13半导体温度计的设计与制作
- 格式:docx
- 大小:102.43 KB
- 文档页数:7
半导体温度计的设计和制作实验(非平衡电桥)在温度不太低或不太高(如从-20o C到几百度)的情况下,通常可以用水银温度计来测一定的温度。
由于生产和科学实验的发展,需要精密和快速的温度测量,因而就需要灵敏度较高的温度计。
现在已有各种用途的温度计,半导体温度计就是其中的一种。
本实验的半导体温度计利用热敏电阻为传感器,利用非平衡电桥实现由电学量测量一些变化的非电量,这种思想现在应用范围扩展到很多领域,如长度、位移、应力、应变、温度、光强等转变成电学量,如电阻、电压、电流、电感和电容等,然后用电学仪器来进行测量。
一、实验目的1.理解非平衡电桥的工作原理及其在非电量的电测法中的应用。
2.了解半导体温度计的基本原理并设计制作一台半导体温度计二、实验原理1.热敏电阻伏安特性曲线为测量热敏电阻的阻值,需了解热敏电阻的伏安特性。
由图1可知,在V-I 曲线的起始部分,因电流很太小,温度变化微小,曲线接近线性。
此时其阻值主要与外界温度有关。
图1 热敏电阻伏安特性曲线半导体温度计是利用热敏电阻的阻值随温度变化急剧的特性制作的,通过测量热敏电阻的阻值来确定温度的仪器。
应根据待测温度区间和热敏电阻的阻值选用合适电学元件和测温电路。
2.半导体温度计测温电路的原理非平衡电桥的工作原理图如下:图2 半导体温度计测温电路原理图图中G 是微安表, R T 为热敏电阻,当电桥平衡时,表的指示必为零,此时应满足条件:TR R R R 321= (1) 若取R 1 = R 2,则R 3的数值即为R T 的数值。
平衡后的电桥若其中某一臂的电阻又发生改变,则平衡将受到破坏,微安表中将有电流流过,此为非平衡电桥。
由基尔霍夫方程组求出CD T T G T T G V R R R R R R R R R R R R R R R I 23232121232212+++++-+= (2)由此可见微安表中的电流大小直接反映了热敏电阻的阻值的大小程度。
由于热敏电阻的大小与环境温度是一一对应关系,因此可以利用这种“非平衡电桥”的电路原理来实现对温度的测量。
温度计的设计专业___________________学号___________________姓名-___________________一、预习要点1. 了解半导体温度计的基本原理,并设计制作半导体温度计;2. 了解非平衡电桥的工作原理及其在非电量电测法中的应用。
二、实验内容1. 设计制作测量温度范围为20℃~70℃的半导体温度计。
2. 对半导体温度计进行定标对半导体温度计进行定标,首先从热敏电阻的电阻-温度特性曲线上读出温度。
从20℃到70℃,每隔5℃读一个电阻值,用标准电阻箱R4逐次选择前面所取的电阻值,读出微安表的电流读数I,并记录数据。
根据数据,将表盘读数改为温度的刻度,并做出I-T的曲线与表盘刻度比较。
再将实际热敏电阻代替标准电阻箱,此即经过定标的半导体温度计。
三、实验步骤1. 点击仿真实验页面上的“温度计设计”实验。
2. 在打开的程序界面中,右键点击,并选择“仪器背面”,在里面进行相应的电路连线。
(注:线路连接图在“仪器背面”的左上角,点击“显示电路图”即可)。
3. 按线路图连接好相应的电路,如果连线正确,则双击电池电源的位置将会出现一个电池,如果无法出现电池则说明线路连接有误,则应检查连线,直至正确为止。
4. 线路连接好后,首先调节线路中R1和R2的值,方法为:在程序的空白处右键点击,在弹出的界面中选择“万用表”,打开其电源,并在“万用表”上选择“将万用表连接到R1”,调节R1及其微调旋钮,使万用表显示值为“4853”,接着在“万用表”上选择“将万用表连接到R2”,调节R2及其微调旋钮,使万用表也显示为“4853”,至此,R1和R2阻值调节完毕,然后在“仪器背面”上双击“表头插线”,将其接上。
5. 接下来调节电路中R3的阻值,方法为:先在程序的空白处右键点击,在弹出的界面中选择“电阻箱”,并将电阻箱阻值调至2597Ω。
接着在程序的空白处,右键选择打开“仪器正面”和“仪器背面”两界面,调节“仪器背面”的R3,使得“仪器正面”的表头指示在“0”处。
实验报告:半导体温度计的设计与制作张贺PB07210001一、实验题目:半导体温度计的设计与制作二、实验目的:要求测试温度在20-70 C的范围内,选用合适的热敏电阻和非平衡电桥线路来设计一台半导体温度计。
要求作为温度计用的微安表的全部量程均能有效的利用,即当温度为20 r时,微安表指示为零;而温度为70 r时,微安表指示为满刻度。
要求长时间的测量时,微安表的读数应稳定不变。
三、实验原理:1.半导体温度计就是利用半导体的电阻值随温度变化而发生急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
这种测量方法称为非电量的电测法,它可以将各种非电量转变成电学量,然后用电学仪器来进行测量。
2.半导体温度计测温电路原理:I G 0 时,电电(1)R2 R T当电桥某一臂改变时平衡将受到破坏,G中有读数,可据此求出R T,即G的读数大小直接反映热敏电阻阻值,从而反映温度。
取 R i R2。
I G 0时,要求R T处于下限,即R a R TI O由于 I T I G,V CD 1丁R3 R T。
由于R i R 2, R 3 ,整理后有,R TI 为工作时测量温度量程的下限; R T 2为上限,此时I T 达到最大。
四、实验仪器:热敏电阻、待焊接的电路板、微安表、电阻器、电烙铁、电阻箱、电池、多 挡开关、导线、多用表、恒温水浴等。
五、实验步骤与数据处理:1. 在实验前,在坐标纸上绘出热敏电阻的电阻一温度曲线T( C) 15.0 20.0 25.030.035.0 40.0 45.0 R() 3175 2597 212811077T( C) 50.055.060.065.0 70.0 75.0R()9488426R1R2R3RT 2R GR I R 2 R i R 2R 3 R T 2 R 3 R T 2VCD(2)2V CD 1可2RT2RT1 RT 22 R GRT1 RT2RT1 RT2(3)R()T( C)选取V CD1V, 已知R G3999 ,I G 50 A。
半导体温度计的设计实验步骤引言:半导体温度计是一种通过半导体材料的电阻随温度变化而变化来测量温度的仪器。
它具有响应速度快、精确度高、体积小等优点,广泛应用于工业控制、医疗设备、消费电子等领域。
本文将介绍半导体温度计的设计实验步骤。
一、准备实验材料和仪器1. 半导体材料:选择一种适合的半导体材料作为温度敏感元件,常见的有硅、锗等。
2. 电阻计:用于测量半导体材料的电阻值。
3. 温度控制器:用于控制实验室的温度,保证实验环境的稳定性。
4. 多用电表:用于测量电阻计和温度控制器的输出电压。
二、搭建实验电路1. 将半导体材料连接到电路中,一般采用电桥电路或电压分压电路。
2. 使用导线将电阻计和温度控制器与电路连接,确保电路的通电和测量正常。
三、调试实验电路1. 将温度控制器设定为一个固定的温度值,例如25摄氏度。
2. 使用多用电表分别测量半导体材料的电阻值、电阻计的输出电压和温度控制器的输出电压,并记录下来。
3. 将温度控制器的设定温度逐步增加,如30摄氏度、35摄氏度等,重复步骤2。
四、绘制温度与电阻的关系曲线1. 将实验数据整理成表格或图表,其中横轴表示温度,纵轴表示电阻值。
2. 使用拟合曲线的方法,将实验数据拟合成一条曲线。
常用的拟合方法有线性拟合、多项式拟合等。
五、验证实验结果1. 将温度控制器设定为一个新的温度值,如40摄氏度。
2. 使用实验得到的拟合曲线,计算出对应的电阻值。
3. 使用电阻计测量半导体材料的实际电阻值,并与计算结果进行比较。
六、分析实验结果1. 比较实际测量值和计算值的差异,并分析可能的原因。
2. 讨论实验结果的可靠性和精确度,提出改进的建议。
七、总结半导体温度计的设计实验步骤主要包括准备实验材料和仪器、搭建实验电路、调试实验电路、绘制温度与电阻的关系曲线、验证实验结果和分析实验结果。
通过实验得到的温度与电阻的关系曲线可以用于后续的温度测量和控制工作。
半导体温度计作为一种常用的温度测量仪器,在工业和科研领域具有广泛的应用前景。
补充讲义仿真实验-温度计的设计仅供学习与交流,如有侵权请联系网站删除 谢谢2实验38-b 仿真实验-温度计的设计1 实验目的1.了解半导体温度计的基本原理,并设计制作半导体温度计;2.了解非平衡电桥的工作原理及其在非电量电测法中的应用。
2 实验仪器微型计算机、大学物理仿真实验软件。
3 实验原理半导体温度计是利用半导体电阻随温度的变化而发生急剧变化的特性而制作的。
因而测量半导体温度计的阻值就可以确定其温度。
这种测量方法通常叫做非电量电测法。
半导体热敏电阻的电阻值与温度的关系为:T B Ae R /-=,其中,A 、B 为与半导体热敏电阻有关的常数,T 为绝对温度。
电阻-温度的特性曲线为:由于采用非电量的电测法测量半导体材料的阻值,因此还需要了解半导体热敏电阻的伏安特性,其伏安特性曲线如右图所示:在刚开始的一段特性曲线a 是线性的,这是因为电流小时,在半导体材料上消耗的功率不足以显著的改变热敏电阻的温度,因而,这一段符合欧姆定律,当电流增加到使热敏电阻的阻值高于周围介质的温度时,其阻值就下降,于是伏安曲线是bc 段。
要使热敏电阻用于温度测量,必须要求其阻值只随外界温度的改变而改变。
与通过它的电流无关。
因此其工作区域必须在伏安曲线的直线部分。
实验电路如图所示:图中G 为微安表、R T为热敏电阻,当电桥平衡时,微安表指示为0。
此时满足TR R R R 321=。
若取R1=R2,则R3的数值即为R T 的数值。
平衡后的电桥,若其中某一臂的电阻发生变化(如R T ) , 则平衡将受到破坏,微安表中将有电流通过。
若电桥电压、微安表内阻Rg 、电桥各臂电阻R1、R2、R3固定,则可以根据微安表的读数Ig 的大小计算出R T ,再根仅供学习与交流,如有侵权请联系网站删除 谢谢3据热敏电阻的电阻-温度特性曲线,测量其对应的温度值,实现对温度的测量。
因此,为使半导体热敏电阻阻值标志温度值,实验中首先要选定电路中E 、R1、R2、R3各量,选定方法如下:根据所设计半导体温度计的测温范围T1~T2,由热敏电阻-温度特性曲线,查出对应的热敏电阻阻值的下限值R T1和上限值R T2,当热敏电阻阻值为R T1时,使电桥处于平衡状态就是热敏电阻处在测温量程下限温度的电阻值。
13半导体温度计的设计与制作实验报告:半导体温度计的设计与制作张贺 PB07210001一、实验题目:半导体温度计的设计与制作二、实验目的:要求测试温度在20-70℃的范围内,选用合适的热敏电阻和非平衡电桥线路来设计一台半导体温度计。
要求作为温度计用的微安表的全部量程均能有效的利用,即当温度为20℃时,微安表指示为零;而温度为70℃时,微安表指示为满刻度。
要求长时间的测量时,微安表的读数应稳定不变。
三、实验原理:1.半导体温度计就是利用半导体的电阻值随温度变化而发生急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
这种测量方法称为非电量的电测法,它可以将各种非电量转变成电学量,然后用电学仪器来进行测量。
2.半导体温度计测温电路原理:0=G I 时,TR R R R 321= (1)当电桥某一臂改变时平衡将受到破坏,G 中有读数,可据此求出T R ,即G 的读数大小直接反映热敏电阻阻值,从而反映温度。
取21R R =。
0=G I 时,要求T R 处于下限,即13T R R =。
由于G T I I >>,()T T CD R R I V +=3。
CD T T G T T G V R R R R R R R R R R R R R R R I 23232121232212+++++-+=(2)由于21R R =,13T R R =,整理后有,⎪⎪⎭⎫ ⎝⎛++-⎪⎪⎭⎫ ⎝⎛+-=212121212212T T T T G T T T GCD R R R R R R R R I V R(3)1T R 为工作时测量温度量程的下限;2T R 为上限,此时T I 达到最大。
四、实验仪器:热敏电阻、待焊接的电路板、微安表、电阻器、电烙铁、电阻箱、电池、多挡开关、导线、多用表、恒温水浴等。
五、实验步骤与数据处理:1.在实验前,在坐标纸上绘出热敏电阻的电阻-温度曲线。
实验题目:半导体温度计的设计和制作实验目的:学用惠斯通电桥制作半导体温度计并用其测量温度。
实验原理:电路原理图及所用公式:实验步骤:1.根据(2)式算得R 1=R 2=4785.86Ω2.断开R 1,R 2连接,调整R 1,R 2。
3.根据地板图焊接电路。
4.用电阻箱代替热敏电阻,调节R 3,使R T 为20℃对应阻值时电表示数为0;调R 使使R T 为70℃对应阻值时电表满偏。
5.开关置2档,调R 4,使电表满偏。
6.从R -T 曲线(在下页)中读20℃~70℃每隔2.5℃对应阻值,读出R T 为上述阻值时微安表示数T 。
把表盘可读改为温度刻度并画出I-T 曲线。
6.用实际热敏电阻代替电阻箱并测出55.5℃水浴和34.5℃水浴对应电流值和温度。
(1)CD T T G T T G V R R R R R R R R R R R R R R R I 23232121232212+++++-+= (2))(2)21(221212121T T T T G T T T G CD R R R R R R R R I V R ++-+-=图表1:R-T曲线图表2:I-T曲线及其线性拟合线性回归方程:T=17.31755+0.97318I实验结果:在55.5℃水浴下测得电流值为40.3μA与从图表2中读到对应温度电流值:39.2μA相对误差为2.73%在35.4℃水浴下测得电流值为20.0μA与从图表2中读到对应温度电流值:19.5μA相对误差为2.5%误差分析:1. R1,R2, R3, R4难以调校准确,误差较大,有的电位器阻值自己会变,且在焊接和其它操作过程中阻值可能有变化。
2.电池电力可能已经不足。
3.测量温度可能在热敏电阻的非线性区间。
4.实验室温度等其它因素可能对元件性能产生影响。
思考题:为什么在测R1,R2时,需将开关置为1档,拔下E处接线,断开微安表?答:如果没有如上操作,将会有其它元件接入电路。
半导体温度计的设计和制备方法随着科技的进步,半导体温度计在温度测量及控制领域扮演着重要的角色。
它们被广泛应用于工业生产、研究实验和家用设备中。
本文将介绍半导体温度计的设计和制备方法,并讨论其工作原理和性能特点。
一、半导体温度计的工作原理半导体温度计基于材料的电阻特性随温度的变化而变化的原理。
常见的半导体材料有硅和砷化镓。
利用半导体材料的温度特性,可以通过测量其电阻来推断温度的变化。
半导体温度计通常采用负温度系数(NTC)电阻或正温度系数(PTC)电阻。
NTC温度计的电阻值随温度上升而下降,而PTC温度计的电阻值则相反。
根据具体应用需求,可以选择适合的电阻类型。
二、半导体温度计的设计方法1.选择适合的半导体材料:根据需要测量的温度范围和精度,选择合适的半导体材料。
硅是常用的材料,适用于较低温度范围;而砷化镓则适用于较高温度范围。
2.确定电阻类型:根据应用需求,选择合适的电阻类型,即NTC或PTC。
如果需要更高的精度和稳定性,可以考虑使用PTC温度计。
3.设计电路:根据选择的材料和类型,设计合适的电路。
在电路设计中,考虑电源电压、电流限制、电阻-温度曲线等因素,以确保温度计的准确性和可靠性。
4.温度校准:在制备完成后,进行温度校准以验证温度计的准确性。
可以使用标准温度源或比较型温度计进行校准。
校准后,进行相应的计算和调整,以修正任何测量误差。
三、半导体温度计的制备方法1.材料准备:准备所需的半导体材料和电路元件。
确保材料质量良好并符合应用需求。
2.制备电路:根据设计的电路方案,进行电路的制备。
可以采用传统的束流蚀刻或光刻工艺,将电路图案形成在材料上。
此外,还可以采用薄膜沉积工艺,将电阻材料沉积在半导体材料上。
3.封装保护:在制备完成后,对半导体温度计进行封装保护,以确保其工作稳定性和可靠性。
常见的封装材料有环氧树脂和硅胶。
封装材料的选择应考虑温度范围、压力要求和耐化学腐蚀性能。
4.温度校准和测试:在制备完成后,进行温度校准和测试以验证温度计的性能。
开放性实验实验报告半导体温度计的设计学院:浙江农林大学天目学院专业:工程技术系班级:汽车服务081班姓名:吴仲虎学号: 200808310225摘要:本文讨论了通过测量半导体热敏电阻的实验,测得实验数据用Origin 软件分析相关数据画出I-T 图像,了解热敏电阻的电阻——温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧的问题,同时完成半导体温度计的设计。
关键词:origin 软件 热敏电阻 惠斯通电桥 温度电流前言 热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。
与一般常用的金属电阻相比,它有大得多的电阻温度系数值。
热敏电阻作为温度传感器具有用料省、成本低、体积小等的优点,它可以简便灵敏地测量微小温度的变化,在很多科学研究领域都有广泛的应用。
本实验的目的是:了解热敏电阻的电阻----温度特性及测温原理,学习惠斯通电桥的原理及使用方法,学习坐标变换、曲线改直的技巧。
一 实验仪器:二 实验原理热敏电阻的电阻值与温度的关系为TBAeR =其中,A 、B 是与半导体材料有关的常数;T 为绝对温度。
根据定义,电阻温度系数为dT dR R t 1=α其中,t R 是在温度为t 时的电阻值。
半导体材料做成的热敏电阻的基本特性是它的温度特性, 这种特性与半导体材料的导电机制密切相关。
温度越高, 载流子的数目越多, 导电能力越强, 电阻率也就越小。
由于半导体中载流子数目随温度升高而按指数规律迅速增加, 因此随着温度的升高, 热敏电阻的阻值将按指数规律迅速减小。
半导体温度计是利用半导体的电阻值随温度急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
这种测量方法称为非电量的电测法,为了实现这种方法,采用电学仪器来测量热敏电阻的阻值,还需要了解热敏电阻的伏安特性。
半导体温度计测温电路的原理图如右:图中G 是微安表, RT 为热敏电阻,当电桥平衡时,表的指示必为零,此时应满足条件:r321R R R R若取R 1 = R 2,则R 3的数值即为R T 的数值。
3.5.3 半导体温度计的设计与制作(本文内容选自高等教育出版社《大学物理实验》)虽然热敏电阻对温度非常灵敏,但通常每个元件可适用的范围都不太宽,所以应根据所要测量的温度的上、下限和温度范围的高低选用具有合适阻值和B 值的元件以及相应的测温电路。
元件的B 值越高,其电阻温度系数越大,可测量的范围越窄。
表3.5.3-1给出了不同热敏电阻的适用范围和对应的B 值。
表3.5.3-1 不同热敏电阻的适用范围和对应的B 值由上表可知,测量低温采用B 小的元件,测量高温采用B 大的元件。
通常选用电阻值Ω=6210~10R ,因为电阻值太小灵敏度低,电阻值太大则会引起电绝缘和测量线路匹配困难。
在各种热敏电阻的测温电路中,以分压电路和桥式电路的应用最广。
本实验要求测试温度在20~70 ℃的范围内,选用合适的热敏电阻和非平衡电桥线路(或选用你认为更好的测温电路)来设计一半导体温度计。
实验原理半导体温度计就是利用半导体的电阻值随温度急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
这种测量方法为非电量的电测法,它可以将各种非电量,如长度、位移、应力、应变、温度、光强等转变成电学量,如电阻、电压、电流、电感和电容等,然后用电学仪器来进行测量。
由于金属氧化物半导体的电阻值对温度的反应很灵敏(参见实验3.5.2),因此可以作为温敏传感器。
为实现非电量的电测法,采用电学仪器来测量热敏电阻的阻值,还需要了解热敏电阻的伏安特性。
由图3.5.3-1可知,在V-I 曲线的起始部分,曲线接近线性,这是因为电流小时在热敏电阻上消耗的功率不足以显著地改变热敏电阻的温度,因而符合欧姆定律。
此时,热敏电阻的阻值主要与外界温度有关,电流的影响可以忽略不计。
半导体温度计测温电路的原理图如图3.5.3-2所示(仅供参考),图中G是微安计,R T为热敏电阻,当电桥平衡时,表的指示必为零,此时应满足条件TR R R R 321=,若取R 1=R 2,则R 3的数值即为R T 的数值。
实验题目:半导体温度计的设计与制作实验目的:进一步理解热敏电阻的伏安特性和惠斯通电桥测电阻的原理,学习非电学量的电测法,了解实验中的替代原理的应用,同时提高组装、焊接电路的操作能力。
实验器材:热敏电阻、待焊接的电路板、微安表、电阻器、电烙铁、电阻箱、电池、导线、万用表、恒温水浴实验原理:半导体温度计就是利用半导体的电阻值随温度变化而发生急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
一般使用金属氧化物半导体作温度传感器。
热敏电阻的伏安特性曲线和测温电路原理图如下:图一:热敏电阻的伏安特性曲线和测温电路原理图当取伏安特性曲线的a 段时,近似认为符合欧姆定律。
当I G 使G 满偏时,近似认为V CD =I T(R 3+R T )。
由基尔霍夫方程组解得: )(2)21(221212121T T T T G T T T G CD R R RR R R R R I V R ++-+-=由上式可以确定R 1(=R 2),其中R 3的确定是在下限温度电阻R T1下,使电桥平衡,从而有R 3=R T1、R 2=R 1。
由下表可以知道,R 3=R T1=2277Ω,R T2=462Ω。
作出R-T 曲线并计算得:R 1=R 2=4545Ω。
T (℃) 15.0 20.0 25.0 30.0 35.0 40.0 45.0 R (Ω) 3143 2576 2140 1822 1508 1285 1082 T (℃) 50.0 55.0 60.0 65.0 70.0 75.0 R G =3913ΩI G =50uA U CD =1VR (Ω)924782670577496433表一:热敏电阻的R-T 关系和基本实验条件实验内容:(1)在坐标纸上绘出热敏电阻的电阻-温度曲线,确定所设计的半导体温度计的下限温度(20℃)所对应的电阻值R T1和上限温度(70℃)所对应的电阻值R T2。
再由热敏电阻的伏安特性曲线确定最大工作电流I T。
第3章半导体温度控制仪硬件设计3.1系统的性能要求及特点3.1.1功能要求半导体温度控制仪应能达到以下功能要求:(1)可以人为方便地设定所需控制的温度值,温控仪器能自动将电炉加热至此设定值并能保持,直至重新设定为另一温度值;(2)能够单独实现测量电炉温度的作用;(3)整套仪器可靠性好,设计不易出故障;(4)具有自动加热保护功能的安全性要求。
如果实际测得的温度值超过了系统要求的温度范围,单片机就会发出指令,从而进行超温或者降温保护;(5)能够实现系统软件的在线升级,无需对温控仪拆卸即可完成软件的升级及在线调试;(6)尽量采用典型、通用的器件,一旦损坏,易于在市场上买到同样零部件进行替换。
3.1.2系统特点基于上述功能要求及智能仪表应具有的体积小、成本低、功能强、抗干扰并尽可能达到更高精度的要求。
本系统在硬件设计方面具有如下特点:本温度控制仪的面板设计遵循简洁实用的原则,为便于使用人员的操作,系统采用了非固定键值意义的状态键盘,一键多用。
系统软件可根据当前所处状态,自动确定键值的具体含义。
以往单片机系统在软件升级及故障调试时,必须将CPU芯片从系统板上拆下来进行软件固化。
针对这种弊端,系统硬件设计时预留有程序下载接口,可以在不拆下CPU芯片的情况下直接进行软件升级和在系统调试,以方便日后的软件维护和功能调试。
整个系统遵循了冗余原则及以软代硬的原则,并尽可能选用典型、常用、易于替换的芯片和电路,为系统的开放性、标准化和模块化打下良好基础。
系统扩展和配置在满足功能要求的基础上留有适当裕量,以利于扩充和修改[17][18]。
3.2系统的硬件总体结构半导体温度控制仪的硬件电路主要由单片机系统、温度采样电路、温度设定电路、比例积分电路、TEC驱动电路、报警电路、键盘显示电路以及接口电路组成。
温度采样电路包括温度传感器、信号放大电路以及A/D转换电路。
温度传感器采集来的信号经信号放大电路放大后,经过A/D转换后送单片机作处理。
半导体温度计的设计和制作实验(非平衡电桥)在温度不太低或不太高(如从-20o C到几百度)的情况下,通常可以用水银温度计来测一定的温度。
由于生产和科学实验的发展,需要精密和快速的温度测量,因而就需要灵敏度较高的温度计。
现在已有各种用途的温度计,半导体温度计就是其中的一种。
本实验的半导体温度计利用热敏电阻为传感器,利用非平衡电桥实现由电学量测量一些变化的非电量,这种思想现在应用范围扩展到很多领域,如长度、位移、应力、应变、温度、光强等转变成电学量,如电阻、电压、电流、电感和电容等,然后用电学仪器来进行测量。
一、实验目的1.理解非平衡电桥的工作原理及其在非电量的电测法中的应用。
2.了解半导体温度计的基本原理并设计制作一台半导体温度计二、实验原理1.热敏电阻伏安特性曲线为测量热敏电阻的阻值,需了解热敏电阻的伏安特性。
由图1可知,在V-I 曲线的起始部分,因电流很太小,温度变化微小,曲线接近线性。
此时其阻值主要与外界温度有关。
图1 热敏电阻伏安特性曲线半导体温度计是利用热敏电阻的阻值随温度变化急剧的特性制作的,通过测量热敏电阻的阻值来确定温度的仪器。
应根据待测温度区间和热敏电阻的阻值选用合适电学元件和测温电路。
2.半导体温度计测温电路的原理非平衡电桥的工作原理图如下:图2 半导体温度计测温电路原理图图中G 是微安表, R T 为热敏电阻,当电桥平衡时,表的指示必为零,此时应满足条件:TR R R R 321= (1) 若取R 1 = R 2,则R 3的数值即为R T 的数值。
平衡后的电桥若其中某一臂的电阻又发生改变,则平衡将受到破坏,微安表中将有电流流过,此为非平衡电桥。
由基尔霍夫方程组求出CD T T G T T G V R R R R R R R R R R R R R R R I 23232121232212+++++-+= (2)由此可见微安表中的电流大小直接反映了热敏电阻的阻值的大小程度。
由于热敏电阻的大小与环境温度是一一对应关系,因此可以利用这种“非平衡电桥”的电路原理来实现对温度的测量。
实验报告:半导体温度计的设计与制作
贺PB07210001
一、实验题目:
半导体温度计的设计与制作
二、实验目的:
要求测试温度在20-70°C的围,选用合适的热敏电阻和非平衡电桥线路来设计一台半导体温度计。
要求作为温度计用的微安表的全部量程均能有效的利用,即当温度为2(TC时,微安表指示为零;而温度为709时,微安表指示为满刻度。
要求长时间的测量时,微安表的读数应稳定不变。
三、实验原理:
1•半导体温度计就是利用半导体的电阻值随温度变化而发生急剧变化的特性而制作的,以半导体热敏电阻为传感器,通过测量其电阻值来确定温度的仪器。
这种测量方法称为非电量的电测法,它可以将各种非电量转变成电学量,然后用电学仪器来进行测量。
2•半导体温度计测温电路原理:
I G =0 时,
(1)
当电桥某一臂改变时平衡将受到破坏,G中有读数,可据此求出心,即G的读数大小直接反映热敏电阻阻值,从而反映温度。
取R严R-
/G=0时,要求心处于下限,即R5 = R n o
由于I T» I G , V CD = I T( R3+ R T)0
由于弘=R- R 严整理后有,
& ―险—
【G 12 R Tl + R T2 >
R 八为工作时测量温度量程的下限;为上限,此时/『达到最大。
四、实验仪器:
热敏电阻、待焊接的电路板、微安表、电阻器、电烙铁、电阻箱、电池、多 挡开关.导线、多用表、恒温水浴等。
五. 实验步骤与数据处理:
r (°c ) 15.0 20.0 25.0 30.0 35.0 40.0 45.0 R(G) 3175 2597 2135 1826 1512 1281
1077
r (°c ) 50.0 55.0 60.0 65.0 70.0 75.0
R(G)
918
776
662
568
488
426
R 、
R T 2
2 R'R T 2 _ & + /?2 尺
3 + G _ 丽 R Q + ------ =
— +
R 、+ Z?2 R, + VCD
(2)
(3)
得知 R 门(209) = 25970, /?72(70°C) = 488Q O 选取v c/f = IV ,已知心=39990, I G = 50/^4 0 代入(3)计算得,
=4853.00Q
故尺=尺2 =4853.000, R. = R T I = 2597Q 0 2•根据底版配置图,焊接实际的底版。
3•开关拨到1挡,拔下E 处接线,断开微安表。
用万用表测乩、R?的阻值,调节 两电阻,使万用表示数略小于计算得出的结果(4853.000)。
4 .将电阻箱接入接线柱A 和B,用它代替热敏电阻,将开关拨到3挡,令电阻箱 的阻值为7?n =2597 0,调节电位器心,使电表指示为0。
令电阻箱的阻值为 ©2=488。
,调节电位器R,使微安表满量程。
5.将开关拨到2档,调节电位黠乩,使微安表满量程,这时/?4 = R T2 o 6•将开关拨到3档,从上面的热敏电阻的电阻一温度特性曲线上读出温度
20-709。
每隔2.5*读一个电阻值。
电阻箱逐次选择前面所取的电阻值,读出微 安表的电流读数Io &G)
2597 2350 2135 1945 1826 1661 1512 r (°c )
20.0 22.5 25.0 27.5 30.0 32.5 35.0 /(网) 0 & 7 12. 1 15.0 16.8 20. 1 23.3 «g )
1362 1281 1169 1077 975 918 825 r (°c ) 37.5 40.0 42.5 45.0 47.5 50.0 52.5 /(M)
26. 1
2& 1
31.4
33.9
36.0
37.8
40. 1
f 1
R
T2
-2
R(;+ R"R T 2 ]
(2 R Tl
+ R T2
)
l
R 门+心2
2xlV 1 ----- 7— x — 50xl0"A (2 488Q
25970 + 4880; -2x 39990 +
25970x4880 1 25970 + 4880;
R 严
作岀对应的I—T曲线:
S)
7•用实际热敏电阻代替电阻箱,整个部分就是经过定标的半导体温度计。
用此温
度计测量两个恒温状态的温度(水浴31.91和54. 5^0 o读岀半导体温度计和恒温水浴自身的温度,比较其结果。
误差计算:
△7;31.9°C-31.4°C (心——
一 = --------------- xlOO% = 1.57%
T}31.9°C
△7;54.5°C-54.0°C ■心“八心宀
——-= -------------------- x 100 % = 0.92%
T254.5°C
六、注意事项:
(1)用万用表检查凡和&时,应使其阻值略小于4853. 00Q o
(2)用电烙铁焊接时,应注意不要使其接触到身体以及接线,以免发生意外。
(3)注意正确使用电烙铁,学会焊接,防止重焊,虛焊,漏焊,短路。
焊接时, S|放在1挡,电流表“ + ”端与E处要最后连接,以免损坏电表。
(4)调节乩、&、心、心、R后,注意不要再碰这些电阻器,以防止改变其电阻, 影响实验结果。
(5)所要标定的温度点,应从热敏电阻的电阻一温度曲线上读取。
(6)校准温度时,必须找到设计时所用的那个热敏电阻,实验完毕后,焊下所
有元件,仪器归位。
七、误差分析:
(1)实验仪器的系统误差,以及在实验中周围的环境所导致的实验仪器性能随
机涨落所造成的误差。
(2)读取电表示数时,由于估读产生的误差。
(3)从热敏电阻的电阻一温度曲线上读取温度点时,由于估读而导致的误差。
八、思考题:
为什么在测&和&时,需将开关置于1档,拔下E处接线,断开微安表?
答:
开关置于1档,在S2处断开电路是为了防止电路中的电池的电压影响万用表的示数,在S处断开电路是为了防止测得的出的阻值为R】与艮+心+乩的并联的总的阻值,忆也是如此。
如果不拔下E处接线,断开微安表,如图一所示,所测得的乩的阻值实际上为乩与矗+乩的并联的总的阻值,而若拔下E处接线,如图二所示,测得的K的阻值即为出实际的阻值,R2也是如此。
图一图二。