大规模细胞培养与细胞工厂
- 格式:pdf
- 大小:727.23 KB
- 文档页数:26
阅读使人充实,会谈使人敏捷,写作使人精确。
——培根《园艺植物育种学》复习大纲绪论一、内容提要:选育园艺植物新品种是发展园艺生产的关键途径之一。
各种各样的栽培园艺植物种类及其品种类型都是从野生植物进化而来。
利用园艺植物的自然变异和人工创造变异并进行人工选择的进化就是优良性、适应性、稳定性和整齐性,品种具有特异性等特性。
良种是在适应的地区,采用优良的栽培技术,能够生产出高产、优质,并能适时供应产品的品种。
它有提高单位面积产量、改进产品品质、提高抗病虫害能力以减少农药污染、增强适应性和抗逆性以节约能源、延长产品的供应和利用时期,适应集约化管理、节约劳力等多方面的作用。
园艺植物育种学是研究选育与繁殖园艺植物优良品种的原理和方法的科学,是以遗传学、进化论为主要基础涉及多门学科的综合性应用科学。
它研究的任务是根据遗传变异的规律,合理选择利用种质资源,通过发现和创造变异来选择优良品种,以及提高种性、防止混杂退化、加速良种繁殖的原理和方法。
园艺植物育种有着悠久的历史。
19世纪才有专门的育种机构,20世纪育种理论、方法进步很快,新品种选育成果巨大。
二、思考题:1、了解品种的概念及其属性;2、良种在园艺植物生产中的作用?3、自然进化与人工进化的区别?4、园艺植物育种学的任务和内容?第一章育种对象与目标一、内容提要园艺植物多为周期长的多年生植物,育种年限长,育种目标涉及产量、品质、熟期及抗性等一系列目标性状。
因此,因地制宜选择育种对象,明确育种目标,制订育种方案,是育种工作成败的关键。
二、思考题:1、当前园艺植物育种的总目标是什么?2、园艺产品的品质按产品用途和利用方式大致可分为哪几种?3、制订育种目标的主要根据和原则是什么?第二章园艺植物的繁殖习性、品种类别和育种方法园艺植物繁殖方式不同,其遗传特征就不一样,因而相应采取的育种程序和方法也不同。
此外,栽培植物品种根据其群体遗传组成,可分为自交系品种、群体品种、杂交种品种和无性系品种。
大规模细胞培养技术简介大规模培养技术应用简介通过大规模体外培养技术培养哺乳类动物细胞是生产生物制品的有效方法。
上世纪60-70 年代,就已创立了可用于大规模培养动物细胞的微载体培养系统和中空纤维细胞培养技术。
近十数年来,由于人类对生长激素、干扰素、单克隆抗体、疫苗及白细胞介素等生物制品的需求猛增,以传统的生物化学技术从动物组织获取生物制品已远远不能满足这一需求。
随着细胞培养的原理与方法日臻完善,动物细胞大规模培养技术趋于成熟。
所谓动物细胞大规模培养技术( large-scale culture technology )是指在人工条件下(设定ph、温度、溶氧等) ,在细胞培养工厂 (Cosmo Cat.No. 1101-400 or 1101-800 )或生物反应器( bioreactor )中高密度大量培养动物细胞用于生产生物制品的技术。
目前可大规模培养的动物细胞有鸡胚、猪肾、猴肾、地鼠肾等多种原代细胞及人二倍体细胞、cho(中华仓鼠卵巢) 细胞、BHK-21( 仓鼠肾细胞)、Vero 细胞(非洲绿猴肾传代细胞,是贴壁依赖的成纤维细胞)等,并已成功生产了包括狂犬病疫苗、口蹄疫疫苗、甲型肝炎疫苗、乙型肝炎疫苗、红细胞生成素、单克隆抗体等产品。
在过去几十年来,该技术经有了很大发展,从使用转瓶(rollerbottle) 、CellCube 等贴壁细胞培养,发展为一次性细胞培养工厂( Made by Cosmo )或生物反应器 (Bioreactor )进行大规模细胞培养。
第一代细胞培养技术核心问题是难以产业化或者说是规模化生产:一是在工艺生产时不能大规模制备产品;二是非批量生产容易导致产品质量的不均一性;三是难以对同批生产进行生产和质量控制。
随着生物技术的发展,迫切需要大规模的细胞培养,特别是培养表达特异性蛋白的哺乳动物细胞,以便获得大量有用的细胞表达产物。
采用玻璃瓶静置或旋转瓶的培养方法,已不能满足所需细胞数量及其分泌产物。
第十二动物细胞的大规模培养技术大规模培养哺乳类细胞是生产许多临床和医学上重要生物制品的一种有效的方法,这些生物制品包括疫苗、干扰素、激素、生长因子和单克隆抗体等,推动了生物学和医学的发展,给医学卫生事业带来了巨大的社会效益和经济效益。
基因工程技术、细胞工程技术,以及新的细胞大规模繁殖培养系统的发展,是构成上述成就的主要原因。
然而,体外大规模繁殖真核细胞要比原核细胞困难得多,如细菌、酵母菌和霉菌的细胞壁厚,能耐受搅拌,不易破碎,营养要求低,生长条件易于控制,增殖周期短,产品的产量也高,目前国外已用20万L发酵罐进行生产。
而真核细胞膜薄而娇嫩、易碎,对营养要求高,大多数细胞必须贴壁附着生长,更重要的是真核细胞具有原核细胞所没有的功能,能对其分泌产物进行修饰,例如二硫键的形成、糖甲酰化等,使产物具有完整的生物学功能,另外原核细胞经基因工程技术所合成的生物制品,不是分泌型的而是同细胞相结合的,需要破碎细胞,释出产物,再经浓缩、纯化;因后加工过程复杂,而使产品的得率受到损失。
利用真核细胞,可以不断合成和分泌,不断收获,后加工过程也相对简单,而且细胞往往可以重复利用。
因此,利用培养的动物细胞生产的生物制品,仍有很高的市场价值。
实验室常规培养动物细胞的方法是用人工合成培养液加上一定量的小牛血清,将细胞放在不同的容器中进行培养,如微孔板、培养皿以及各种培养瓶等。
一船培养容器的体积很小,最大培养体积为1—2L。
用这种方法培养的细胞所分泌的产物是有限的,无法满足实验研究和应用研究的需要。
利用小鼠腹水法繁殖杂交瘤细胞生产各种单克隆抗体;虽然能获得较高浓度的单克隆抗体,一般每只小鼠腹水单克隆抗体浓度在10mg/m1左右,但不易控制动物的批间差异和非特异的小鼠免疫球蛋白,以及潜在感染因子的污染。
单克隆抗体纯度差,分离纯化难度大,成本不低,又不宜用于人体内的诊断和治疗。
因此,不可能作为大规模生产单克隆抗体的主要方法。
应用细胞工程技术,建立大规模细胞培养系统生产各种生物活性物质,是一种比较经济可靠的技术。
一、名词解释细胞工程:是应用细胞生物学和分子生物学和分子生物学的理论和方法,按照人们的设计蓝图,在细胞水平上的遗传操作及进行大规模的细胞和组织培养。
通过细胞工程可以生产有用的生物产品或培养有价值的植株,并可以产生新的物种或品系。
外植体:是指用于离体培养的活的植物组织、器官等材料。
植物组织培养:(广义)又叫离体培养,指从植物体分离出符合需要的组织.器官或细胞,原生质体等,通过无菌操作,在人工控制条件下进行培养以获得再生的完整植株或生产具有经济价值的其他产品的技术。
(狭义)组培指用植物各部分组织,如形成层.薄壁组织.叶肉组织.胚乳等进行培养获得再生植株,也指在培养过程中从各器官上产生愈伤组织的培养,愈伤组织再经过再分化形成再生植物。
愈伤组织:在离体培养过程中形成的具有分生能力的一团不规则细胞,多在外植体切面上产生。
胚状体〔embroid〕:—对应于胚〔embryo〕,在离体培养过程中产生一种形似胚(具有明显的根端和芽端),功能与胚相同的结构。
离体无性繁殖:是在人工控制的无菌条件下,使植物在人工培养基上繁殖的技术。
跟常规的繁殖方法相比它是一种微型操作过程,因此,有时就直接称之为微繁继代培养:更换新鲜培养基来繁殖同种类型的材料(愈伤组织.芽等)。
细胞分化:指导致细胞形成不同结构,引起功能改变或潜在发育方式改变的过程。
细胞脱分化:已分化好的细胞在人工诱导条件下,恢复分生能力,回复到分化组织状态的过程。
细胞再分化:脱分化后具有分生能力的细胞再经过与原来相同的分化过程,重新形成各类组织和器官的过程。
人工种子:亦称体细胞种子。
早期的人工种子概念是:体细胞胚经过人工种皮包被后而形成的体细胞种子。
现在指任何一种经人工种皮包被或裸露的,具有形成完整植株能力的繁殖体均可称之为人工种子。
植物细胞全能性:指每个植物细胞都具有形成完整植株的能力,因为每个细胞都具有全套的遗传基因,无论是性细胞还是体细胞在特定条件下可以进行表达。
大规模细胞培养技术的操作方式规模细胞培养的操作方式可分为:分批式、流加式、半连续式、连续式和灌注式五种。
一、分批式培养(batch culture)分批式培养(batch culture)是细胞规模培养发展进程中较早期采用的方式,也是其它操作方式的基础。
该方式采用机械搅拌式生物反应器,将细胞扩大培养后,一次性转入生物反应器内进行培养,在培养过程中其体积不变,不添加其它成分,待细胞增长和产物形成积累到适当的时间,一次性收获细胞、产物、培养基的操作方式。
该方式的特点:操作简单。
培养周期短,染菌和细胞突变的风险小。
反应器系统属于封闭式,培养过程中与外部环境没有物料交换,除了控制温度、pH值和通气外,不进行其他任何控制,因此操作简单,容易掌握;直观反映细胞生长代谢的过程。
因培养期间细胞生长代谢是在一个相对固定的营养环境,不添加任何营养成分,因此可直观的反映细胞生长代谢的过程,是动物细胞工艺基础条件或"小试"研究常用的手段;可直接放大。
由于培养过程工艺简单,对设备和控制的要求较低,设备的通用性强,反应器参数的放大原理和过程控制,比较其它培养系统较易理解和掌握,在工业化生产中分批式培养操作是传统的、常用的方法,其工业反应器(Genetech)规模可达12000L。
分批培养过程中,细胞的生长分为五个阶段:延滞期、对数生长期、减速期、平稳期和衰退期。
分批培养的周期时间多在3-5天,细胞生长动力学表现为细胞先经历对数生长期(48-72h)细胞密度达到最高值后,由于营养物质耗劫或代谢毒副产物的累积细胞生长进入衰退期进而死亡,表现出典型的生长周期。
收获产物通常是在细胞快要死亡前或已经死亡后进行。
二、流加式培养(feeding culture)1.流加式培养是在批式培养的基础上,采用机械搅拌式生物反应器系统,悬浮培养细胞或以悬浮微载体培养贴壁细胞,细胞初始接种的培养基体积一般为终体积的1/2~1/3,在培养过程中根据细胞对营养物质的不断消耗和需求,流加浓缩的营养物或培养基,从而使细胞持续生长至较高的密度,目标产品达到较高的水平,整个培养过程没有流出或回收,通常在细胞进入衰亡期或衰亡期后进行终止回收整个反应体系,分离细胞和细胞碎片,浓缩、纯化目标蛋白。
•一、半连续式培养1.半连续式培养又称为重复分批式培养或换液培养。
采用机械搅拌式生物反应器系统,悬浮培养形式。
在细胞增长和产物形成过程中,每间隔一段时间,从中取出部分培养物,再用新的培养液补足到原有体积,使反应器内的总体积不变。
这种类型的操作是将细胞接种一定体积的培养基,让其生长至一定的密度,在细胞生长至最大密度之前,用新鲜的培养基稀释培养物,每次稀释反应器培养体积的1/2~3/4,以维持细胞的指数生长状态,随着稀释率的增加培养体积逐步增加。
或者在细胞增长和产物形成过程中,每隔一定时间,定期取出部分培养物,或是条件培养基,或是连同细胞、载体一起取出,然后补加细胞或载体,或是新鲜的培养基继续进行培养的一种操作模式。
剩余的培养物可作为种子,继续培养,从而可维持反复培养,而无需反应器的清洗、消毒等一系列复杂的操作。
在半连续式操作中由于细胞适应了生物反应器的培养环境和相当高的接种量,经过几次的稀释、换液培养过程,细胞密度常常会提高。
2.半连续式特点:·培养物的体积逐步增加;·可进行多次收获;·细胞可持续指数生长,并可保持产物和细胞在一较高的浓度水平,培养过程可延续到很长时间。
该操作方式的优点是操作简便,生产效率高,可长时期进行生产,反复收获产品,可使细胞密度和产品产量一直保持在较高的水平。
在动物细胞培养和药品生产中被广泛应用。
二、连续式培养1.连续式培养是一种常见的悬浮培养模式,采用机械搅拌式生物反应器系统。
该模式是将细胞接种与一定体积的培养基后,为了防止衰退期的出现,在细胞达最大密度之前,以一定速度向生物反应器连续添加新鲜培养基;同时,含有细胞的培养物以相同的速度连续从反应器流出,以保持培养体积的恒定。
理论上讲,该过程可无限延续下去。
2.连续培养的优点是反应器的培养状态可以达到恒定,细胞在稳定状态下生长。
稳定状态可有效的延长分批培养中的对数生长期。
在稳定状态下细胞所处的环境条件如营养物质浓度、产物浓度、pH值可保持恒定,细胞浓度以及细胞比生长速率可维持不变。
绪论发酵工程:是一门以微生物、动植物细胞为生物作用剂进行产品工业化生产的系统工程。
涉及范围包括发酵工艺和发酵设备两大部分。
主要研究内容有菌种选育与构建、大规模培养基和空气的灭菌、大规模细胞培养过程、细胞生长和产物形成动力学、生物反应器的优化设计和操作、生物反应过程的参数检测和计算机应用、发酵产品的分离纯化过程中的技术问题。
发酵工程原理是指导发酵产品研究与开发,发酵工厂设计与建设以及发酵生产实践的理论。
初级代谢:初级代谢为许多生物都具有的生物化学反应,例如能量代谢及氨基酸、蛋白质、核酸的合成等,均称为初级代谢。
初级代谢产物是指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质,如氨基酸、核苷酸、多糖、脂类、维生素等。
次级代谢:次级代谢是在一定的生长时期(一般是稳定生长期),微生物以初级代谢产物为前体合成的对微生物本身的生命活动没有明确功能的物质的过程。
第二章自然选育:在生产过程中,不经过人工处理,利用菌种的自然突变而进行菌种筛选的过程。
引起自然突变的原因有两个:多因素低剂量的诱变效应和互变异构效应。
杂交育种:是指将两个基因型不同的菌株经吻合(或接合)使遗传物质重新组合,从中分离和筛选具有新性状的菌株。
诱变育种:指利用物理、化学等诱变剂处理均匀而分散的微生物细胞群,在促进其突变率显著提高的基础上,采用简便、快速和高效的筛选方法,从中挑选出少数符合目的的突变株,以供科学实验或生产实践使用。
原生质体融合育种:把两个亲本的细胞壁分别通过酶解作用加以瓦解,使菌体细胞在高渗环境中释放出只有原生质膜包裹着的球状体(称为原生质体)。
两个亲本的原生质体在高渗条件下混合,由聚乙二醇(PEG)作为助融剂,使它们互相凝集,发生细胞融合,接着两个亲本基因组由接触到交换,从而实现遗传重组。
在再生成细胞的菌落中就有可能获得具有理想性状的重组子。
如何从一个菌种得到另一个菌种如从生产菌种获得缺陷型:①诱变剂处理:采用辐射、化学试剂等因素处理细菌。
摘要:结合病毒类生物疫苗的生产工艺流程及设备分析,总结了不同生产工艺步骤的洁净室级别,针对不同生产工艺要求的病毒类疫苗的无菌生产,对其工艺布局进行了分析和优化,提出了经济、有效、可行性较高的工艺布局模式。
关键词:无菌生产;病毒类疫苗;工艺布局;生物反应器0引言无菌是生物技术中的一个重要概念。
培养基、发酵设备等只有处于无菌前提下,微生物接种后,才能实现纯种培养,最终得到所需的产品。
生物疫苗可分为细菌类疫苗和病毒类疫苗。
细菌类疫苗以培养、发酵工艺为主,病毒类疫苗以细胞培养、病毒扩增工艺为主,这两类疫苗的工艺生产具有相似性。
本文针对不同生产工艺的、非最终灭菌的病毒类生物疫苗产品,对其生产车间的工艺布局进行了分析,提出了更经济、更高效、更合理的工艺布局模式。
1生产工艺流程及设备分析1.1工艺流程分析病毒类疫苗的生产流程(图1)可以分为以下几个阶段:(1)细胞复苏培养及扩增,该生产过程为无毒生产过程;(2)细胞扩增到一定程度后进行细胞洗涤,并加入病毒液接种,然后带毒培养,并不断洗涤;(3)细胞培养好后,收集疫苗液;(4)如果制作灭活疫苗则需要进行病毒灭活、制作过程,如果生产活疫苗则不需要该过程;(5)配制疫苗原液;(6)分装入库。
同时,病毒接种前需要经过复苏培养及扩增阶段。
图1病毒类疫苗生产流程1.2工艺设备分析目前,病毒类生物疫苗的原液生产工艺主要包括:转瓶培养、细胞工厂培养以及生物反应器培养(罐培养)等。
转瓶培养技术是传统的细胞培养技术,工艺相对落后。
现国内各企业通过工艺的优化升级,逐步将传统的转瓶培养工艺升级为细胞工厂培养或者生物反应器培养工艺。
细胞工厂培养技术,对贴壁细胞的大规模培养有着明显优势。
首先,采用细胞工厂培养工艺,适用于扩大生产,无需添加生产设备,大大缩短了从研发到生产的时间。
其次,细胞工厂培养工艺的一次性投入很少,无需大型昂贵设备,也无需复杂的管道设计。
此外,细胞工厂培养工艺能够灵活地根据市场需求,安排生产规模。
3 大规模植物细胞培养生产药用成分植物细胞的大量培养是利用植物细胞体系,通过现代生物工程手段进行工业规模生产,以获得各种产品的一门新兴的跨学科技术。
首次提出从植物细胞培养物中合成天然药物的是1956年美国的Routier 和Nickell ,1967 年Kaul 和Staba 采用多升发酵罐对小阿米( Ammi visnaga) 进行了细胞大量培养的研究,并首次用此方法得到了药用成分呋喃色酮(Visnagin) 。
七八十年代,植物组织培养、植物原生质体培养等各种植物培养技术与植物细胞培养技术共同发展,在培养基配方、环境条件控制、悬浮培养技术等研究方面相互借鉴、相互促进[1 ] ;而大规模培养技术方面,得益于微生物发酵技术的飞速发展,各种各样的反应器如气升式、气泡柱式、模式等反应器相继得到应用,使得植物细胞大量培养的研究迅速得到借鉴发展。
这些年来植物细胞培养技术主要致力于高产细胞株选育方法、悬浮培养技术、多级培养和固定化细胞技术、培养工艺优化控制、生物反应器研制、下游纯化技术等方面的研究,并取得了较大进展[2 ] 。
近几年有些技术用于植物细胞培养对提高产物含量,降低成本有一定的作用。
这些技术有: (1) 发状根培养技术和冠瘿组织细胞培养技术。
发状根(Hairy root ) 和冠瘿组织(Crown gall tissue) 在离体培养时都具有激素自主、增殖较常规细胞培养快、次生代谢物含量一般比悬浮培养细胞高、且能合成某些悬浮培养细胞不能合成的次生代谢物以及能引入外源基因表达等特点,从而引起人们利用它们生产药用次生代谢物的重视。
如利用桔味薄荷(Mentha citrata) 冠瘿细胞生产萜烯,洋地黄( Digitalis) 冠瘿细胞生产强心甙, 丹参冠瘿细胞生产丹参酮[3 ] ,长春花冠瘿细胞生产吲哚生物碱[4 ] ,人参发状根培养生产人参皂甙, 长春花发状根培养生产长春碱,青蒿发状根培养生产青蒿素[5 ] ,萝芙木发状根培养生产生物碱[6 ]等等。
一、名词解释细胞工程:是应用细胞生物学和分子生物学和分子生物学的理论和方法,按照人们的设计蓝图,在细胞水平上的遗传操作及进行大规模的细胞和组织培养。
通过细胞工程可以生产有用的生物产品或培养有价值的植株,并可以产生新的物种或品系。
外植体:是指用于离体培养的活的植物组织、器官等材料。
植物组织培养:(广义)又叫离体培养,指从植物体分离出符合需要的组织.器官或细胞,原生质体等,通过无菌操作,在人工控制条件下进行培养以获得再生的完整植株或生产具有经济价值的其他产品的技术。
(狭义)组培指用植物各部分组织,如形成层.薄壁组织.叶肉组织.胚乳等进行培养获得再生植株,也指在培养过程中从各器官上产生愈伤组织的培养,愈伤组织再经过再分化形成再生植物。
愈伤组织:在离体培养过程中形成的具有分生能力的一团不规则细胞,多在外植体切面上产生。
胚状体〔embroid〕:—对应于胚〔embryo〕,在离体培养过程中产生一种形似胚(具有明显的根端和芽端),功能与胚相同的结构。
离体无性繁殖:是在人工控制的无菌条件下,使植物在人工培养基上繁殖的技术。
跟常规的繁殖方法相比它是一种微型操作过程,因此,有时就直接称之为微繁继代培养:更换新鲜培养基来繁殖同种类型的材料(愈伤组织.芽等)。
细胞分化:指导致细胞形成不同结构,引起功能改变或潜在发育方式改变的过程。
细胞脱分化:已分化好的细胞在人工诱导条件下,恢复分生能力,回复到分化组织状态的过程。
细胞再分化:脱分化后具有分生能力的细胞再经过与原来相同的分化过程,重新形成各类组织和器官的过程。
人工种子:亦称体细胞种子。
早期的人工种子概念是:体细胞胚经过人工种皮包被后而形成的体细胞种子。
现在指任何一种经人工种皮包被或裸露的,具有形成完整植株能力的繁殖体均可称之为人工种子。
植物细胞全能性:指每个植物细胞都具有形成完整植株的能力,因为每个细胞都具有全套的遗传基因,无论是性细胞还是体细胞在特定条件下可以进行表达。
制药工艺生物制药包括上游工艺、下游工艺和制剂工艺过程。
上游工艺以生物材料为核心,主要包括基因分子操作与重组、固定化、细胞融合等技术;下游工艺以药物后处理为核心,包括细胞大规模培养、药物的提取和纯化以及质量控制等。
一:概述:生物药物:是利用生物体、生物组织或其成分,综合应用生物学、生物化学、微生物学、免疫学、生物分离与纯化技术和药学的原理与加工方法进行加工、制造而成的一类预防、诊断疾病的物质。
生物药物主要来源:动物脏器;血液、分泌物和其他代谢产物;海洋生物;植物;微生物。
生物制药:是利用生物体或生物过程在人为设定的条件下生产各种生物药物的技术,研究的主要内容包括各种生物药物的原料来源及其生物学特性、各种生理活性物质的结构与性质及其结构与疗效间的相互关系、制备原理、生产工艺及其质量控制等。
生物制药的发展过程:1天然生物材料的提取制药2发酵工程制药3酶工程制药4细胞工程制药5基因工程制药。
生物药物的分类:按照化学结构和特性:1氨基酸类药物及其衍生物2多肽和蛋白类药物3酶类药物4核酸及其降解物和衍生物5糖类药物6细胞因子7生物制品类;按原料来源:1人体组织来源的生物药物2动物组织来源3植物来源4微生物来源5海洋生物来源;按生理功能和用途:1治疗药物2预防药物3诊断药物4其他生物医药用品。
二:天然生物材料的提取制药:生化药物:从生物体分离纯化,用化学合成、微生物合成或现代生物技术制得的用于预防、治疗和诊断疾病的一类生化物质。
生化药物最大特点:1.来自于生物体,即来自动物、植物和微生物;2.为生物体中的基本化学成分。
氨基酸类药物的常用生产方法:1蛋白水解提取法2微生物发酵法3化学合成法4酶合成法;常用提取分离法:1溶解度和等电点法2特殊沉淀法3离子交换法4氨基酸的结晶与干燥。
常用细胞破碎方法:1机械法2物理法3化学法和酶法。
多肽和蛋白质类药物的纯化:1利用溶解度不同的纯化方法2利用分子结构和大小不同的纯化方法3利用电离性质不同的纯化方法4利用生物功能专一性的不同纯化方法。
四川省人民政府办公厅关于促进医药产业健康发展的实施意见文章属性•【制定机关】四川省人民政府办公厅•【公布日期】2017.03.31•【字号】川办发〔2017〕28号•【施行日期】2017.03.31•【效力等级】地方规范性文件•【时效性】现行有效•【主题分类】医疗管理正文四川省人民政府办公厅关于促进医药产业健康发展的实施意见川办发〔2017〕28号各市(州)、县(市、区)人民政府,省政府各部门、各直属机构,有关单位:为贯彻落实《国务院办公厅关于促进医药产业健康发展的指导意见》(国办发〔2016〕11号),提升我省医药产业核心竞争力,促进全省医药产业持续健康加快发展,经省政府同意,现提出如下实施意见。
一、总体要求牢固树立并切实贯彻创新、协调、绿色、开放、共享的发展理念,主动迎接新一轮产业变革,坚持市场主导、政府引导,坚持创新驱动、开放合作,坚持产业集聚、绿色发展,坚持提升质量、保障供给,通过优化应用环境、强化要素支撑、调整产业结构、严格产业监管,激发医药产业创新活力,降低医药产品从研发到上市全环节的成本,加快医药产品审批、生产、流通、使用领域体制机制改革,推动医药产业智能化、服务化、生态化,实现产业中高速发展和向中高端转型,不断满足人民群众多层次、多样化的健康需求。
二、主要目标到2020年,医药产业创新能力进入全国前列,新增一批国家级、国家地方联合创新平台和企业技术创新平台,形成政产学研用创新体系,创新药、专利药、首仿药、智能医疗器械研发、中药种植及大品种培育取得重大进展。
供应保障能力显著增强,临床短缺用药供应紧张状况有效缓解。
产业绿色发展、安全高效,质量管理水平明显提升。
产业组织结构进一步优化,体制机制逐步完善,市场环境显著改善。
医药产业规模突破5000亿元,主营业务收入年均增速高于15%,工业增加值增速持续位居各工业行业前列。
三、重点任务(一)加强技术创新,提高核心竞争能力。
1.促进创新能力提升。