(2022·全国·高一专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______.【答案】1【解析】方程化为()221860k x x --+=,由()Δ6424210k =-->,12k ≠解得116k <,所以k 最大整数值是1.故答案为:1.题型四:范围问题例24.(2022·上海·高一专题练习)已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则()()2211a b --的最小值是___________.【答案】3-【解析】a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,∴可得2a b +=,10ab t =-≥,1t ∴≥,又()4410t ∆=--≥,可得2t ≤,12t ∴≤≤,又()()()()()()222222211121a b ab a b ab a b ab --=-++=-+++()()()()2221114211a b t t ∴--=--+-+,24t =-,又12t ≤≤,2340t ∴-≤-≤,故答案为:3-.例25.(2022·吉林省实验中学高一阶段练习)设方程240x mx m -+=的两实根分别为12,x x .(1)当1m =时,求1211+x x 的值;(2)若120,0x x >>,求实数m 的取值范围及124x x +的最小值.【解析】(1)当1m =时,方程为2410x x -+=,2(4)4120∆=--=>,所以12124,1x x x x +=⋅=,122112114x x x x x x ∴+⋅+==.(2)因为240x mx m -+=两根120,0x x >>,所以21212Δ1640400m m x x m x x m ⎧=-≥⎪+=>⎨⎪⋅=>⎩,解得14m ≥.因为12124x x x x +=,120,0x x >>,所以12114x x +=,所以211212121241111194(4)()(5)54444x x x x x x x x x x ⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭,当且仅当21124x x x x =,即1233,48x x ==时等号成立,此时91324m =>符合题意,124x x ∴+的最小值为94.例26.(2022·北京海淀·高一期末)已知函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=.若方程()0f x =有两个正实数根1x ,2x ,则1211+x x 的最小值是()A .4B .2C .1D .12【答案】B【解析】因为函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=,所以1012200288b c b c +=++-,解得4b =-,所以()224f x x x c -+=,因为方程()0f x =有两个正实数根1x ,2x ,所以()Δ168000c f c =-≥⎧⎨=>⎩,解得02c <≤,所以121212112422x x c x x x x c =++==≥,当c =2时,等号成立,所以其最小值是2,故选:B例27.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是()A .-2B .23C .89D .1【答案】B【解析】由题意可得∆2()4(3)0k k =--+ ,解得6k 或2k ≤-,设两个为1x ,2x ,由两根为正根可得12120·30x x k x x k +=>⎧⎨=+>⎩,解得0k >,综上知,6k .故两个根的倒数和为12121211x x x x x x ++=1331k k k==++,6k ,∴1106k < ,3102k < ,故33112k <+,∴12331k+,故两个根的倒数和的最小值是23.故选:B例28.(2022·上海·华师大二附中高一期中)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是()A .12a x x b <<<B .12x a b x <<<C .12a x b x <<<D .12x a x b<<<【答案】A【解析】由题可得:12x x a b +=+,121x x ab =+.由a b <,12x x <,设1x a m =+,则2x b m =-.所以212()()()1a m b m ab m b a m ab x x =+-=+--=+,所以2()1m b a m --=,21m m b a+=-.又a b <,所以0b a ->,所以0m >.故1x a >,2x b <.又12x x <,故12a x x b <<<.故选:A.例29.(2022·福建厦门·高一期末)已知函数()()11f x x x a =-⋅--,a R ∈.(1)若0a =,解不等式()1f x <;(2)若函数()f x 恰有三个零点1x ,2x ,3x ,求123111x x x ++的取值范围.【解析】(1)当0a =时,原不等式可化为()120x x -⋅-<…①.(ⅰ)当0x ≥时,①式化为220x x --<,解得12x -<<,所以02x ≤<;(ⅱ)当0x <时,①式化为220x x -+>,解得x ∈R ,所以0x <.综上,原不等式的解集为(),2-∞.(2)依题意,()()()2211,11,x a x a x af x x a x a x a ⎧-++--<⎪=⎨-++-≥⎪⎩.因为()10f a =-<,且二次函数()211y x a x a =-++-开口向上,所以当x a ≥时,函数()f x 有且仅有一个零点.所以x a <时,函数()f x 恰有两个零点.所以()()()21,21410,10.a a a a f a +⎧<⎪⎪⎪=+-+>⎨⎪=-<⎪⎪⎩解得3a >.不妨设123x x x <<,所以1x ,2x 是方程()2110x a x a -++--=的两相异实根,则12121,1x x a x x a +=+⎧⎨=+⎩,所以121212111x x x x x x ++==.因为3x 是方程()2110x a x a -++-=的根,且312a x +>,由求根公式得3x =因为函数()g a ()3,+∞上单调递增,所以()332x g >=31012x <<-.所以123111x x x ++.所以a 的取值范围是21,22⎛- ⎝⎭.【过关测试】一、单选题1.(2022·江苏·高一专题练习)已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为()A .1B .0C .1-D .2【答案】C【解析】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <.因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C2.(2022·江苏·高一专题练习)已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是()A .(5,4)(4,)--+∞B .(5,)-+∞C .(5,4)--D .(4,2)(4,)--+∞【答案】C【解析】令()2(2)5mf x m x x =+-+-由题可知:()()()()2Δ02450442222242250520m m m m m m m m m m f >⎧⎧--⨯->><-⎧⎪⎪-⎪⎪>⇒<-⇒<-⎨⎨⎨⎪⎪⎪+-⨯+->>-⎩>⎩⎪⎩或则54m -<<-,即(5,4)m ∈--故选:C3.(2021·北京·北师大实验中学高一期中)设方程2610x x -+=的两个不等实根分别为12,x x ,则12||x x -=()A .3B .6C.D.【答案】D【解析】2610x x -+=,364320∆=-=>,故121261x x x x +=⎧⎨=⎩,12||x x -===.故选:D.4.(2021·江苏·高一课时练习)设a 为实数,若方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解,则a 的取值范围是().A .(,0)(1,)-∞⋃+∞B .(1,0)-C .1,03⎛⎫- ⎪⎝⎭D .1,0(1,)3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】令2()2g x x ax a =-+,由方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解可得244011(1)0(1)0a a a g g ⎧∆=->⎪-<<⎪⎨->⎪⎪>⎩,即011131a a a a <⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩或111131a a a a >⎧⎪-<<⎪⎪⎨>-⎪⎪<⎪⎩,解得103-<<a ,故选:C5.(2022·全国·高一课时练习)一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是()A .0a <B .0a >C .1a <-D .2a <【答案】C【解析】由题意,不妨设2()21f x ax x =++,因为(0)10=>f ,且()22100ax x a ++=≠有一个正实数根和一个负实数根,所以2()21f x ax x =++的图像开口向下,即0a <,故对于选项ABCD ,只有C 选项:1a <-是0a <的充分不必要条件.故选:C.6.(2021·四川·树德中学高一阶段练习)设集合{}2320A x x x =-+<,集合{}2210B x ax x =--=,若A B ⋂≠∅,则实数a 的取值范围是()A .34,43⎡⎫⎪⎢⎣⎭B .5,34⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞【答案】B【解析】由题意,{}2320{|12}A x x x x x =-+<=<<若AB ⋂≠∅,即方程2210ax x --=存在根在区间(1,2)(1)若102102a x x =∴--=∴=-,不成立;(2)若0a ≠,由于0x =不为方程的根,故0x ≠,则222221211210(1)1x ax x a x x x x+--=⇔==+=+-由于21115(1,2)(,1)(1)1(,3)24x x x ∈∴∈∴+-∈综上,实数a 的取值范围是5,34⎛⎫⎪⎝⎭故选:B7.(2022·全国·高一课时练习)要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则实数a 的取值范围是()A .{}12a a -<<B .{}21a a -<<C .{}2a a <-D .{}1a a >【答案】B【解析】由题意可得()2211220a a a a +-+-=+-<,解得21a -<<.故选:B.8.(2021·甘肃·天水市第一中学高一阶段练习)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为()A .4-B .5-C .6-D .7-【答案】A【解析】因为元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,令2()(1)1f x x m x =+++,则由题意可得(0)0(1)0(3)0f f f >⎧⎪<⎨⎪>⎩,即10,30,1330,m m >⎧⎪+<⎨⎪+>⎩解得1333m -<<-,又m Z ∈,可得4m =-.故选:A 二、多选题9.(2022·江苏南通·高一开学考试)已知不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,则下列四个结论中正确的是().A .24a b=B .若不等式2+x ax b c +<的解集为(3,1)-,则7a b c ++=C .若不等式20x ax b +-<的解集为12(,)x x ,则120x x >D .若不等式2x ax b c ++<的解集为12(,)x x ,且12||4x x -=,则4c =【答案】ABD【解析】由题意,不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,所以240a b ∆=-=,24a b ∴=,所以A 正确;对于B :2+x ax b c +<变形为2+0x ax b c +-<,其解集为(3,1)-,所以231 314 a b c a b -+=-⎧⎪-⨯=-⎨⎪=⎩,得214a b c =⎧⎪=⎨⎪=⎩,故7a b c ++=成立,所以B 正确;对于C :若不等式20x ax b +-<的解集为12(,)x x ,由韦达定理知:21204a x xb =-=-<,所以C 错误;对于D :若不等式2x ax bc ++<的解集为12(,)x x ,即20x ax b c ++-<的解集为12(,)x x ,由韦达定理知:21212,4a x x a x x b c c +=-=-=,则12||4x x -==,解得4c =,所以D 正确.故选:D.10.(2021·江苏·海安高级中学高一阶段练习)一元二次方程240x x m -+=有正数根的充分不必要条件是()A .4m =B .5m =C .1m =D .12=-m 【答案】ACD【解析】设()24f x x x m =-+,则二次函数()f x 的图象的对称轴为2x =.当4m =时,方程即()224420x x x -+=-=,求得2x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故4m =是方程240x x m -+=有正数根的充分不必要条件,故A 满足条件;当5m =时,方程即()224521x x x -+=-=-,求得x ∈∅,不满足方程有正实数根,故5m =不是方程240x x m -+=有正数根的充分条件,故排除B .当1m =时,方程即()224123x x x -+=-=,求得2=±x 但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故1m =方程240x x m -+=有正数根的充分不必要条件,故C 满足条件;当12=-m 时,方程即24120x x --=,求得2x =-,或6x =,满足方程有正根,但由方程240x x m -+=有正数根,可得()240f m =-≤,即4m ≤,故12=-m 方程240x x m -+=有正数根的充分不必要条件,故D 满足条件,故选:ACD .11.(2022·湖南湖南·高一期末)若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是()A .3-B .18C .14D .1【答案】BC【解析】由题意22x x λ=--在(1,0)-上有解.∵(1,0)x ∈-,∴222(1)1(0,1)x x x λ=--=-++∈,故选:BC .12.(2021·全国·高一专题练习)已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是()A .方程()230x m x m +-+=有一个正根一个负根的充要条件是{}0m m m ∈<B .方程()230x m x m +-+=有两个正实数根的充要条件是{}01m m m ∈<≤C .方程()230x m x m +-+=无实数根的充要条件是{}1m m m ∈>D .当m =3时,方程()230x m x m +-+=的两个实数根之和为0【答案】AB【解析】对A ,当0x =时,函数2(3)y x m x m =+-+的值为m ,由二次函数的图象知,方程有一正一负根的充要条件是{}|0m m m ∈<,故A 正确;对B ,若方程()230x m x m +-+=有两个正实数根1x ,2x ,即()2121234030,0,m m x x m x x m ⎧∆=--≥⎪+=->⎨⎪=>⎩解得:01m <≤,故B 正确;对C ,方程()230x m x m +-+=无实数根,即()2340m m ∆=--<,解得:19m <<,方程()230x m x m +-+=无实数根的充要条件是{}19m m m ∈<<,故C 错误;对D ,当3m =时,方程为230x +=,无实数根,故D 错误.故答案为:AB.13.(2021·江苏·高一专题练习)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为()A .-2B .-3C .-4D .-5【答案】BC 【解析】设()()2112f x x m x =+++,由12013x x <<<<,可得()()()()10200110110230193102f f m f m ⎧>⎪⎧>⎪⎪⎪<⇒+++<⎨⎨⎪⎪>⎩⎪+++>⎪⎩,解得:25562m -<<-,又因为m Z ∈,得3m =-或4m =-,故选:BC.三、填空题14.(2022·安徽省蚌埠第三中学高一开学考试)关于x 的方程210x ax ++=的一根大于1,一根小于1,则a 的取值范围是:__________________.【答案】a <-2【解析】∵关于x 的方程210x ax ++=的一根大于1,另一根小于1,令2()1=++f x x ax ,则(1)20f a =+<,求得2a <-,故答案为:2a <-15.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.【答案】(52,+∞)【解析】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >,故答案为:5(,)2+∞.16.(2021·上海·复旦附中高一期中)若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______.【答案】(),3-∞-【解析】由题意,关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,设()22f x x kx =-+,根据二次函数的性质,可得()130f k -=+<,解得3k <-,所以实数k 的取值范围为(),3-∞-.故答案为:(),3-∞-.17.(2020·上海·高一专题练习)已知集合()(){}2|320,A x x x x x R =-+-≤∈,{}2|120,B x x ax x R =--≤∈,若A B ⊆,则实数a 的取值范围是______________.【答案】[]1,1-【解析】由()()2320x x x -+-≤,得23020x x x ⎧-≥⎪⎨+-≤⎪⎩或23020x x x ⎧-≤⎪⎨+-≥⎪⎩,解得13x ≤≤,所以集合{|31A x x =-≤≤-或}13x ≤≤,因为A B ⊆,令()212f x x ax =--,则()()3030f f ⎧-≤⎪⎨≤⎪⎩,即9312093120a a +-≤⎧⎨--≤⎩,解得11a -≤≤,所以实数a 的取值范围是[]1,1-故答案为:[]1,1-四、解答题18.(2022·全国·高一期中)命题:p 关于x 的方程20x x m ++=有两个相异负根;命题():0,q x ∃∈+∞,2390x mx -+<.(1)若命题q 为假命题,求实数m 的取值范围;(2)若这两个命题有且仅有一个为真命题,求实数m 的取值范围.【解析】(1)若命题q 为假命题,则对()0,x ∀∈+∞,2390x mx -+≥为真命题;239mx x ∴≤+,即93m x x ≤+;96x x +≥(当且仅当9x x =,即3x =时取等号),36m ∴≤,解得:2m ≤,∴实数m 的取值范围为(],2-∞.(2)由(1)知:若命题q为真命题,则2m >;若命题p 为真命题,则Δ1400m m =->⎧⎨>⎩,解得:104m <<;若p 真q 假,则104m <<;若p 假q 真,则2m >;综上所述:实数m 的取值范围为()10,2,4⎛⎫+∞ ⎪⎝⎭.19.(2022·湖南·高一课时练习)若一元二次方程2570x x a --=的一个根在区间()1,0-内,另一个根在区间()1,2内,求实数a 的取值范围.【解析】令2()57f x x x a =--,则根据题意得(1)057012(0)000(1)0202(2)0201406f a a f a a f a a f a a ->⇒+->⇒<⎧⎪<⇒-⇒⎪⎨<⇒--⇒-⎪⎪>⇒-->⇒<⎩,∴06a <<.故实数a 的取值范围(0,6).20.(2021·辽宁·昌图县第一高级中学高一期中)1.已知()()2213f x x a x =+-+.(1)如果方程()0f x =在()0,3有两个根,求实数a 的取值范围;(2)如果[]1,2x ∃∈,()0f x >成立,求实数a 的取值范围.【解析】(1)()()2213f x x a x =+-+的对称轴为1x a=-要想方程()0f x =在()0,3有两个根,需要满足()()()100001330f a f a f ⎧-<⎪>⎪⎨<-<⎪⎪>⎩解得:(1,1a ∈--(2)[]1,2x ∃∈,()22130x a x +-+>成立,即3122x a x ⎛⎫->-+ ⎪⎝⎭在[]1,2x ∈上有解,只需1a -大于()322x g x x ⎛⎫=-+ ⎪⎝⎭的最小值,其中()322x g x x ⎛⎫=-+ ⎪⎝⎭为对勾函数,在x ⎡∈⎣上单调递增,在)x ∈上单调递减,又()131222g ⎛⎫=-+=- ⎪⎝⎭,()2372244g ⎛⎫=-+=- ⎪⎝⎭,所以最小值为()12g =-故12a ->-,解得:1a >-,实数a 的取值范围为()1,-+∞21.(2021·上海市七宝中学高一阶段练习)设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围;(2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根;(3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.【解析】(1)∵()22820440x x x -+=-+>∴()()221940f x ax a x a =++++<在R 上恒成立∵0a ≠,则()()20Δ414940a a a a <⎧⎪⎨=+-+<⎪⎩,解得12a <-综上所述:a 的取值范围为1,2⎛⎫-∞- ⎪⎝⎭.(2)∵()()0,1f c f a b c ==++,则c 为奇数,a b +为偶数当Z x ∈时,则有:1.若a b 、均为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根2.若a b 、均为奇数时,则有①若x 为偶数时,则2ax bx +为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根②若x 为奇数时,则()2ax bx x ax b +=+为偶数∴()20f x ax bx c =++≠,即方程()0f x =无整数根综上所述:方程()0f x =无整数根(3)()()2221f x x k x k =+-+由题意可得()()222Δ21402112120k k k f k k ⎧=-->⎪-⎪->⎨⎪=+>⎪⎩,解得2k <-则k 的取值范围为(),2∞--.。
一元二次方程根与系数关系内容解析
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c 为系数,且a≠0。
该方程的两个根可以有以下几种情况:
1. 两个实根:当b^2 - 4ac > 0时,方程有两个不相等的实根。
此时,方程的根可以通过求解以下公式得出:
x1 = (-b + √(b^2 - 4ac)) / (2a)
x2 = (-b - √(b^2 - 4ac)) / (2a)
2. 两个相等的实根:当b^2 - 4ac = 0时,方程有两个相等的实根。
此时,方程的根可以通过求解以下公式得出:
x1 = x2 = -b / (2a)
3. 两个共轭复根:当b^2 - 4ac < 0时,方程没有实根,但有两个共轭复根。
此时,方程的根可以通过求解以下公式得出:x1 = (-b + i√(4ac - b^2)) / (2a)
x2 = (-b - i√(4ac - b^2)) / (2a)
其中i为虚数单位,√为平方根。
根与系数的关系可以总结为:
1. 根与系数a的关系:方程的根与系数a的关系主要体现在根的比值x1/x2上。
当a增大时,x1/x2的绝对值会减小,即根的绝对值会增大。
2. 根与系数b的关系:方程的根与系数b的关系主要体现在根的和与积上。
根的和等于-b/a,根的积等于c/a。
当b增大时,根的和会减小,根的积会增大。
3. 根与系数c的关系:方程的根与系数c的关系主要体现在根的乘积上。
当c增大时,根的乘积会增大。
总的来说,方程的根与系数之间存在一定的关系,但具体的关系需要根据方程的系数进行具体分析。
专题11 二次函数(解答题)1.(2021·湖南怀化市·中考真题)某超市从厂家购进A 、B 两种型号的水杯,两次购进水杯的情况如下表:(1)求A 、B 两种型号的水杯进价各是多少元?(2)在销售过程中,A 型水杯因为物美价廉而更受消费者喜欢.为了增大B 型水杯的销售量,超市决定对B 型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B 型水杯降价多少元时,每天售出B 型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A 型水杯可获利10元,售出一个B 型水杯可获利9元,超市决定每售出一个A 型水杯就为当地“新冠疫情防控”捐b 元用于购买防控物资.若A 、B 两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b 为多少?利润为多少? 【答案】(1)A 型号水杯进价为20元,B 型号水杯进价为30元;(2)超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元;(3)A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元. 【分析】(1)主要运用二元一次方程组,设A 型号水杯为x 元,B 型号水杯为y 元,根据表格即可得出方程组,解出二元一次方程组即可得A 、B 型号水杯的单价;(2)主要运用二次函数,由题意可设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w ,每个水杯的利润为()4430z --元;每降价1元,多售出5个,可得售出的数量为()205z +个,根据:利润=(售价-进价)×数量,可确定函数关系式,依据二次函数的基本性质,开口向下,在对称轴处取得最大值,即可得出答案;(3)根据(1)A 型号水杯为20元,B 型号水杯为30元.设10000元购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元,可列出方程组,利用代入消元法化简得到利润W 的函数关系式,由于利润不变,所以令未知项的系数为0,即可求出b ,W . 【详解】(1)解:设A 型号水杯进价为x 元,B 型号水杯进价为y 元,根据题意可得:100200800020030013000x y x y +=⎧⎨+=⎩,解得:2030x y =⎧⎨=⎩,∴A 型号水杯进价为20元,B 型号水杯进价为30元.(2)设:超市应将B 型水杯降价z 元后,每天售出B 型水杯的利润达到最大,最大利润为w , 根据题意可得:()()4430205w z z =--+, 化简得:2550280w z z =-++, 当()505225b z a =-=-=⨯-时, 255505280405max w =-⨯+⨯+=,∴超市应将B 型水杯降价5元后,每天售出B 型水杯的利润达到最大,最大利润为405元. (3)设购买A 型水杯m 个,B 型水杯n 个,所得利润为W 元,根据题意可得:()203010000109m n W b m n +=⎧⎨=-+⎩①② 将①代入②可得:()100002010930mW b m -=-+⨯,化简得:()()106300043000W b m b m =--+=-+, 使得A ,B 两种杯子全部售出后,捐款后所得利润不变, 则40b -=,得4b =, 当4b =时,3000W =,∴A ,B 两种杯子全部售出,捐款后利润不变,此时b 为4元,利润为3000元. 【点睛】题目主要考察二元一次方程、一元二次函数的以及一次函数的应用,难点是对题意的理解及对函数和方程的综合运用.2.(2021·湖南中考真题)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y (单位:万件)与销售单价x (单位:元)之间有如下表所示关系:(1)根据表中的数据,在图中描出实数对(,)x y 所对应的点,并画出y 关于x 的函数图象; (2)根据画出的函数图象,求出y 关于x 的函数表达式; (3)设经营此商品的月销售利润为P (单位:万元). ①写出P 关于x 的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不.得超过...进价的200%,则此时的销售单价应定为多少元? 【答案】(1)图象见详解;(2)216y x =-+;(3)①222032P x x =-+-;②销售单价应定为3元. 【分析】(1)由题意可直接进行作图;(2)由图象可得y 与x 满足一次函数的关系,所以设其关系式为y kx b =+,然后任意代入表格中的两组数据进行求解即可;(3)①由题意易得()2P x y =-,然后由(2)可进行求解;②由①及题意可得22203210x x -+-=,然后求解,进而根据销售单价不得超过进价的200%可求解. 【详解】解:(1)y 关于x 的函数图象如图所示:(2)由(1)可设y 与x 的函数关系式为y kx b =+,则由表格可把()()4,8,5,6代入得:4856k b k b +=⎧⎨+=⎩,解得:216k b =-⎧⎨=⎩, ∴y 与x 的函数关系式为216y x =-+; (3)①由(2)及题意可得:()()()22221622032P x y x x x x =-=--+=-+-; ∴P 关于x 的函数表达式为222032P x x =-+-; ②由题意得:2200x ≤⨯%,即4x ≤, ∴22203210x x -+-=, 解得:123,7x x ==, ∴3x =;答:此时的销售单价应定为3元. 【点睛】本题主要考查二次函数与一次函数的应用,熟练掌握二次函数与一次函数的应用是解题的关键.3.(2021·湖南永州市·中考真题)已知关于x 的二次函数21y x bx c =++(实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为1x =,求此二次函数的表达式; (2)若20b c -=,当3b x b -≤≤时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数222y x x m =++,若在(1)的条件下,当01x ≤≤时,总有21y y ≥,求实数m 的最小值.【答案】(1)2124y x x -=+;(2)4;(3)4. 【分析】(1)将点(0,4)代入二次函数的解析式可得c 的值,根据二次函数的对称轴可得b 的值,由此即可得; (2)先求出二次函数的对称轴为2bx =-,再分0b ≤,02b <<和2b ≥三种情况,分别利用二次函数的性质可得一个关于b 的一元二次方程,解方程即可得;(3)先根据21y y ≥可得2340x x m ++-≥,令2334y x x m =++-,再根据二次函数的性质列出不等式,求解即可得. 【详解】解:(1)将点(0,4)代入21y x bx c =++得:4c =, 二次函数的对称轴为1x =,12b∴-=,解得2b =-, 则此二次函数的表达式为2124y x x -=+; (2)20b c -=,即2c b =,222213()24b y x bx b x b =++=++∴,则此二次函数的对称轴为2bx =-,由题意,分以下三种情况: ①当2bb ≤-,即0b ≤时, 在3b x b -≤≤内,1y 随x 的增大而减小, 则当x b =时,1y 取得最小值, 因此有22221b b b ++=,解得b =0b =>(不符题设,舍去); ②当32bb b -<-<,即02b <<时,在32b b x -≤≤-内,1y 随x 的增大而减小;在2bx b -<≤内,1y 随x 的增大而增大, 则当2bx =-时,1y 取得最小值, 因此有23214b =,解得2b =>或0b =-(均不符题设,舍去); ③当32bb -≥-,即2b ≥时, 在3b x b -≤≤内,1y 随x 的增大而增大, 则当3x b =-时,1y 取得最小值,因此有223(3)2124b b b -++=, 解得4b =或12b =-<(不符题设,舍去),综上,b 的值为4;(3)由(1)可知,2124y x x -=+,由21y y ≥得:22224x x m x x ++≥-+,即2340x x m ++-≥, 令2334y x x m =++-,在01x ≤≤内,3y 随x 的增大而增大,要使得当01x ≤≤时,总有23340y x x m =++-≥,则只需当0x =时,30y ≥即可,因此有40m -≥, 解得4m ≥,则实数m 的最小值为4. 【点睛】本题考查了二次函数的图象与性质、解一元二次方程等知识点,较难的是题(2),正确分三种情况讨论是解题关键.4.(2021·湖南长沙市·中考真题)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点()1,A r 与点(),4B s 是关于x 的“T 函数”()()240,0,0,.x x y tx x t t ⎧-<⎪=⎨⎪≥≠⎩是常数的图象上的一对“T 点”,则r =______,s =______,t =______(将正确答案填在相应的横线上);(2)关于x 的函数y kx p =+(k ,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”;如果不是,请说明理由;(3)若关于x 的“T 函数”2y ax bx c =++(0a >,且a ,b ,c 是常数)经过坐标原点O ,且与直线:l y mx n =+(0m ≠,0n >,且m ,n 是常数)交于()11,M x y ,()22,N x y 两点,当1x ,2x 满足()11211x x --+=时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.【答案】(1)4,1,4-;(2)当0k ≠时,关于x 的函数y kx p =+(,k p 是常数)不是“T 函数”,理由见解析;当0k =时,关于x 的函数y kx p =+(,k p 是常数)是“T 函数”,它有无数对“T 点”;(3)直线l 总经过一定点,该定点的坐标为(1,0). 【分析】(1)先根据关于y 轴对称的点坐标变换规律可得,r s 的值,从而可得点A 的坐标,再将点A 的坐标代入“T 函数”即可得;(2)分0k ≠和0k =两种情况,当0k ≠时,设点000(,)(0)x y x ≠与点00(,)x y -是一对“T 点”,将它们代入函数解析式可求出0k =,与0k ≠矛盾;当0k =时,y p =是一条平行于x 轴的直线,是“T 函数”,且有无数对“T 点”;(3)先将点(0,0)O 代入2y ax bx c =++可得0c,再根据“T 函数”的定义可得0b =,从而可得2y ax =,与直线y mx n =+联立可得12,x x 是方程20mx n ax --=的两实数根,然后利用根与系数的关系可得1212,m n x x x x a a+==-,最后根据()11211x x --+=化简可得n m =-,从而可得y mx m =-,由此即可得出答案. 【详解】解:(1)由题意得:点()1,A r 与点(),4B s 关于y 轴对称,4,1r s ∴==-,()1,4A ∴, 10>,∴将点()1,4A 代入2y tx =得:4t =,故答案为:4,1,4-;(2)由题意,分以下两种情况: ①当0k ≠时,假设关于x 的函数y kx p =+(k ,p 是常数)是“T 函数”,点000(,)(0)x y x ≠与点00(,)x y -是其图象上的一对“T 点”,则0000kx p y kx p y +=⎧⎨-+=⎩,解得0k =,与0k ≠相矛盾,假设不成立,所以当0k ≠时,关于x 的函数y kx p =+(,k p 是常数)不是“T 函数”; ②当0k =时,函数y kx p p =+=是一条平行于x 轴的直线,是“T 函数”,它有无数对“T 点”;综上,当0k ≠时,关于x 的函数y kx p =+(,k p 是常数)不是“T 函数”;当0k =时,关于x 的函数y kx p =+(,k p 是常数)是“T 函数”,它有无数对“T 点”;(3)由题意,将(0,0)O 代入2y ax bx c =++得:0c,2y ax bx ∴=+,设点333(,)(0)x y x ≠与点33(,)x y -是“T 函数”2y ax bx =+图象上的一对“T 点”,则23332333ax bx y ax bx y ⎧+=⎨-=⎩,解得0b =, 2(0)y ax a ∴=>,联立2y ax y mx n⎧=⎨=+⎩得:20mx n ax --=,“T 函数”2y ax =与直线y mx n =+交于点()11,M x y ,()22,N x y ,12,x x ∴是关于x 的一元二次方程20mx n ax --=的两个不相等的实数根,1212,m n x x x x a a ∴+==-, ()11211x x --+=,2211x x x x +=∴,即m na a=-, 解得n m =-,则直线l 的解析式为y mx m =-, 当1x =时,0y m m =-=,因此,直线l 总经过一定点,该定点的坐标为(1,0). 【点睛】本题考查了关于y 轴对称的点坐标变换规律、二次函数与一次函数的综合、一元二次方程根与系数的关系等知识点,掌握理解“T 函数”和“T 点”的定义是解题关键.5.(2021·湖南株洲市·中考真题)已知二次函数()20y ax bx c a =++>.(1)若12a =,2b c ==-,求方程20ax bx c ++=的根的判别式的值; (2)如图所示,该二次函数的图像与x 轴交于点()1,0A x 、()2,0B x ,且120x x <<,与y 轴的负半轴交于点C ,点D 在线段OC 上,连接AC 、BD ,满足 ACO ABD ∠=∠,1bc x a-+=. ①求证:AOC DOB ≅;②连接BC ,过点D 作DE BC ⊥于点E ,点()120,F x x -在y 轴的负半轴上,连接AF ,且ACO CAF CBD ∠=∠+∠,求1cx 的值. 【答案】(1)=8∆ (2)①证明见解析;②1c x =2【分析】(1)根据判别式公式代入求解即可.(2)①通过条件,得到OC=OB ,再根据ASA 即可得到两个三角形角形全等. ②通过分析条件,证明AOF DEB △△,得到AO OFDE EB=,再根据相关的线段转换长度,代入求解即可. 【详解】解:(1)当12a =,2b c ==-时,方程为:212202x x --=, ()()2214242=82b ac ∆=-=--⨯⨯-,(2)①证明:∵12b x x a +=-,且1bc x a-+=,∴2x c =-, ∴OC OB c ==, 在AOC △与DOB 中,90ACO ABDOC OBAOC DBO ⎧∠=∠⎪=⎨⎪∠=∠=⎩, ∴()AOC DOB ASA ≅△△.②解:ACO CAF CBD ∠=∠+∠,ACO CFA CAF ∠=∠+∠, ∴CFA CBD ∠=∠, ∵DE BC ⊥, ∴90DEB ∠=, 又∵90AOF ∠=, ∴AOF DEB △△, ∴AO OFDE EB=, ∵OC OB c ==,且90COB ∠=, ∴45OCB ∠=,BC =, 在DEC Rt △中,45OCB ∠=,∴DC ==,又∵AOC DOB ≅△△,∴1OD OA x ==-,又∵OC OD DC =+,∴1DC c x =-+,)122DE CE DC c x ===-+,∴))1122EB BC CE c x c x =-=--+=-+, ∵AO OF DE EB=,1122x x --= , 即:21120c c x x ⎛⎫--= ⎪⎝⎭,∴1c x =2或1c x =-1(舍), 【点睛】本题考查的是二次函数与一元二次方程的关系,韦达定理,以及一元二次方程的解法,三角形全等和相似等相关知识点,根据题意能够找见相关等量关系是解题关键 .6.(2021·湖南娄底市·中考真题)如图,在直角坐标系中,二次函数2y x bx c =++的图象与x 轴相交于点(1,0)A -和点(3,0)B ,与y 轴交于点C .(1)求b c 、的值;(2)点(,)P m n 为抛物线上的动点,过P 作x 轴的垂线交直线:l y x =于点Q .①当03m <<时,求当P 点到直线:l y x =的距离最大时m 的值;②是否存在m ,使得以点O C P Q 、、、为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m 的值.【答案】(1)b =2-,c =3-;(2)①32m =;②不存在,理由见解析 【分析】(1)将A (-1,0),B (3,0)代入y =x 2+bx +c ,可求出答案;(2)①设点P (m ,m 2-2m -3),则点Q (m ,m ),再利用二次函数的性质即可求解;②分情况讨论,利用菱形的性质即可得出结论.【详解】解:(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A (-1,0),B (3,0), ∴10930b c b c -+=⎧⎨++=⎩, 解得:23b c =-⎧⎨=-⎩, ∴b =2-,c =3-;(2)①由(1)得,抛物线的函数表达式为:y =x 223x --,设点P (m ,m 2-2m -3),则点Q (m ,m ),∵0<m <3,∴PQ =m -( m 2-2m -3)=-m 2+3m +3=-232m ⎛⎫- ⎪⎝⎭+214, ∵-1<0, ∴当32m =时,PQ 有最大值,最大值为214; ②∵抛物线的函数表达式为:y =x 2-2x -3,∴C (0,-3),∴OB =OC =3,由题意,点P (m ,m 2-2m -3),则点Q (m ,m ),∵PQ ∥OC ,当OC 为菱形的边,则PQ =OC =3,当点Q 在点P 上方时,∴PQ =2333m m -++=,即230m m -+=,∴()30m m -=,解得0m =或3m =,当0m =时,点P 与点O 重合,菱形不存在,当3m =时,点P 与点B 重合,此时BC OC =≠,菱形也不存在;当点Q 在点P 下方时,若点Q 在第三象限,如图,∵∠COQ=45°,根据菱形的性质∠COQ=∠POQ=45°,则点P与点A重合,此时OA=1≠OC=3,菱形不存在,若点Q在第一象限,如图,同理,菱形不存在,综上,不存在以点O、C、P、Q为顶点的四边形是菱形.【点睛】本题是二次函数综合题,考查的是二次函数的性质,菱形的判定和性质等知识,其中,熟练掌握方程的思想方法和分类讨论的思想方法是解题的关键.7.(2021·湖南衡阳市·中考真题)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁1,1,2021,2021……都是“雁点”.点”.例如()()(1)求函数4y x=图象上的“雁点”坐标; (2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线2y x 2x 3=-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线2y x 2x 3=-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC △,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)(2,2)和(2,2)--;(2)①04c <<;②45°;(3)存在,P 点坐标为315,24⎛⎫ ⎪⎝⎭或3122⎛⎫+ ⎪ ⎪⎝⎭或312⎛⎫- ⎪⎝⎭ 【分析】(1)根据“雁点”的定义可得y =x ,再联立4y x=求出 “雁点”坐标即可; (2)根据25y ax x c =++和y =x 可得240ax x c ++=,再利用根的判别式得到4c a =,再求出a 的取值范围;将点c 代入解析式求出点E 的坐标,令y =0,求出M 的坐标,过E 点向x 轴作垂线,垂足为H 点,如图所示,根据EH =MH 得出EM H 为等腰直角三角形,∠EMN 的度数即可求解;(3)存在,根据图1,图2,图3进行分类讨论,设C (m ,m ),P (x ,y ),根据三角形全等得出边相等的关系,再逐步求解,代入解析式得出点P 的坐标.【详解】解:(1)联立4y x y x⎧=⎪⎨⎪=⎩,解得22x y =⎧⎨=⎩或22x y =-⎧⎨=-⎩ 即:函数4y x=上的雁点坐标为(2,2)和(2,2)--. (2)① 联立25y x y ax x c =⎧⎨=++⎩得240ax x c ++=∵ 这样的雁点E 只有一个,即该一元二次方程有两个相等的实根,∴ 2440ac ∆=-=∵ 4c a= ∵ 1a >∴ 04c <<② 将4c a =代入,得2440E E ax x a++= 解得2k x a =-,∴ 22,E a a ⎛⎫-- ⎪⎝⎭对于245y x x aα=++,令0y = 有2450ax x a++= 解得41,N M x x a a=-=-∴ 4,0M a ⎛⎫- ⎪⎝⎭过E 点向x 轴作垂线,垂足为H 点,EH =2a ,MH =242()a a a---= ∴2EH MH a ==∴ EM H 为等腰直角三角形,45EMN ∠=︒(3)存在,理由如下:如图所示:过P 作直线l 垂直于x 轴于点k ,过C 作CH ⊥PK 于点H设C (m ,m ),P (x ,y )∵ △CPB 为等腰三角形,∴PC =PB ,∠CPB =90°,∴∠KPB +∠HPC =90°,∵∠HPC +∠HCP =90°,∴∠KPB =∠HCP ,∵∠H =∠PKB =90°,∴△CHP ≌△PKB ,∴CH =PK ,HP =KB ,即3m x y m y x-=⎧⎨-=-⎩ ∴3232x y m ⎧=⎪⎪⎨⎪=-⎪⎩当32x =时,23315()23224y =-+⨯+= ∴ 315()24P ,如图2所示,同理可得:△KCP ≌△JPB∴ KP =JB ,KC =JP设P (x ,y ),C (m ,m )∴KP =x -m ,KC =y -m ,JB =y ,JP =3-x ,即3x m y y m x -=⎧⎨-=-⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩令23-232x x ++=解得12222x x ==∴3)2P或3)2P如图3所示,∵△RCP ≌△TPB∴RC =TP ,RP =TB设P (x ,y ),C (m ,m )即3y m x x m y -=-⎧⎨-=⎩解得3232x m y ⎧=+⎪⎪⎨⎪=⎪⎩令23-232x x ++=解得122=22x x = ∴ 此时P 与第②种情况重合综上所述,符合题意P 的坐标为315()24,或3)2,或3)2,【点睛】本题考查了利用待定系数法求函数解析式,图形与坐标,等腰三角形的判定与性质,二次函数的综合运用,理解题意和正确作图逐步求解是解题的关键.8.(2021·湖南张家界市·中考真题)如图,已知二次函数2y ax bx c =++的图象经过点(2,3)C -且与x 轴交于原点及点(8,0)B .(1)求二次函数的表达式;(2)求顶点A 的坐标及直线AB 的表达式;(3)判断ABO 的形状,试说明理由;(4)若点P 为O 上的动点,且O的半径为E 从点A 出发,以每秒2个单位长度的速度沿线段AP 匀速运动到点P ,再以每秒1个单位长度的速度沿线段PB 匀速运动到点B 后停止运动,求点E 的运动时间t 的最小值.【答案】(1)2124y x x -=;(2)()4,4A -,8y x =-;(3)等腰直角三角形,理由见解析;(4)【分析】(1)根据已知条件,运用待定系数法直接列方程组求解即可;(2)根据(1)中二次函数解析式,直接利用顶点坐标公式计算即可,再根据点A 、B 坐标求出AB 解析式即可;(3)根据二次函数对称性可知ABO 为等腰三角形,再根据O 、A 、B 三点坐标,求出三条线段的长,利用勾股定理验证即可;(4)根据题意可知动点E 的运动时间为12t AP PB =+,在OA 上取点D ,使OD =可证明APO △∽PDO △,根据相似三角形比例关系得12PD AP =,即12t AP PB PD PB =+=+,当B 、P 、D 三点共线时,PD PB +取得最小值,再根据等腰直角三角形的性质以及勾股定理进一步计算即可.【详解】解:(1)二次函数()20y ax bx c a =++≠的图象经过(2,3)C -,且与x 轴交于原点及点()8,0B ∴0c ,二次函数表达式可设为:()20y ax bx a =+≠将(2,3)C -,()8,0B 代入2y ax bx =+得:3420648a b a b -=+⎧⎨=+⎩解这个方程组得142a b ⎧=⎪⎨⎪=-⎩ ∵二次函数的函数表达式为2124y x x -= (2)∵点A 为二次函数图像的顶点, ∴421224b x a =-=-⨯=-,22140(2)4414444ac b y a ⨯⨯---===-⨯ ∴顶点坐标为:()4,4A -,设直线AB 的函数表达式为y kx m =+,则有:4408k m k m -=+⎧⎨=+⎩解之得:18k m =⎧⎨=-⎩∴直线AB 的函数表达式为8y x =-(3)ABC 是等腰直角三角形,过点A 作AF OB ⊥于点F ,易知其坐标为(4,0)F∵ABC 的三个顶点分别是()0,0O ,()4,4A -,()8,0B,∴808OB =-=,OA ===AB ===且满足222OB OA AB =+∴ABC 是等腰直角三角形(4)如图,以O 为圆心,P 在圆周上,依题意知:动点E 的运动时间为12t AP PB =+在OA 上取点D ,使OD =连接PD ,则在APO △和PDO △中,满足:2PO AO OD OP==,AOP POD ∠=∠, ∴APO △∽PDO △,∴2AP PO AO PD OD OP===,从而得:12PD AP = ∴12t AP PB PD PB =+=+ 显然当B 、P 、D 三点共线时,PD PB +取得最小值,过点D 作DG OB ⊥于点G ,由于OD =且ABO 为等腰直角三角形,则有1DG =,45DOG ∠=︒,∴动点E 的运动时间t 的最小值为:t DB ==== 【点睛】 本题主要考查待定系数法求函数解析式,抛物线顶点坐标,等腰直角三角形的性质与判定,相似三角形的判定与性质等知识点,将运动时间的最小值转换为线段长度的最小值是解题的关键.9.(2021·湖南常德市·中考真题)如图,在平面直角坐标系xOy 中,平行四边形ABCD 的AB 边与y 轴交于E 点,F 是AD 的中点,B 、C 、D 的坐标分别为()()()2,0,8,0,13,10-.(1)求过B 、E 、C 三点的抛物线的解析式;(2)试判断抛物线的顶点是否在直线EF 上;(3)设过F 与AB 平行的直线交y 轴于Q ,M 是线段EQ 之间的动点,射线BM 与抛物线交于另一点P ,当PBQ △的面积最大时,求P 的坐标.【答案】(1)213442y x x =-++;(2)顶点是在直线EF 上,理由见解析;(3)P 点坐标为(9,114-). 【分析】 (1)先求出A 点坐标,再求出直线AB 的解析式,进而求得E 的坐标,然后用待定系数法解答即可; (2)先求出点F 的坐标,再求出直线EF 的解析式,然后根据抛物线的解析式确定顶点坐标,然后进行判定即可;(3)设P 点坐标为(p ,()()1-p+284p -),求出直线BP 的解析式,进而求得M 的坐标;再求FQ 的解析式,确定Q 的坐标,可得|MQ |=()182p -+6,最后根据S △PBQ = S △MBQ + S △PMQ 列出关于p 的二次函数并根据二次函数的性质求最值即可.【详解】解:(1)∵平行四边形ABCD ,B 、C 、D 的坐标分别为()()()2,0,8,0,13,10-∴A (3,10),设直线AB 的解析式为y =kx +b ,则10302k b k b =+⎧⎨=-+⎩ ,解得24k b =⎧⎨=⎩, ∴直线AB 的解析式为y =2x +4,当x =0时,y =4,则E 的坐标为(0,4),设抛物线的解析式为:y =ax 2+bx +c ,()()220220884a b c a b c c ⎧=-+-+⎪=⋅++⎨⎪=⎩ ,解得14324a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴过B 、E 、C 三点的抛物线的解析式为213442y x x =-++; (2)顶点是在直线EF 上,理由如下:∵F 是AD 的中点,∴F (8,10),设直线EF 的解析式为y =mx +n ,则4108n m n =⎧⎨=+⎩,解得344m n ⎧=⎪⎨⎪=⎩, ∴直线EF 的解析式为y =34x +4, ∵213442y x x =-++, ∴抛物线的顶点坐标为(3,254), ∵254=34×3+4, ∴抛物线的顶点是否在直线EF 上;(3)∵()()21314=-x+28424y x x x =-++-,则设P 点坐标为(p ,()()1-p+284p -),直线BP 的解析式为y =dx +e , 则()()021-p+284d e p pd e =-+⎧⎪⎨-=+⎪⎩ ,解得()()184182d p e p ⎧=--⎪⎪⎨⎪=-⎪⎩, ∴直线EF 的解析式为y =()184p --x +()182p -, 当x =0时,y =()182p -,则M 点坐标为(0,()182p -), ∵AB //FQ , ∴设FQ 的解析式为y =2x +f ,则10=2×8+f ,解得f =-6,∴FQ 的解析式为y =2x -6 ,∴Q 的坐标为(0,-6),∴|MQ |=()182p -+6, ∴S △PBQ = S △MBQ + S △PMQ =1122QM OB QM PN +=()12QM OB PN + =()()1186222p p ⎡⎤-++⎢⎥⎣⎦ =219842p p -++ ∴当p =9时,PBQ △的面积最大时,∴P 点坐标为(9,114-).【点睛】本题主要考查了运用待定系数法求函数解析式、二次函数求最值等知识点,灵活求得所需的函数解析式成为解答本题的关键.10.(2021·湖南中考真题)已知函数2(0)(0)x x y x x -≤⎧=⎨>⎩的图象如图所示,点()11,A x y 在第一象限内的函数图象上.(1)若点()22,B x y 也在上述函数图象上,满足21x x <.①当214y y ==时,求12,x x 的值; ②若21x x =,设12=-w y y ,求w 的最小值;(2)过A 点作y 轴的垂线AP ,垂足为P ,点P 关于x 轴的对称点为P ',过A 点作x 轴的线AQ ,垂足为Q ,Q 关于直线'AP 的对称点为Q ',直线AQ '是否与y 轴交于某定点?若是,求出这个定点的坐标;若不是,请说明理由.【答案】(1)①122,4x x ==-;②14-;(2)直线AQ '与y 轴交于定点,定点的坐标为10,4⎛⎫ ⎪⎝⎭. 【分析】(1)①先确定20x ≤,再根据214y y ==代入求解即可得;②先确定2210,x x x <-=,从而可得21122,y x y x ==-,再代入w 可得一个关于1x 的二次函数,利用二次函数的性质即可得;(2)先分别求出点,,P P Q '的坐标,再利用待定系数法求出直线,AP QQ ''的解析式,从而可得点Q '的坐标,然后利用待定系数法求出直线AQ '的解析式,由此即可得出结论.【详解】解:(1)①对于二次函数2y x ,在0x >内,y 随x 的增大而增大,21211,40,x x x y y <>==,20x ∴≤,则当14y =时,214x =,解得12x =或120x =-<(舍去),当24y =时,24x -=,解得24x =-; ②21121,0,x x x x x <>=,2210,x x x ∴<-=,21122,y x y x ∴==-,则22121211()w y y x x x x =-=--=-, 化成顶点式为2111()24w x =--, 由二次函数的性质可知,在1>0x 内,当112x =时,w 取最小值,最小值为14-; (2)由题意,设'AP 与QQ '交于点B ,画图如下,11(x ,)A y 在已知函数的第一象限内的图象上,211y x ∴=,即211(,)A x x ,AP y ⊥轴,AQ x ⊥轴,点P 关于x 轴的对称点为P ',22111(0,),(0,),(,0)P P Q x x x '∴-,设直线'AP 的解析式为11y k x b =+,将点22111(,),(0,)P A x x x '-代入得:21111211k x b x b x ⎧+=⎨=-⎩,解得112112k x b x =⎧⎨=-⎩, 则直线'AP 的解析式为2112y x x x =-, Q 关于直线'AP 的对称点为Q ',QQ AP ''∴⊥,∴设直线QQ '的解析式为2112b x y x +=-, 将点1(,0)Q x 代入得:121201x b x -+=,解得212b =, 则直线QQ '的解析式为11212x y x +=-, 联立211121122y x x x y x x ⎧=-⎪⎨=-+⎪⎩,解得211212121(12)4141x x x x x y x ⎧+=⎪+⎪⎨⎪=⎪+⎩,即22111221141(12),41x x x B x x ⎛⎫+ ⎪++⎝⎭, 设点Q '的坐标为(,)Q m n ', 则2111212121(12)2410241m x x x x x n x ⎧++=⎪+⎪⎨+⎪=⎪+⎩,解得121212141241x m x x n x ⎧=⎪+⎪⎨⎪=⎪+⎩,即21122114142,1x x Q x x ⎛⎫' ⎪++⎝⎭, 设直线AQ '的解析式为33y k x b =+, 将点22111122112(,),1,414x x A x x Q x x ⎛⎫' ⎪++⎝⎭代入得:2313121133221124141k x b x x x k b x x ⎧+=⎪⎨+=⎪++⎩, 解得2131314414x k x b ⎧-=-⎪⎪⎨⎪=⎪⎩,则直线AQ '的解析式为21144114x y x x -=-+,当0x =时,14y =, 即直线AQ '与y 轴交于定点10,4⎛⎫ ⎪⎝⎭. 【点睛】 本题考查了二次函数与一次函数的综合、轴对称等知识点,熟练掌握待定系数法是解题关键.11.(2021·湖南邵阳市·中考真题)如图,在平面直角坐标系中,抛物线C :()20y ax bx c a =++≠经过点()1,1和()4,1.(1)求抛物线C 的对称轴.(2)当1a =-时,将抛物线C 向左平移2个单位,再向下平移1个单位,得到抛物线1C . ①求抛物线1C 的解析式.②设抛物线1C 与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,连接BC .点D 为第一象限内抛物线1C 上一动点,过点D 作DE OA ⊥于点E .设点D 的横坐标为m .是否存在点D ,使得以点O ,D ,E 为顶点的三角形与BOC 相似,若存在,求出m 的值;若不存在,请说明理由.【答案】(1)x =2.5;(2)①()()=-+1-2y x x ;②1或4【分析】 (1)根据函数图像所过的点的特点结合函数性质,可知两点中点横坐标即为对称轴;(2)①根据平移可得已知点平移后点的坐标,平移过程中a 的值不发生改变,所以利用交点式可以求出函数解析式;②根据条件求出A 、B 、C 、D 四点的坐标,由条件可知三角形相似有两种情况,分别讨论两种情况,根据相似的性质可求出m 的值.【详解】解:(1)因为抛物线图像过(1,1)、(4,1)两点,这两点的纵坐标相同,根据抛物线的性质可知,对称轴是x =(1+4)÷2=2.5,;(2)①将点(1,1)、(4,1)向左平移2个单位,再向下平移1个单位,得到(-1,0),(2,0),将点(-1,0),(2,0),a=-1,根据交点式可求出C 1二次函数表达式为()()=-+1-2y x x ;②根据①中的函数关系式,可得A (2,0),B (-1,0),C (0,2),D (m ,2-++2m m ),且m >0 由图像可知∠BOC =∠DEO =90°,则以点O ,D ,E 为顶点的三角形与BOC 相似有两种情况,(i )当△ODE ∽△BCO 时, 则OE DE OB OC =,即2-++2=12m m m , 解得m =1或-2(舍),(ii )当△ODE ∽△CBO 时, 则OE DE OC OB =,即2-++2=21m m m ,解得m所以满足条件的m 的值为1 【点睛】本题主要考查了一元二次函数图形的平移、表达式求法、相似三角形等知识点,熟练运用数形结合是解决问题的关键.12.(2021·湖南湘西土家族苗族自治州·中考真题)如图,已知抛物线24y ax bx =++经过(1,0)A -,(4,0)B 两点,交y 轴于点C .(1)求抛物线的解析式;(2)连接BC ,求直线BC 的解析式;(3)请在抛物线的对称轴上找一点P ,使AP PC +的值最小,求点P 的坐标,并求出此时AP PC +的最小值;(4)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使得以A 、C 、M 、N 四点为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.【答案】(1)234y x x =-++;(2)直线BC 的解析式为4y x =-+;(3)35,22P ⎛⎫ ⎪⎝⎭,此时AP PC +的最小值为(4)存在,()3,4N 或4⎫-⎪⎪⎝⎭.【分析】(1)把点A 、B 的坐标代入求解即可;(2)设直线BC 的解析式为y kx b =+,然后把点B 、C 的坐标代入求解即可;(3)由题意易得点A 、B 关于抛物线的对称轴对称,根据轴对称的性质可得AP PC BP PC +=+,要使AP PC +的值为最小,则需满足点B 、P 、C 三点共线时,即为BC 的长,然后问题可求解;(4)由题意可设点()()2,0,,34M m N n n n -++,然后可分①当AC 为对角线时,②当AM 为对角线时,③当AN 为对角线时,进而根据平行四边形的性质及中点坐标公式可进行求解.【详解】解:(1)∵抛物线24y ax bx =++经过()1,0A -,()4,0B 两点,∴4016440a b a b -+=⎧⎨++=⎩,解得:13a b =-⎧⎨=⎩, ∴抛物线的解析式为234y x x =-++;(2)由(1)可得抛物线的解析式为234y x x =-++,∵抛物线与y 轴的交点为C ,∴()0,4C ,设直线BC 的解析式为y kx b =+,把点B 、C 的坐标代入得:404k b b +=⎧⎨=⎩,解得:14k b =-⎧⎨=⎩, ∴直线BC 的解析式为4y x =-+;(3)由抛物线234y x x =-++可得对称轴为直线322b x a =-=,由题意可得如图所示:连接BP 、BC ,∵点A 、B 关于抛物线的对称轴对称,∴AP BP =,∴AP PC BP PC +=+,要使AP PC +的值为最小,则需满足点B 、P 、C 三点共线时,即为BC 的长,此时BC 与对称轴的交点即为所求的P 点,∵4OC OB ==,∴BC =∴AP PC +的最小值为∵点P 在直线BC 上, ∴把32x =代入得:35422y =-+=, ∴35,22P ⎛⎫ ⎪⎝⎭; (4)存在,理由如下:由题意可设点()()2,0,,34M m N n n n -++,()()1,0,0,4A C -,当以A 、C 、M 、N 四点为顶点的四边形是平行四边形,则可分:①当AC 为对角线时,如图所示:连接MN ,交AC 于点D ,∵四边形ANCM 是平行四边形,∴点D 为AC 、MN 的中点,∴根据中点坐标公式可得:A C M N A C M N x x x x y y y y +=+⎧⎨+=+⎩,即21004034m n n n -+=+⎧⎨+=-++⎩, 解得:43m n =-⎧⎨=⎩,∴()3,4N ;②当AM 为对角线时,同理可得:A M C N A M C N x x x x y y y y +=+⎧⎨+=+⎩,即21000434m n n n -+=+⎧⎨+=-++⎩,解得:n =,∴4N ⎫-⎪⎪⎝⎭;③当AN 为对角线时,同理可得:A N M C A N M C x x x x y y y y +=+⎧⎨+=+⎩,即21003440n m n n -+=+⎧⎨-++=+⎩, 解得:3n =,∴()3,4N ;∴综上所述:当以A 、C 、M 、N 四点为顶点的四边形是平行四边形,点N 的坐标为()3,4或4⎫-⎪⎪⎝⎭.【点睛】本题主要考查二次函数的综合,熟练掌握二次函数的性质与图象是解题的关键.13.(2021·湖南岳阳市·中考真题)如图,抛物线22y ax bx =++经过()1,0A -,()4,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的函数表达式;(2)如图2,直线l :3y kx =+经过点A ,点P 为直线l 上的一个动点,且位于x 轴的上方,点Q 为抛物线上的一个动点,当//PQ y 轴时,作QM PQ ⊥,交抛物线于点M (点M 在点Q 的右侧),以PQ ,QM 为邻边构造矩形PQMN ,求该矩形周长的最小值;(3)如图3,设抛物线的顶点为D ,在(2)的条件下,当矩形PQMN 的周长取最小值时,抛物线上是否存在点F ,使得CBF =∠DQM ∠?若存在,请求出点F 的坐标;若不存在,请说明理由.【答案】(1)213222y x x =-++;(2)314;(3)存在,()1,0F -或52839F ⎛⎫ ⎪⎝⎭,. 【分析】(1)直接将()1,0A -,()4,0B 两点坐标代入抛物线解析式之中求出系数的值即可;(2)先利用待定系数法求出直线的解析式,再设出点P 的坐标,接着表示出Q 点和M 点的坐标后,求出线段PQ 和QM 的表达式,再求出它们和的两倍,利用配方法即可求出其最小值;(3)先利用锐角三角函数证明出CBA ∠=DQM ∠,进而得到F 点的其中一个位置,在BC 另一侧,通过构造直角三角形,利用勾股定理建立方程组,即可求出BF 与y 轴的交点,进而求出BF 的解析式,与抛物线的解析式联立,即可确定F 点的坐标.【详解】解:(1)∵抛物线22y ax bx =++经过()1,0A -,()4,0B 两点, ∴2016420a b a b -+=⎧⎨++=⎩, 解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴该抛物线的函数表达式为:213222y x x =-++; (2)∵3y kx =+经过点A ,∴30k -+=,∴3k =,。
专题2.14 一元二次方程根与系数关系(知识讲解)【学习目标】掌握一元二次方程的根与系数的关系以及在各类问题中的运用. 【要点梳理】一元二次方程的根与系数的关系 1.一元二次方程的根与系数的关系如果一元二次方程的两个实数根是, 那么,. 注意它的使用条件为a ≠0, Δ≥0.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.2. 一元二次方程的根与系数的关系的应用⎧⎪⎪⎪→→⎨⎪⎪⎪⎩知识框图:1、求代数式的值2、求待定系数一元二次方程求根公式根与系数关系应用3、构造方程4、解特殊的二元二次方程组5、二次三项式的因式分解【典型例题】类型一、由根与系数关系直接求值1.已知x 1,x 2是一元二次方程x 2-3x -1=0的两根,不解方程求下列各式的值:(1)2211+x x (2)1211+x x 【答案】(1)11;(2) -3. 【分析】由一元二次方程的根与系数的关系可得12123,1x x x x +=⋅=-;(1)将所求式子变形为(x 1+x 2)2-2x 1x 2 ,然后整体代入上面两个式子计算即可; (2)将所求式子变形为1212x x x x +⋅,然后整体代入上面两个式子计算即可.解:∵x 1,x 2是一元二次方程x 2-3x -1=0的两根,∵12123,1x x x x +=⋅=-,(1)2211+x x = (x 1+x 2)2-2x 1x 2 =32-2×(-1)=11;)0(02≠=++a c bx ax 21x x ,a b x x -=+21ac x x =21(2)12121211331x x x x x x ++===-⋅-. 【点拨】本题考查了一元二次方程的根与系数的关系,属于基本题目,熟练掌握一元二次方程的两根之和与两根之积与系数的关系是解题关键.举一反三:【变式1】利用根与系数的关系,求下列方程的两根之和、两根之积: (1)2760x x ++=; (2)22320x x --=.【答案】(1)12127,6x x x x +=-=;(2)12123,12x x x x +==-【分析】直接运用一元二次方程根与系数的关系求解即可. 解:(1)这里1,7,6a b c ===.22Δ474164924250b ac =-=-⨯⨯=-=>,∵方程有两个实数根. 设方程的两个实数根是12,x x , 那么12127,6x x x x +=-=. (2)这里2,3,2a b c ==-=-.22Δ4(3)42(2)916250b ac =-=--⨯⨯-=+=>,∵方程有两个实数根.设方程的两个实数根是12,x x ,那么12123,12x x x x +==-.【点拨】本题考查了一元二次方程根与系数的关系,熟知1212,b cx x x x a a+=-=是解题的关键.【变式2】 甲、乙两人同解一个二次项系数为1的一元二次方程,甲抄错了常数项,解得两根分别为3和2,乙抄错了一次项系数,解得两根分别为-5和-1,求原来的方程.【答案】2550x x -+= 【分析】解法一:利用甲乙解出的根,可以得出两个一元二次方程,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解法二:利用根与系数的关系,取甲方程的一次项系数,取乙方程的常数项,即可重新组合出原来正确的方程.解:解法一:设原一元二次方程为2+a b 0+=x x ,代入甲解出的两根3、2得9+3a+b=04+2a+b=0⎧⎨⎩,解得a=5b=6-⎧⎨⎩,因为甲抄错常数项,所以取a=5-同理,代入乙解出的两根-5和-1,可得a=6b=5⎧⎨⎩,而乙抄错了常数项,所以取b=5,综上可得原方程为2550x x -+=解法二:甲抄错常数项,解得两个为3和2,两根之和正确;乙抄错了一次项系数,解得两根为-5和-1,则两根之积正确.设原方程的两根分别为1x 、2x ,可得12+=5x x ,12=5x x ,所以原方程就是2550x x -+=.【点拨】在没有学习根与系数关系之前,可用方程的解的性质,代入两根求出方程系数,学习之后可直接利用根与系数关系得出方程系数,更为简单.类型二、由根与系数关系求参数的值2.关于x 的一元二次方程22(21)0x m x m --+=的两根为,a b ,且4a b ab +=-,求m 的值.嘉佳的解题过程如下: 解:221,a b m ab m +=-=,2214m m ∴-=-, 整理,得2230m m --=, 解得121,3m m =-=.嘉佳的解题过程漏了考虑哪个条件?请写出正确的解题过程. 【答案】m 的值为1-. 【分析】根据一元二次方程根的判别式结合根与系数的关系解答.解:嘉佳的解题过程漏了考虑0∆这一条件.正确的解题过程如下:根据题意得22(21)40m m ∆=--,解得14m. 221,a b m ab m +=-=,2214m m ∴-=-,整理得2230m m --=,解得121,3m m =-=(舍去), m ∴的值为1-.【点拨】本题中忽略0∆这一条件导致错解针对这一类题,我们一定要看清题目中所给的条件,考虑一元二次方程有解的条件是“0∆”,才能得出正确结果.举一反三:【变式1】已知1x 、2x 是方程2220x kx k k -+-=的两个实根,是否存在常数k ,使122132x x x x +=成立?若存在,请求出k 的值;若不存在,请说明理由. 【答案】不存在.理由见分析【分析】根据根与系数关系列出关于k 的方程,根据方程有实数根列出关于k 的不等式,求解即可.解:不存在.∵1x 、2x 是方程2220x kx k k -+-=的两个实根, ∵240b ac -≥,即22(2)4()0k k k ---≥, 解得,0k ≥;由题意可知122x x k +=,212x x k k =-,∵12121212122221122()232x x x x x x x x x x x x x x +=+-=+=, ∵222(2)32)2(k k k k k --=-,解得120,7k k ==-,经检验,27k =-是原方程的解,∵0k ≥,∵不存在常数k ,使122132x x x x +=成立. 【点拨】本题考查了一元二次方程根与系数关系和解方程,解题关键是根据根与系数关系列出方程并求解,注意:根的判别式要大于或等于0.【变式2】 已知方程2 420x x m +-=的一个根比另一个根小4,求这两个根和m 的值.【答案】10x =,24x =-,0m =【分析】设两根为x 1和x 2,根据根与系数的关系得x 1+x 2,x 1·x 2,由|x 2-x 1|=4两边平方,得(x 1+x 2)2-4x 1·x 2=16,代入解得m ,此时方程为x 2+4x=0,解出两根 .解:x 2+4x -2m=0设两根为x 1和x 2,则∵=16+8m>0, 且x 1+x 2=-4,x 1·x 2=-2m 由于|x 2-x 1|=4两边平方得x 12-2x 1·x 2+x 22=16 即(x 1+x 2)2-4x 1·x 2=16 所以16+8m=16 解得:m=0此时方程为x 2+4x=0, 解得 x 1=0 , x 2=−4 .【点拨】本题考查一元二次方程的根与系数的关系,解题的关键是灵活利用一元二次方程根与系数的关系,以及完全平方公式进行变形,求出两根.类型三、根的判断别与根与系数关系综合3、已知一元二次方程220x x m -+=. (1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为12x x 、,且1233x x +=,求m 的值. 【答案】(1)1m ≤;(2)34m = 【分析】(1)一元二次方程220x x m -+=有两个实数根,∵≥0,把系数代入可求m 的范围; (2)利用根与系数的关系,已知122x x +=结合1233x x +=,先求12x x 、,再求m . 解:(1)∵方程220x x m -+=有两个实数根,∵()22424440b ac m m =-=--=-≥, 解得1m ≤;(2)由根与系数的关系可知,122x x +=,12x x m =,解方程组1212233x x x x +=⎧⎨+=⎩,解得123212x x ⎧=⎪⎪⎨⎪=⎪⎩,∵12313224m x x ==⨯=.【点拨】本题考查了一元二次方程根的判别式以及根与系数的关系,熟练掌握根的判别式、根与系数的关系是解题的关键.【变式1】已知关于x 的一元二次方程2(8)80x k x k -++=. (1)证明:无论k 取任何实数,方程总有实数根.(2)若221268x x +=,求k 的值.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.【答案】(1)证明见分析;(2)2k =±;(3)这个等腰三角形的周长为21或18. 【分析】(1)根据根的判别式即可得到结论;(2)先计算∵=(8+k )2−4×8k ,整理得到∵=(k−8)2,根据非负数的性质得到∵≥0,然后根据∵的意义即可得到结论;(3)先解出原方程的解为x 1=k ,x 2=8,然后分类讨论:腰长为8时,则k =8;当底边为8时,则得到k =5,然后分别计算三角形的周长.解:(1)22(8)48(8)k k k ∆=+-⨯=-.2(8)0k -,0∴∆,∴无论k 取任何实数,方程总有实数根;(2)221212128,8,68x x k x x k x x +=+=+=,()2221212122x x x x x x +=++,2(8)6816k k ∴+=+,解得2k =±;(3)解方程2(8)80x k x k -++=得12,8x k x ==.∵当腰长为8时,8k . 85138+=>,能构成三角形,∴周长为88521++=.∵当底边长为8时,5k =.55108+=>∴能构成三角形,周长为55818++=.综上,这个等腰三角形的周长为21或18.【点拨】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=−b a ,x 1•x 2=ca.也考查了一元二次方程的判别式和等腰三角形的性质,掌握这些知识点是解题关键.【变式2】 已知关于x 的一元二次方程()22121202x k x k -++-=.(1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根1x ,2x 满足123x x -=,求k 的值. 【答案】(1)见分析 (2)0,-2 【分析】(1)根据根的判别式即可求证出答案;(2)可以根据一元二次方程根与系数的关系得k 与的1x 、2x 的关系式,进一步可以求出答案.解:(1)证明:∵()222121422492k k k k ⎛⎫∆=+-⨯-=++ ⎪⎝⎭()2217k =++,∵无论k 为何实数,()2210k +≥, ∵()22170k +∆=+>,∵无论k 为何实数,方程总有两个不相等的实数根;(2)由一元二次方程根与系数的关系得: 1221x x k +=+,212122x x k =-, ∵123x x -=, ∵()2129x x -=, ∵()2121249x x x x +-=,∵()221214292k k ⎛⎫+-⨯-= ⎪⎝⎭,化简得:220k k +=,解得0k =,2-.【点拨】本题主要考查根的判别式和根与系数的关系,熟练掌握概念和运算技巧即可解题.类型四、根与系数关系拓展应用14、已知m ,n 是方程x 2﹣2x ﹣1=0的两个根,是否存在实数a 使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8?若存在,求出a 的值;若不存在,请说明理由.【答案】存在,a =-6 【分析】根据方程的解的定义得出m 2-2m =1,n 2-2n =1,m +n =2,再整体代入即可得出a 的值. 解:存在,理由如下:∵m ,n 是方程x 2﹣2x ﹣1=0的两个根, ∵m 2﹣2m =1,n 2﹣2n =1,m +n =2, ∵﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7) =﹣(m +n )[7(m 2﹣2m )+a ][3(n 2﹣2n )﹣7] =﹣2×(7+a )(3﹣7) =8(7+a ),由8(7+a )=8得a =﹣6,∵存在实数a =﹣6,使﹣(m +n )(7m 2﹣14m +a )(3n 2﹣6n ﹣7)的值等于8. 【点拨】本题考查了一元二次方程的解、根与系数的关系,解题的关键是得出m 2-2m =1,n 2-2n =1,m +n =2,注意解题中的整体代入思想.【变式1】阅读材料:已知方程p 2﹣p ﹣1=0,1﹣q ﹣q 2=0且pq ≠1,求1pq q+的值. 解:由p 2﹣p ﹣1=0,及1﹣q ﹣q 2=0可知p ≠0, 又∵pq ≠1,∵p ≠1q.∵1﹣q ﹣q 2=0可变形为211()-q q ﹣1=0,根据p 2﹣p ﹣1=0和211()-q q﹣1=0的特征,∵p 、1q 是方程x 2﹣x ﹣1=0的两个不相等的实数根,则p +1q,即11pq q +=. 根据阅读材料所提供的方法,完成下面的解答. 已知:2m 2﹣5m ﹣1=0,21520n n+-=,且m ≠n ,求: (1)mn 的值; (2)2211m n +. 【答案】(1)12-;29.【分析】(1)由题意可知:可以将方程22510m m --=化简为21520m m+-=的形式,根据根与系数的关系直接得:11m n的值; (2)将2211m n +变形为2112m n mn ⎛⎫=+- ⎪⎝⎭求解.解:由22m 5m 10--=知m≠0,∵21520m m+-=, ∵21520n n+-=,m ≠n , ∵11m n≠, ∵1m 和1n是方程2520x x +-=的两个根, (1)由1m 和1n 是方程2520x x +-=的两个根得112m n⋅=-, ∵12mn =-;经检验:12mn =-是原方程的根,且符合题意.(2)由1m和1n是方程2520x x+-=的两个根得115m n+=-,112m n⋅=-,∵2221111225429 m n m n mn⎛⎫+=+-=+=⎪⎝⎭.【点拨】本题考查一元二次方程根与系数关系,代数式的值,乘法公式,掌握一元二次方程根与系数关系与乘法公式恒等变形是解题关键.【变式2】定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x1<x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣2x=0,写出该方程的衍生点M的坐标.(2)若关于x的一元二次方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M始终在直线y=kx﹣2(k﹣2)的图象上,若有请直接写出b,c的值,若没有说明理由.【答案】(1)衍生点为M(0,2);(2)12-;(3)存在,b=﹣6,c=8;【分析】(1)求出方程的两根,根据一元二次方程的衍生点即可解决问题;(2)求出方程的两根,根据一元二次方程的衍生点的定义,再利用正方形的性质构建方程即可解决问题;(3)求出定点,利用根与系数的关系解决问题即可;解:(1)∵x2﹣2x=0,∵x(x﹣2)=0,解得:x1=0,x2=2故方程x2﹣2x=0的衍生点为M(0,2).(2)x2﹣(2m+1)x+2m=0(m<0)∵m<0∵2m<0解得:x1=2m,x2=1,方程x2﹣(2m+1)x+2m=0(m<0)的衍生点为M(2m,1).点M在第二象限内且纵坐标为1,由于过点M向两坐标轴做垂线,两条垂线与x 轴y轴恰好围城一个正方形,所以2m =﹣1,解得12m =-.(3)存在.直线y =kx ﹣2(k ﹣2)=k (x ﹣2)+4,过定点M (2,4), ∵x 2+bx+c =0两个根为x 1=2,x 2=4, ∵2+4=﹣b ,2×4=c , ∵b =﹣6,c =8.【点拨】本题考查一元二次方程的解法及根与系数的关系、正方形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题.类型五、根与系数关系拓展应用25、如图,在平面直角坐标系中,∵ABC 的BC 边与x 轴重合,顶点A 在y 轴的正半轴上,线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,且满足CO =2AO .(1)求直线AC 的解析式;(2)若P 为直线AC 上一个动点,过点P 作PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,设∵CPQ 的面积为S (0S ≠),点P 的横坐标为a ,求S 与a 的函数关系式;(3)点M 的坐标为()m,2,当∵MAB 为直角三角形时,直接写出m 的值.【答案】(1)132y x =+; (2)22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或;(3)m 的值为-3或-1或2或7;【分析】(1)根据一元二次方程的解求出OB 和OC 的长度,然后得到点B ,点C 坐标和OA 的长度,进而得到点A 坐标,最后使用待定系数法即可求出直线AC 的解析式;(2)根据点A ,点B 坐标使用待定系数法求出直线AB 的解析式,根据直线AB 解析式和直线AC 解析式求出点P ,Q ,D 坐标,进而求出PQ 和CD 的长度,然后根据三角形面积公式求出S ,最后对a 的值进行分类讨论即可;(3)根据∵MAB 的直角顶点进行分类讨论,然后根据勾股定理求解即可.(1)解:解方程2760x x -+=得16x =,21x =,∵线段OB ,OC (OB OC <)的长是关于x 的方程2760x x -+=的两个根,∵OB =1,OC =6,∵()10B ,,()6,0C -, ∵CO =2AO ,∵OA =3,∵()0,3A ,设直线AC 的解析式为()0y kx b k =+≠,把点()0,3A ,()6,0C -代入得603k b b -+=⎧⎨=⎩, 解得123k b ⎧=⎪⎨⎪=⎩, ∵直线AC 的解析式为132y x =+; (2)解:设直线AB 的解析式为y =px +q ,把()0,3A ,()10B ,代入直线AB 解析式得30q p q=⎧⎨=+⎩, 解得33p q =-⎧⎨=⎩, ∵直线AB 的解析式为33y x =-+,∵PD ∵x 轴,垂足为D ,PD 与直线AB 交于点Q ,点P 的横坐标为a , ∵1,32P a a ⎛⎫+ ⎪⎝⎭,(),33Q a a -+,(),0D a , ∵()1733322PQ a a a ⎛⎫=-+-+= ⎪⎝⎭,6CD a =+, ∵1176222S PQ CD a a =⋅=⨯⋅+,当点P 与点A 或点C 重合时,即当a =0或6a =-时,此时S =0,不符合题意,当6a <-时,()21772162242S a a a a ⎛⎫⎡⎤=⨯--+=+ ⎪⎣⎦⎝⎭, 当60a -<<时,()21772162242S a a a a ⎛⎫=⨯-+=-- ⎪⎝⎭, 当0a >时,()21772162242S a a a a =⨯+=+, ∵22721,6042721,6042a a a a S a a a ⎧+-⎪⎪=⎨⎪---<<⎪⎩或; (3)解:∵()0,3A ,()10B ,,(),2M m , ∵AB ==AM ==,BM =当∵MAB =90°时,222AM AB BM +=,∵222+=, 解得3m =-,当∵ABM =90°时,222AB BM AM+=,∵222+=, 解得m =7, 当∵AMB =90°时,222AM BM AB +=,∵222+=, 解得11m =-,22m =,∵m 的值为-3或-1或2或7.【点拨】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键.【变式1】PAC △在平面直角坐标系中的位置如图所示,AP 与y 轴交于点(0,2)B ,点P 的坐标为(1,3)-,线段OA ,OC 的长分别是方程29140x x -+=的两根,OC OA >.(1)求线段AC 的长;(2)动点D 从点O 出发,以每秒1个单位长度的速度沿x 轴负半轴向终点C 运动,过点D 作直线l 与x 轴垂直,设点D 运动的时间为t 秒,直线l 扫过四边形OBPC 的面积为S ,求S 与t 的关系式;(3)M 为直线l 上一点,在平面内是否存在点N ,使以A ,P ,M ,N 为顶点的四边形为正方形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)9 (2)()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩ (3)存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).【分析】(1)解方程可求得OA 、OC 的长,则可求得A 、C 的坐标,从而可得AC 长;(2)分两种情况:∵当0<t ≤1时;∵当1<t ≤7时,利用梯形的面积公式即可求解; (3)分两种情况:∵AP 为正方形的对角线时,∵AP 为正方形的边时,根据正方形以及等腰直角三角形的性质,可求得N 点坐标.(1)解:解方程x 2﹣9x +14=0可得x =2或x =7,∵线段OA ,OC 的长分别是方程x 2﹣9x +14=0的两根,且OC >OA ,∵OA =2,OC =7,∵A (2,0),C (﹣7,0),279.AC(2) 解:过点P 作PH ∵OC 于H ,而()1,3P - ,1OH ∴=,3PH = ,6CH =设直线AB 解析式为y =kx +b ,而点B (0,2),∵32k b b -+=⎧⎨=⎩, 解得12k b =-⎧⎨=⎩, ∵直线AB 解析式为y =﹣x +2,∵如图1所示,当0<t ≤1时,点E (﹣t ,t +2),∵S =S 梯形OBED =21122222t t t t (0<t ≤1); ∵如图2所示,当1<t ≤7时,设直线CP 解析式为y =mx +n ,∵C (﹣7,0),点P 的坐标为(﹣1,3),∵703m n m n -+=⎧⎨-+=⎩ ,解得1272m n ⎧=⎪⎪⎨⎪=⎪⎩, ∵直线CP 解析式为1722y x =+, 设17,22E t t , ∵DE =1722t , ∵S =S 梯形OBPH +S 梯形HPED =11172+31+132222t t 217317424t t t ;综上,()()221201217317424t t t S t t t ⎧+<≤⎪⎪=⎨⎪-+-<≤⎪⎩;图1 图2(3) 分两种情况:∵AP 为正方形的对角线时,如图3所示,∵A (2,0),B (0,2),∵∵OAB =45°,∵四边形AMPN 是正方形,∵∵P AN =45°,∵NAM =90°,∵∵OAB +∵P AN =90°,∵点M 在x 轴上,NA ∵x 轴,NP x ∥轴,∵N (2,3);∵AP 为正方形的边时,如图4所示,∵∵OAB =45°,四边形AMNP 是正方形,∵∵NAM =∵OAB =45°,AP =AM ,∵HN =PH =3,∵N (-4,0);如图5所示,四边形ANMP 是正方形,∵PH =NH =3,∵()1,3N --;∵N (-4,0)或(-1,-3),综上可知,存在满足条件的N 点,其坐标为(2,3)或(-4,0)或(-1,-3).图3 图4 图5【点拨】本题为四边形的综合题,考查了一元二次方程、勾股定理、待定系数法、正方形的性质、等腰直角三角形的性质等知识.在(1)中求得OA 、OC 的长是解题的关键,在(2)中分类讨论是解题的关键,在(3)中分类思想的运用是解题的关键.本题考查知识点较多,综合性较强,难度适中.【变式2】 菱形ABCD 的边长为5,两条对角线AC 、BD 相交于O 点,且AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,求m 的值.【答案】3m =-.【分析】由题意可知:菱形ABCD 的边长是5,则AO 2+BO 2=25,则再根据根与系数的关系可得:AO +BO =−(2m −1),AO ∙BO =m 2+3;代入AO 2+BO 2中,得到关于m 的方程后,即可求得m 的值.解:∵AO ,BO 的长分别是关于x 的方程22(21)30x m x m +-++=的两根,设方程的两根为1x 和2x ,可令1OA x =,2OB x =,∵四边形ABCD 是菱形,∵AC BD ⊥,在Rt AOB 中:由勾股定理得:222OA OB AB +=,∵222125+=x x ,则()21212225x x x x +-=,由根与系数的关系得:12(21)x x m +=--,2123x x m ⋅=+,∵[]()22(21)2325m m ---+=, 整理得:22150m m --=,解得:15m =,23m =-又∵0∆>,∵()22(21)430--+>m m ,解得114m <-, ∵3m =-.【点拨】此题主要考查了菱形的性质、勾股定理、以及根与系数的关系,将菱形的性质与一元二次方程根与系数的关系,以及代数式变形相结合解题是一种经常使用的解题方法.。
初三数学一元二次方程根与系数的关系及其应用知识精讲一元二次方程根与系数的关系及其应用一元二次方程ax bx c a 200++=≠()的根x x 12、是由系数a 、b 、c 决定的,它们之间有密切的关系。
x x b a x x c a1212+=-=, 这就是根与系数的关系,也称为韦达定理。
反之,一元二次方程的两根也制约着这个方程的系数,当a =1时,有()b x x =-+12,c x x =12,从而有以两个数x x 12、为根的二次项系数为1的一元二次方程是()x x x x x x 212120-++=。
需要指出,韦达定理应该是在判别式大于等于零的前提下使用,即在保证一元二次方程有实数根的条件下使用。
一元二次方程的韦达定理,揭示了根与系数的一种必然联系,利用这个关系,我们可以解决诸如已知一根求另一根,求根的代数式的值,构造方程,确定系数等问题,它是中学数学中的一个有用的工具。
例(2002·南京)已知:关于x 的方程x kx 220--= (1)求证:方程有两个不相等的实数根;(2)设方程的两根为x x 12、,如果()21212x x x x +>,求k 的取值范围。
解:(1)证明: ∆=-=+>b ac k 22480 ∴原方程有两个不相等的实数根 (2) x x k x x 12122+==-, 又() 21212x x x x +>∴>-∴>-221k k说明:本题侧重考察对基本知识点的掌握,难度不大,可以说是中考中的送分题,同学们应该把这类题的分数拿到手。
例(2000上海)已知关于x 的一元二次方程()mx m x m m 221200--+-=>()(1)求证:这个方程有两个不相等的实数根;(2)如果这个方程的两个实数根分别为x x 12、,且()()x x m 12335--=,求m 的值。
解:(1)证明:()[]()∆=----21422m m m=-+-+=+441484122m m m m mm m >∴4+>010, ∴方程有两个不相等的实数根 (2)由()()x x m 12335--= ()x x x x m 12123950-++-=x x m mx x m m1212212+=-=-()∴---+-=m m m mm 2321950 解得:m m 12115==-,经检验m m 12、都是方程的根。
提升训练2.2 一元二次方程的解集及其根与系数的关系一、选择题1.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14-=xC .2(6)44x -=D .2(3)1x -=【答案】A【解析】用配方法解方程x 2﹣6x ﹣8=0时,配方结果为(x ﹣3)2=17,故选A .2.若1x ,2x 是一元二次方程x 2+4x +3=0的两个根,则12x x 的值是( )A .4B .-3C .-4D .3【答案】D【解析】∵一元二次方程x 2+4x+3=0的二次项系数a=1,常数项c=3,∴x 1•x 2=ca =3.故选D .3.一元二次方程2320x x =--的两根分别为12x x ,,则下列结论正确的是( )A .1212x x =-=,B .1212x x ==-,C .123x x =+D .122x x =【答案】C【解析】∵方程2320x x =--的两根为12x x ,, ∴1212+=-3,2b c x x x x a a ===-∴C 选项正确.故选C4.若1x 、2x 是方程2x 2x 10--=的两个根,则1122x x x x ++的值为( )A .1B .-1C .3D .-3 【答案】A【解析】因为1x 、2x 是方程2x 2x 10--=的两个根,所以12122,1x x x x +=•=-所以1122x x x x ++=2-1=1故选A5.若,,则以,为根的一元二次方程是( ) A .B .C .D . 【答案】A【解析】 ∵, ∴, 而, ∴, ∴, ∴以,为根的一元二次方程为. 故选:A .6.若代数式2x 2-5x 与代数式x 2-6的值相等,则x 的值是( )A .-2或3B .2或3C .-1或6D .1或-6. 【答案】B【解析】因为这两个代数式的值相等,所以有: 2x 2-5x=x 2-6,x 2-5x+6=0,(x-2)(x-3)=0,x-2=0或x-3=0,∴x=2或3.所以选B7.x 1,x 2是关于x 的一元二次方程x 2﹣2mx ﹣3m 2=0的两根,则下列说法不正确的是( )A .x 1+x 2=2mB .x 1x 2=﹣3m 2C .x 1﹣x 2=±4mD .12x x =﹣3 【答案】D【解析】∵x 1,x 2是关于x 的一元二次方程x 2﹣2m ﹣3m 2=0的两根,∴x 1+x 2=2m ,x 1x 2=﹣3m 2,|x 1﹣x 2|==|4m |=±4m , 解方程x 2﹣2mx ﹣3m 2=0得:x =3m 或﹣m , ∴12x x =-3或13-. 故选D .8.若a b ,是方程220180x x =+-的两个实数根,则22a a b ++= ( )A .2018B .2017C .2016D .2015【答案】B【解析】∵a 是方程220180x x =+-的根,∴220180a a -=+,∴22018a a =-+,∴22201822018a a b a a b a b ++=-+++=++.∵a b ,是方程220180x x +-=的两个实数根,∴1a b +=-,∴22201812017.a a b +=-=+故选B.9.关于x 的一元二次方程x 2+kx ﹣3=0有一个根为﹣3,则另一根为( )A .1B .﹣2C .2D .3【答案】A【解析】设方程x 2+kx ﹣3=0的另一个根为a ,∵关于x 的一元二次方程x 2+kx ﹣3=0有一个根为﹣3, ∴由根与系数的关系得:﹣3a =﹣3,解得:a =1,即方程的另一个根为1,故选:A .10.关于x 的一元二次方程2220x mx m m +++=的两个实数根的平方和为12,则m 的值为()A .2m =-B .3m =C .3m =或2m =-D .3m =-或2m =【答案】A【解析】设1x ,2x 是2220x mx m m +++=的两个实数根,∴40m ∆=-≥,∴0m ≤,∴122x x m +=-,212x x m m ⋅=+,∴()2221212122x x x x x x +=+-⋅2224222212m m m m m =--=-=,∴3m =或2m =-,∴2m =-,故选A .11.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( )A .2023B .2021C .2020D .2019【答案】A【解析】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=;故选A .12.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( ) A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 【答案】D【解析】 (k-2)x 2-2kx+k-6=0,∵关于x 的一元二次方程(k-2)x 2-2kx+k=6有实数根,∴220(2)4(2)(6)0k k k k -≠⎧⎨=----⎩, 解得:32k ≥且k≠2. 故选D .二、填空题13.若方程2410x x -+=的两根是12x x ,,则122(1)x x x ++的值为________.【答案】5【解析】根据题意得121241x x x x ==+,,所以12211221212141()5x x x x x x x x x x x ++=++=++=+=.故答案为5.14.已知1x 、2x 是方程2210x x --=的两根,则2212x x +=______________【答案】2【解析】∵x 1、x 2是方程x 2−2x −1=0的两根,∴x 1+x 2=2,x 1×x 2=−1,∴x 12+x 22=(x 1+x 2)2−2x 1x 2=22−2×(−1)=6.故答案为:6.15.已知a ,b 是方程x 2+2017x +2=0的两个根,则(2+2019a +a 2)(2+2019b +b 2)的值为______.【答案】8.【解析】∵a,b 是方程x 2+2017x+2=0的两个根,∴2+2017a+a 2=0,2+2017b+b 2=0,ab=2,∴(2+2019a+a 2)(2+2019b+b 2)=(2+2017a+2a+a 2)(2+2017b+2b+b 2)=4ab=8,故答案为:8.16.若a 、b 是关于一元二次方程x 2+x ﹣3=0的两实数根,则11a b +的值为_____. 【答案】13 【解析】∵a 、b 是关于一元二次方程230x x +-=的两实数根,∴13a b ab +=-=-, ,∴111133a b a b ab +-+===- , 故答案为:13. 三、解答题17.关于x 的一元二次方程2380x mx =+-有一个根是23,求该一元二次方程的另一个根及m 的值. 【答案】该一元二次方程的另一个根是-4,m 的值为10.【解析】设方程的另一个根为t .依题意得22238033m ⎛⎫⨯+-= ⎪⎝⎭,解得10.m = 又2833t =-,所以4t =-. 故该一元二次方程的另一个根是-4,m 的值为10. 18.已知关于x 的方程x 2﹣2kx+k 2﹣k ﹣1=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围;(2)若x 1﹣3x 2=2,求k 的值.【答案】(1)k >﹣1;(2)k =3.【解析】(1)△=(﹣2k )2﹣4(k 2﹣k ﹣1)=4k+4>0,∴k>﹣1;(2)∵1212322x x x x k -=⎧⎨+=⎩, ∴1231212k x k x +⎧=⎪⎪⎨-⎪=⎪⎩, ∵x 1•x 2=k 2﹣k ﹣1,∴14(3k+1)(k ﹣1)=k 2﹣k ﹣1, ∴k 1=3,k 2=﹣1, ∵k>﹣1,∴k=3.19.按指定的方法解方程()21(9)250x +-=(直接开平方法)()226160x x --=(配方法)()()()33121x x x -=-(因式分解法)()242720x x -+=(公式法)【答案】(1)1x 4=-,2x 14=-;(2)1x 8=,2x 2=-;(3)12x 3=,2x 1=;(4)733x ±=.【解析】 ()1方程变形得:2(x 9)25+=,开方得:x 95+=或x 95+=-,解得:1x 4=-,2x 14=-;()2方程变形得:2x 6x 16-=,配方得:2x 6x 925-+=,即2(x 3)25-=,开方得:x 35-=或x 35-=-,解得:1x 8=,2x 2=-; ()3方程变形得:()()3x x 12x 10---=,分解因式得:()()3x 2x 10--=, 解得:12x 3=,2x 1=; ()4这里a 2=,b 7=-,c 2=,∵491633=-=,∴x =. 20.已知x 1、x 2是关于x 的一元二次方程x 2+(3a-1)x+2a 2-1=0的两个实数根,使得(3x 1-x 2)(x 1-3x 2)=-80成立,求其实数a 的可能值【答案】a=-335. 【解析】∵x 1、x 2是关于x 的一元二次方程x 2+(3a-1)x+2a 2-1=0的两个实数根,a=1,b=(3a-1),c=2a 2-1, ∴x 1+x 2=-b a =-(3a-1),x 1•x 2=c a=2a 2-1, ∵(3x 1-x 2)(x 1-3x 2)=-80,∴3x 12-10x 1x 2+3x 22=-80,即3(x 1+x 2)2-16x 1x 2=-80,∴3[-(3a-1)]2-16(2a 2-1)=-80,∴5a 2+18a-99=0,∴a=3或-335, 当a=3时,方程x 2+(3a-1)x+2a 2-1=0的△<0,∴不合题意,舍去∴a=-33521.已知关于x 的一元二次方程22(21)30x m x m +-+-=有实数根.(1)求实数m 的取值范围;(2)当m=2时,方程的根为12,x x ,求代数式221122(2)(42)x x x x +++的值.【答案】(1)134m ≤;(2)1. 【解析】 (1)△=2222(21)41(3)441412413m m m m m m --⨯⨯-=-+-+=-+∵原方程有实根,∴△=4130m -+≥ 解得134m ≤ (2)当m=2时,方程为x 2+3x+1=0,∴x 1+x 2=-3,x 1x 2=1,∵方程的根为x 1,x 2,∴x 12+3x 1+1=0,x 22+3x 2+1=0,∴(x 12+2x 1)(x 22+4x 2+2)=(x 12+2x 1+x 1-x 1)(x 22+3x 2+x 2+2)=(-1-x 1)(-1+x 2+2)=(-1-x 1)(x 2+1)=-x 2-x 1x 2-1-x 1=-x 2-x 1-2=3-2=1.22.已知关于x 的一元二次方程x 2﹣(2m +3)x +m 2+2=0.(1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足x 12+x 22=31+|x 1x 2|,求实数m 的值.【答案】(1)m ≥﹣112;(2)m =2. 【解析】(1)根据题意得(2m +3)2﹣4(m 2+2)≥0,解得m ≥﹣112; (2)根据题意x 1+x 2=2m +3,x 1x 2=m 2+2,因为x 1x 2=m 2+2>0,所以x 12+x 22=31+x 1x 2,即(x 1+x 2)2﹣3x 1x 2﹣31=0,所以(2m +3)2﹣3(m 2+2)﹣31=0,整理得m 2+12m ﹣28=0,解得m 1=﹣14,m 2=2,而m≥﹣1 12;所以m=2.。