苏科版八年级上《轴对称图形》期末复习试卷
- 格式:doc
- 大小:82.00 KB
- 文档页数:2
翻折变换(折叠问题)精选题31道一.选择题(共12小题)1.如图,矩形ABCD中,E是AD的中点,将ABE∆沿直线BE折叠后得到GBE∆,延长BG 交CD于点F.若6AB=,46BC=,则FD的长为()A.2B.4C.6D.232.如图,在ABC∆中,D是AC边上的中点,连结BD,把BDC∆沿BD翻折,得到BDC'∆,DC'与AB交于点E,连结AC',若2AD AC='=,3BD=,则点D到BC'的距离为( )A.33B.321C.7D.133.如图,ABC∆中,90BAC∠=︒,3AB=,4AC=,点D是BC的中点,将ABD∆沿AD 翻折得到AED∆,连CE,则线段CE的长等于()A.2B.54C.53D.754.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为()A .2B .3C .2D .15.如图,已知正方形ABCD 的边长为12,BE EC =,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①ADG FDG ∆≅∆;②2GB AG =;③GDE BEF ∆∆∽;④725BEF S ∆=.在以上4个结论中,正确的有( )A .1B .2C .3D .46.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B 落在点B '处,若240∠=︒,则图中1∠的度数为( )A .115︒B .120︒C .130︒D .140︒7.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且13AE AB =,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①2EF BE =;②2PF PE =;③4FQ EQ =;④PBF ∆是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④8.如图,Rt ABC ∆中,9AB =,6BC =,90B ∠=︒,将ABC ∆折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .53B .52C .4D .59.如图,在矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点D '处,则重叠部分AFC ∆的面积为( )A .6B .8C .10D .1210.如图,在ABC ∆中.90ACB ∠=︒,4AC =,2BC =,点D 在AB 上,将ACD ∆沿CD 折叠,点A 落在点1A 处,1A C 与AB 相交于点E ,若1//A D BC ,则1A E 的长为( )A .22B .83C .52D .324- 11.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若3BC =,则折痕CE 的长为( )A .23B .332C .3D .612.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP ∆沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP OF =,则cos ADF ∠的值为( )A .1113B .1315C .1517D .1719二.填空题(共12小题)13.如图,正方形ABCD 的边长是16,点E 在边AB 上,3AE =,点F 是边BC 上不与点B ,C 重合的一个动点,把EBF ∆沿EF 折叠,点B 落在B '处.若CDB ∆'恰为等腰三角形,则DB '的长为 .14.如图,矩形ABCD 中,3AB =,4BC =,点E 是BC 边上一点,连接AE ,把B ∠沿AE 折叠,使点B 落在点B '处.当CEB ∆'为直角三角形时,BE 的长为 .15.如图矩形ABCD 中,5AD =,7AB =,点E 为DC 上一个动点,把ADE ∆沿AE 折叠,当点D 的对应点D '落在ABC ∠的角平分线上时,DE 的长为 .16.如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点B '始终落在边AC 上,若△MB C '为直角三角形,则BM 的长为 .17.如图,矩形ABCD 中,8AB =,6BC =,P 为AD 上一点,将ABP ∆沿BP 翻折至EBP ∆,PE 与CD 相交于点O ,BE 与CD 相交于点G ,且OE OD =,则AP 的长为 .18.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,8BC =,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是 .19.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若5DE =,则GE 的长为 .20.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在线段AE 上的点H 处,折痕为DG ,点G 在BC 边上,若2AB AD =+,1EH =,则AD = .21.如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若90FPG ∠=︒,△A EP '的面积为4,△D PH '的面积为1,则矩形ABCD 的面积等于 .22.如图,将正方形纸片ABCD 沿MN 折叠,使点D 落在边AB 上,对应点为D ',点C 落在C '处.若6AB =,2AD '=,则折痕MN 的长为 .23.如图,在矩形纸片ABCD 中,将AB 沿BM 翻折,使点A 落在BC 上的点N 处,BM 为折痕,连接MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,若8AD =,5AB =,则线段PE 的长等于 .24.如图,在Rt ABC ∆中,90C ∠=︒,23BC =,2AC =,点D 是BC 的中点,点E 是边AB 上一动点,沿DE 所在直线把BDE ∆翻折到△B DE '的位置,B D '交AB 于点F .若△AB F '为直角三角形,则AE 的长为 .三.解答题(共7小题)25.阅读理解如图1,ABC ∆中,沿BAC ∠的平分线1AB 折叠,剪掉重复部分;将余下部分沿11B A C ∠的平分线12A B 折叠,剪掉重复部分;⋯;将余下部分沿n n B A C ∠的平分线1n n A B +折叠,点n B 与点C 重合,无论折叠多少次,只要最后一次恰好重合,BAC ∠是ABC ∆的好角. 小丽展示了确定BAC ∠是ABC ∆的好角的两种情形.情形一:如图2,沿等腰三角形ABC 顶角BAC ∠的平分线1AB 折叠,点B 与点C 重合;情形二:如图3,沿BAC ∠的平分线1AB 折叠,剪掉重复部分;将余下部分沿11B A C ∠的平分线12A B 折叠,此时点1B 与点C 重合. 探究发现(1)ABC ∆中,2B C ∠=∠,经过两次折叠,BAC ∠是不是ABC ∆的好角? (填“是”或“不是” ).(2)小丽经过三次折叠发现了BAC ∠是ABC ∆的好角,请探究B ∠与C ∠(不妨设)B C ∠>∠之间的等量关系.根据以上内容猜想:若经过n 次折叠BAC ∠是ABC ∆的好角,则B ∠与C∠(不妨设)∠>∠之间的等量关系为.B C应用提升(3)小丽找到一个三角形,三个角分别为15︒、60︒、105︒,发现60︒和105︒的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4︒,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.26.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:APB BPH∠=∠;(2)当点P在边AD上移动时,PDH∆的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.27.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A'处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B 恰好落在DE上的点H处.如图2.(1)求证:EG CH=;(2)已知2AF=,求AD和AB的长.28.如图,AEF∆,∆中,45∆沿AE折叠得到AEB∠=︒,AG EF⊥于点G,现将AEGEAF将AFG∆,延长BE和DF相交于点C.∆沿AF折叠得到AFD(1)求证:四边形ABCD是正方形;(2)连接BD分别交AE、AF于点M、N,将ABM∆绕点A逆时针旋转,使AB与AD重合,得到ADH∆,试判断线段MN、ND、DH之间的数量关系,并说明理由.(3)若4BM=,求AG、MN的长.GF=,32EG=,629.如图1,一张矩形纸片ABCD,其中8=,先沿对角线BD对折,点CAB cmAD cm=,6落在点C'的位置,BC'交AD于点G.(1)求证:AG C G=';(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.30.如图1,在ABO∠=︒,8∆外OB=.以OB为一边,在OABAOB∠=︒,30∆中,90OAB作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.31.如图,矩形ABCD中,点E在边CD上,将BCE∆沿BE折叠,点C落在AD边上的点F 处,过点F作//FG CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若6AD=,求四边形CEFG的面积.AB=,10翻折变换(折叠问题)精选题31道参考答案与试题解析一.选择题(共12小题)1.如图,矩形ABCD 中,E 是AD 的中点,将ABE ∆沿直线BE 折叠后得到GBE ∆,延长BG 交CD 于点F .若6AB =,46BC =,则FD 的长为( )A .2B .4C 6D .23【分析】根据点E 是AD 的中点以及翻折的性质可以求出AE DE EG ==,然后利用“HL ”证明EDF ∆和EGF ∆全等,根据全等三角形对应边相等可证得DF GF =;设FD x =,表示出FC 、BF ,然后在Rt BCF ∆中,利用勾股定理列式进行计算即可得解.【解答】解:E 是AD 的中点,AE DE ∴=,ABE ∆沿BE 折叠后得到GBE ∆,AE EG ∴=,AB BG =,ED EG ∴=,在矩形ABCD 中,90A D ∴∠=∠=︒,90EGF ∴∠=︒,在Rt EDF ∆和Rt EGF ∆中,ED EG EF EF =⎧⎨=⎩, Rt EDF Rt EGF(HL)∴∆≅∆,DF FG ∴=,设DF x =,则6BF x =+,6CF x =-,在Rt BCF ∆中,222(46)(6)(6)x x +-=+,解得4x =.故选:B .【点评】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件ED EG =是解题的关键.2.如图,在ABC ∆中,D 是AC 边上的中点,连结BD ,把BDC ∆沿BD 翻折,得到BDC '∆,DC '与AB 交于点E ,连结AC ',若2AD AC ='=,3BD =,则点D 到BC '的距离为( )A 33B 321C 7D 13【分析】连接CC ',交BD 于点M ,过点D 作DH BC '⊥于点H ,由翻折知,BDC BDC '∆≅∆,BD 垂直平分CC ',证ADC '∆为等边三角形,利用解直角三角形求出1DM =,33C M DM '==2BM =,在Rt BMC '∆中,利用勾股定理求出BC '的长,在BDC '∆中利用面积法求出DH 的长.【解答】解:如图,连接CC ',交BD 于点M ,过点D 作DH BC '⊥于点H ,2AD AC ='=,D 是AC 边上的中点,2DC AD ∴==,由翻折知,BDC BDC '∆≅∆,BD 垂直平分CC ',2DC DC '∴==,BC BC '=,CM C M '=,2AD AC DC '∴='==,ADC '∴∆为等边三角形,60ADC AC D C AC '''∴∠=∠=∠=︒,DC DC '=,160302DCC DC C ''∴∠=∠=⨯︒=︒, 在Rt △C DM '中,30DC C '∠=︒,2DC '=,1DM ∴=,33C M DM '==,312BM BD DM ∴=-=-=, 在Rt BMC '∆中,22222(3)7BC BM C M ''=+=+=,1122BDC S BC DH BD CM '∆'==, ∴733DH =⨯,3217DH ∴=, 故选:B .【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.3.如图,ABC ∆中,90BAC ∠=︒,3AB =,4AC =,点D 是BC 的中点,将ABD ∆沿AD 翻折得到AED ∆,连CE ,则线段CE 的长等于( )A .2B .54C .53D .75【分析】如图连接BE 交AD 于O ,作AH BC ⊥于H .首先证明AD 垂直平分线段BE ,BCE ∆是直角三角形,求出BC 、BE ,在Rt BCE ∆中,利用勾股定理即可解决问题.【解答】解:如图连接BE 交AD 于O ,作AH BC ⊥于H .在Rt ABC ∆中,4AC =,3AB =, 22345BC ∴=+=, CD DB =,52ED DC DB ∴===, 1122BC AH AB AC =, 125AH ∴=, AE AB =,∴点A 在BE 的垂直平分线上.DE DB DC ==,∴点D 在BE 的垂直平分线上,BCE ∆是直角三角形,AD ∴垂直平分线段BE ,1122AD BO BD AH =, 125OB ∴=, 2425BE OB ∴==, 在Rt BCE ∆中,22222475()55EC BC BE =-=-=, 故选:D .【点评】本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.4.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为( )A .2B .3C .2D .1【分析】根据翻折不变性,2AB FB ==,1BM =,在Rt BFM ∆中,可利用勾股定理求出FM 的值.【解答】解:四边形ABCD 为正方形,2AB =,过点B 折叠纸片,使点A 落在MN 上的点F 处,2FB AB ∴==,1BM =,则在Rt BMF ∆中,2222213FM BF BM =-=-=,故选:B .【点评】此题考查了翻折变换的性质,适时利用勾股定理是解答此类问题的关键.5.如图,已知正方形ABCD 的边长为12,BE EC =,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①ADG FDG ∆≅∆;②2GB AG =;③GDE BEF ∆∆∽;④725BEF S ∆=.在以上4个结论中,正确的有( )A .1B .2C .3D .4【分析】根据正方形的性质和折叠的性质可得AD DF =,90A GFD ∠=∠=︒,于是根据“HL ”判定ADG FDG ∆≅∆,再由12GF GB GA GB +=+=,EB EF =,BGE ∆为直角三角形,可通过勾股定理列方程求出4AG =,8BG =,进而求出BEF ∆的面积,再抓住BEF ∆是等腰三角形,而GED ∆显然不是等腰三角形,判断③是错误的.【解答】解:由折叠可知,DF DC DA ==,90DFE C ∠=∠=︒,90DFG A ∴∠=∠=︒,ADG FDG ∴∆≅∆,①正确;正方形边长是12,6BE EC EF ∴===,设AG FG x ==,则6EG x =+,12BG x =-,由勾股定理得:222EG BE BG =+,即:222(6)6(12)x x +=+-,解得:4x =4AG GF ∴==,8BG =,2BG AG =,②正确;6BE EF ==,BEF ∆是等腰三角形,易知GED ∆不是等腰三角形,③错误; 168242S GBE ∆=⨯⨯=,67224105EF S BEF S GBE EG ∆=∆==,④正确. 故选:C .【点评】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.6.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B 落在点B '处,若240∠=︒,则图中1∠的度数为( )A .115︒B .120︒C .130︒D .140︒【分析】根据折叠的性质和矩形的性质得出BFE EFB '∠=∠,90B B '∠=∠=︒,根据三角形内角和定理求出50CFB '∠=︒,进而解答即可.【解答】解:把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A '处,点B 落在点B '处,BFE EFB '∴∠=∠,90B B '∠=∠=︒,240∠=︒,50CFB '∴∠=︒,1180EFB CFB ''∴∠+∠-∠=︒,即1150180∠+∠-︒=︒,解得:1115∠=︒,故选:A .【点评】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等.7.如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且13AE AB =,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①2EF BE =;②2PF PE =;③4FQ EQ =;④PBF ∆是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④【分析】求出2BE AE =,根据翻折的性质可得PE BE =,再根据直角三角形30︒角所对的直角边等于斜边的一半求出30APE ∠=︒,然后求出60AEP ∠=︒,再根据翻折的性质求出60BEF ∠=︒,根据直角三角形两锐角互余求出30EFB ∠=︒,然后根据直角三角形30︒角所对的直角边等于斜边的一半可得2EF BE =,判断出①正确;利用30︒角的正切值求出3PF PE ,判断出②错误;求出2BE EQ =,2EF BE =,然后求出3FQ EQ =,判断出③错误;求出60PBF PFB ∠=∠=︒,然后得到PBF ∆是等边三角形,判断出④正确.【解答】解:13AE AB =, 2BE AE ∴=,由翻折的性质得,PE BE =,30APE ∴∠=︒,903060AEP ∴∠=︒-︒=︒,11(180)(18060)6022BEF AEP ∴∠=︒-∠=︒-︒=︒,906030∴∠=︒-︒=︒,EFB∴=,故①正确;2EF BE=,BE PE2∴=,EF PE>,EF PF∴<,故②错误;2PF PE由翻折可知EF PB⊥,EBQ EFB∴∠=∠=︒,30BE EQ∴=,22=,EF BEFQ EQ∴=,故③错误;3由翻折的性质,30∠=∠=︒,EFB EFPBFP∴∠=︒+︒=︒,303060PBF EBQ∠=︒-∠=︒-︒=︒,90903060∴∠=∠=︒,60PBF PFB∴∆是等边三角形,故④正确;PBF综上所述,结论正确的是①④.故选:D.【点评】本题考查了翻折变换的性质,直角三角形30︒角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定,熟记各性质并准确识图是解题的关键.8.如图,Rt ABC∠=︒,将ABC∆折叠,使A点与BC的中点∆中,9BBC=,90AB=,6D重合,折痕为MN,则线段BN的长为()A .53B .52C .4D .5【分析】设BN x =,则由折叠的性质可得9DN AN x ==-,根据中点的定义可得3BD =,在Rt BDN ∆中,根据勾股定理可得关于x 的方程,解方程即可求解.【解答】解:设BN x =,由折叠的性质可得9DN AN x ==-,D 是BC 的中点,3BD ∴=,在Rt BDN ∆中,2223(9)x x +=-,解得4x =.故线段BN 的长为4.故选:C .【点评】考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.如图,在矩形ABCD 中,8AB =,4BC =,将矩形沿AC 折叠,点D 落在点D '处,则重叠部分AFC ∆的面积为( )A .6B .8C .10D .12【分析】因为BC 为AF 边上的高,要求AFC ∆的面积,求得AF 即可,求证AFD CFB ∆'≅∆,得BF D F =',设D F x '=,则在Rt AFD ∆'中,根据勾股定理求x ,于是得到AF AB BF =-,即可得到结果.【解答】解:易证AFD CFB ∆'≅∆,D F BF ∴'=,设D F x '=,则8AF x =-,在Rt AFD ∆'中,222(8)4x x -=+,解之得:3x =,835AF AB FB ∴=-=-=,1102AFC S AF BC ∆∴==. 故选:C .【点评】本题考查了翻折变换-折叠问题,勾股定理的正确运用,本题中设D F x '=,根据直角三角形AFD '中运用勾股定理求x 是解题的关键.10.如图,在ABC ∆中.90ACB ∠=︒,4AC =,2BC =,点D 在AB 上,将ACD ∆沿CD 折叠,点A 落在点1A 处,1A C 与AB 相交于点E ,若1//A D BC ,则1A E 的长为( )A .22B .83C 52D .324-【分析】利用平行线的性质以及折叠的性质,即可得到1190A A DB ∠+∠=︒,即AB CE ⊥,再根据勾股定理可得2232AB BC AC =+,最后利用面积法得出1122AB CE BC AC ⨯=⨯,可得43BC AC CE AB ⨯==,进而依据14AC AC ==,即可得到183A E =. 【解答】解:1//A D BC ,1B A DB ∴∠=∠,由折叠可得,1A A ∠=∠,又90A B ∠+∠=︒,1190A A DB ∴∠+∠=︒,AB CE ∴⊥,90ACB ∠=︒,4AC =,2BC ,2232AB BC AC ∴=+1122AB CE BC AC ⨯=⨯,43BC AC CE AB ⨯∴==, 又14AC AC ==, 148433A E ∴=-=, 故选:B .【点评】本题主要考查了折叠问题以及勾股定理的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是得到CE AB ⊥以及面积法的运用.11.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若3BC =,则折痕CE 的长为( )A .23B 332C 3D .6【分析】先根据图形翻折变换的性质得出BC OC =,BE OE =,90B COE ∠=∠=︒,BCE ACE ∠=∠,求出2AC BC =,求出30BAC ∠=︒,求出30BCE ∠=︒,解直角三角形求出CE 即可.【解答】解:CEO ∆是CEB ∆翻折而成,BC OC ∴=,BE OE =,90B COE ∠=∠=︒,BCE ACE ∠=∠,EO AC ∴⊥,O 是矩形ABCD 的中心,OE ∴是AC 的垂直平分线,2236AC BC ==⨯=,30CAB ∴∠=︒,60BCA ∴∠=︒,30BCE ACE ∴∠=∠=︒,在Rt BCE ∆中,23cos303BC CE ===︒, 故选:A . 【点评】本题考查了翻折变换,矩形的性质,直角三角形的性质,解直角三角形等知识点,能求出30BAC ∠=︒是解此题的关键.12.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP ∆沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP OF =,则cos ADF ∠的值为( )A .1113B .1315C .1517D .1719【分析】根据折叠的性质可得出DC DE =、CP EP =,由EOF BOP ∠=∠、B E ∠=∠、OP OF =可得出()OEF OBP AAS ∆≅∆,根据全等三角形的性质可得出OE OB =、EF BP =,设EF x =,则BP x =、4DF x =-、3BF PC x ==-,进而可得出1AF x =+,在Rt DAF ∆中,利用勾股定理可求出x 的值,再利用余弦的定义即可求出cos ADF ∠的值.【解答】解:根据折叠,可知:DCP DEP ∆≅∆,4DC DE ∴==,CP EP =.在OEF ∆和OBP ∆中,90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,()OEF OBP AAS ∴∆≅∆,OE OB ∴=,EF BP =.设EF x =,则BP x =,4DF DE EF x =-=-,又BF OB OF OE OP PE PC =+=+==,3PC BC BP x =-=-,1AF AB BF x ∴=-=+.在Rt DAF ∆中,222AF AD DF +=,即222(1)3(4)x x ++=-, 解得:35x =, 1745DF x ∴=-=, 15cos 17AD ADF DF ∴∠==. 故选:C .【点评】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合1AF x =+,求出AF 的长度是解题的关键.二.填空题(共12小题) 13.如图,正方形ABCD 的边长是16,点E 在边AB 上,3AE =,点F 是边BC 上不与点B ,C 重合的一个动点,把EBF ∆沿EF 折叠,点B 落在B '处.若CDB ∆'恰为等腰三角形,则DB '的长为 16或45 .【分析】根据翻折的性质,可得B E '的长,根据勾股定理,可得CE 的长,根据等腰三角形的判定,可得答案.【解答】解:()i 当B D B C '='时,过B '点作//GH AD ,则90B GE ∠'=︒,当B C B D '='时,182AG DH DC ===, 由3AE =,16AB =,得13BE =.由翻折的性质,得13B E BE '==.835EG AG AE∴=-=-=,222213512B G B E EG∴'='-=-=,16124B H GH B G∴'=-'=-=,22224845DB B H DH∴'='+=+=()ii当DB CD'=时,则16DB'=(易知点F在BC上且不与点C、B重合).()iii当CB CD'=时,则CB CB=',由翻折的性质,得EB EB=',∴点E、C在BB'的垂直平分线上,EC∴垂直平分BB',由折叠,得EF也是线段BB'的垂直平分线,∴点F与点C 重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB'的长为16或45.故答案为:16或45.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.14.如图,矩形ABCD中,3AB=,4BC=,点E是BC边上一点,连接AE,把B∠沿AE折叠,使点B落在点B'处.当CEB∆'为直角三角形时,BE的长为32或3.【分析】当CEB∆'为直角三角形时,有两种情况:①当点B'落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出5∠'=∠=︒,而当AB E BAC=,根据折叠的性质得90∠沿AE折∠'=︒,所以点A、B'、C共线,即BEB C∆'为直角三角形时,只能得到90CEB叠,使点B落在对角线AC上的点B'处,则EB EB=',3AB ABCB'=,='=,可计算出2设BE xCE x∆'中运用勾股定理可计算出x.=-,然后在Rt CEB'=,4=,则EB x②当点B'落在AD边上时,如答图2所示.此时ABEB'为正方形.【解答】解:当CEB∆'为直角三角形时,有两种情况:①当点B'落在矩形内部时,如答图1所示.连结AC,在Rt ABC∆中,3BC=,AB=,422AC∴=+,435∠沿AE折叠,使点B落在点B'处,B∴∠'=∠=︒,90AB E B当CEB∠'=︒,EB C∆'为直角三角形时,只能得到90∠沿AE折叠,使点B落在对角线AC上的点B'处,∴点A、B'、C共线,即B∴=',3EB EBAB AB='=,∴'=-=,532CB设BE x=-,CE x=,则EB x'=,4在Rt CEB ∆'中,222EB CB CE '+'=,2222(4)x x ∴+=-,解得32x =, 32BE ∴=; ②当点B '落在AD 边上时,如答图2所示.此时ABEB '为正方形,3BE AB ∴==.综上所述,BE 的长为32或3. 故答案为:32或3. 【点评】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.15.如图矩形ABCD 中,5AD =,7AB =,点E 为DC 上一个动点,把ADE ∆沿AE 折叠,当点D 的对应点D '落在ABC ∠的角平分线上时,DE 的长为 52或53 .【分析】连接BD ',过D '作MN AB ⊥,交AB 于点M ,CD 于点N ,作D P BC '⊥交BC 于点P ,先利用勾股定理求出MD ',再分两种情况利用勾股定理求出DE .【解答】解:如图,连接BD ',过D '作MN AB ⊥,交AB 于点M ,CD 于点N ,作D P BC'⊥交BC 于点P点D 的对应点D '落在ABC ∠的角平分线上,M D PD ∴'=',设MD x '=,则PD BM x '==,7AM AB BM x ∴=-=-,又折叠图形可得5AD AD ='=,22(7)25x x ∴+-=,解得3x =或4,即3MD '=或4.在Rt END ∆'中,设ED a '=,①当3MD '=时,734AM =-=,532D N '=-=,4EN a =-,2222(4)a a ∴=+-, 解得52a =,即52DE =, ②当4MD '=时,743AM =-=,541D N '=-=,3EN a =-,2221(3)a a ∴=+-,解得53a =,即53DE =. 故答案为:52或53. 【点评】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.16.如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点B '始终落在边AC 上,若△MB C '为直角三角形,则BM 的长为 11222+或1 .【分析】①如图1,当90B MC ∠'=︒,B '与A 重合,M 是BC 的中点,于是得到结论;②如图2,当90MB C ∠'=︒,推出CMB ∆'是等腰直角三角形,得到2CM MB ',列方程即可得到结论.【解答】解:①如图1,当90B MC ∠'=︒,B '与A 重合,M 是BC 的中点,1112222BM BC ∴=;②如图2,当90MB C ∠'=︒,90A ∠=︒,AB AC =,45C ∴∠=︒,CMB ∴∆'是等腰直角三角形, 2CM MB ∴=', 沿MN 所在的直线折叠B ∠,使点B 的对应点B ',BM B M ∴=',2CM BM ∴=,21BC =,221CM BM BM BM ∴+=+=+,1BM ∴=,综上所述,若△MB C '为直角三角形,则BM 的长为11222+或1, 故答案为:11222+或1.【点评】本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.17.如图,矩形ABCD 中,8AB =,6BC =,P 为AD 上一点,将ABP ∆沿BP 翻折至EBP ∆,PE 与CD 相交于点O ,BE 与CD 相交于点G ,且OE OD =,则AP 的长为 4.8 .【分析】由折叠的性质得出EP AP =,90E A ∠=∠=︒,8BE AB ==,由ASA 证明ODP OEG ∆≅∆,得出OP OG =,PD GE =,设AP EP x ==,则6PD GE x ==-,DG x =,求出CG 、BG ,根据勾股定理得出方程,解方程即可.【解答】解:如图所示:四边形ABCD 是矩形,90D A C ∴∠=∠=∠=︒,6AD BC ==,8CD AB ==,根据题意得:ABP EBP ∆≅∆,EP AP ∴=,90E A ∠=∠=︒,8BE AB ==,在ODP ∆和OEG ∆中,D E OD OEDOP EOG ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ODP OEG ASA ∴∆≅∆,OP OG ∴=,PD GE =,DG EP ∴=,设AP EP x ==,则6PD GE x ==-,DG x =,8CG x ∴=-,8(6)2BG x x =--=+,根据勾股定理得:222BC CG BG +=,即2226(8)(2)x x +-=+,解得: 4.8x =,4.8AP ∴=;故答案为:4.8.【点评】本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.18.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,8BC =,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是 1.2 .【分析】如图,延长FP 交AB 于M ,当FP AB ⊥时,点P 到AB 的距离最小,利用AFM ABC ∆∆∽,得到AF FM AB BC=求出FM 即可解决问题. 【解答】解:如图,延长FP 交AB 于M ,当FP AB ⊥时,点P 到AB 的距离最小.(点P 在以F 为圆心CF 为半径的圆上,当FP AB ⊥时,点P 到AB 的距离最小)A A ∠=∠,90AMF C ∠=∠=︒,AFM ABC ∴∆∆∽,∴AF FM AB BC=, 2CF =,6AC =,8BC =,4AF ∴=,2210AB AC BC +=,∴4108FM =, 3.2FM ∴=,2PF CF ==,1.2PM ∴=∴点P 到边AB 距离的最小值是1.2.故答案为1.2.【点评】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P 位置,属于中考常考题型.19.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若5DE =,则GE 的长为4913.【分析】由折叠及轴对称的性质可知,ABF GBF ∆≅∆,BF 垂直平分AG ,先证ABF DAE ∆≅∆,推出AF 的长,再利用勾股定理求出BF 的长,最后在Rt ADF ∆中利用面积法可求出AH 的长,可进一步求出AG 的长,GE 的长. 【解答】解:四边形ABCD 为正方形,12AB AD ∴==,90BAD D ∠=∠=︒,由折叠及轴对称的性质可知,ABF GBF ∆≅∆,BF 垂直平分AG ,BF AE ∴⊥,AH GH =,90BAH ABH ∴∠+∠=︒,又90FAH BAH ∠+∠=︒,ABH FAH ∴∠=∠,()ABF DAE ASA ∴∆≅∆, 5AF DE ∴==,在Rt ABF ∆中,222212513BF AB AF =++, 1122ABF S AB AF BF AH ∆==, 12513AH ∴⨯=, 6013AH ∴=, 120213AG AH ∴==, 13AE BF ==,12049131313GE AE AG ∴=-=-=, 故答案为:4913.【点评】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质,勾股定理,面积法求线段的长度等,解题关键是能够灵活运用正方形的性质和轴对称的性质. 20.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在线段AE 上的点H 处,折痕为DG ,点G 在BC 边上,若2AB AD =+,1EH =,则AD = 323+ .【分析】设AD x =,则2AB x =+,利用折叠的性质得DF AD =,EA EF =,90DFE A ∠=∠=︒,则可判断四边形AEFD 为正方形,所以AE AD x ==,再根据折叠的性质得2DH DC x ==+,当1AH AE HE x =-=-,然后根据勾股定理得到222(1)(2)x x x +-=+,再解方程求出x 即可. 【解答】解:设AD x =,则2AB x =+, 把ADE ∆翻折,点A 落在DC 边上的点F 处,DF AD ∴=,EA EF =,90DFE A ∠=∠=︒,∴四边形AEFD 为正方形,AE AD x ∴==,把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上, 2DH DC x ∴==+,1HE =,当1AH AE HE x =-=-, 在Rt ADH ∆中,222AD AH DH +=,222(1)(2)x x x ∴+-=+,整理得2630x x --=,解得1323x =+,2323x =-(舍去), 即AD 的长为323+. 故答案为:323+.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理. 21.如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '点,D 点的对称点为D '点,若90FPG ∠=︒,△A EP '的面积为4,△D PH '的面积为1,则矩形ABCD 的面积等于 1065+ .【分析】设AB CD x ==,由翻折可知:PA AB x '==,PD CD x '==,因为△A EP '的面积为4,△D PH '的面积为1,推出12D H x '=,由11122x x =,可得2x =(负根已经舍弃),即可解决问题.【解答】解:四边形ABC 是矩形, AB CD ∴=,AD BC =,设AB CD x ==,由翻折可知:PA AB x '==,PD CD x '==,△A EP '的面积为4,△D PH '的面积为1, 又△A EP '∽△D PH ', :2A P D H ∴''=,PA x '=, 12D H x ∴'=, 11122x x =, 2x ∴=(负根已经舍弃), 2AB CD ∴==,222425PE =+=,22125PH =+=, 42551535AD ∴=+++=+,∴矩形ABCD 的面积2(535)1065=+=+.故答案为1065+【点评】本题考查翻折变换,矩形的性质,勾股定理,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.22.如图,将正方形纸片ABCD 沿MN 折叠,使点D 落在边AB 上,对应点为D ',点C 落在C '处.若6AB =,2AD '=,则折痕MN 的长为 210 .【分析】作NF AD ⊥,垂足为F ,连接DD ',根据图形折叠的性质得出DD MN '⊥,先证明DAD DEM ∆'∆∽,再证明NFM DAD ∆≅∆',然后利用勾股定理的知识求出MN 的长. 【解答】解:作NF AD ⊥,垂足为F ,连接DD ',将正方形纸片ABCD 折叠,使得点D 落在边AB 上的D '点,折痕为MN , DD MN ∴'⊥,90A DEM ∠=∠=︒,ADD EDM ∠'=∠,DAD DEM ∴∆'∆∽, DD A DME ∴∠'=∠,在NFM ∆和DAD ∆'中 DD A NMF A NFMNF DA ∠'=∠⎧⎪∠=∠⎨⎪=⎩, ()NFM DAD AAS ∴∆≅∆',2FM AD ∴='=,又在Rt MNF ∆中,6FN =,∴根据勾股定理得:222262210MN FN FM =+=+=.故答案为:210.【点评】此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.23.如图,在矩形纸片ABCD 中,将AB 沿BM 翻折,使点A 落在BC 上的点N 处,BM 为折痕,连接MN ;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P ,若8AD =,5AB =,则线段PE 的长等于203.【分析】根据折叠可得ABNM 是正方形,5CD CF ==,90D CFE ∠=∠=︒,ED EF =,可求出三角形FNC 的三边为3,4,5,在Rt MEF ∆中,由勾股定理可以求出三边的长,通过作辅助线,可证FNC PGF ∆∆∽,三边占比为3:4:5,设未知数,通过PG HN =,列方程求出待定系数,进而求出PF 的长,然后求PE 的长.【解答】解:过点P 作PG FN ⊥,PH BN ⊥,垂足为G 、H , 由折叠得:ABNM 是正方形,5AB BN NM MA ====, 5CD CF ==,90D CFE ∠=∠=︒,ED EF =, 853NC MD ∴==-=,在Rt FNC ∆中,22534FN =-=, 541MF ∴=-=,在Rt MEF ∆中,设EF x =,则3ME x =-,由勾股定理得,2221(3)x x +-=, 解得:53x =, 90CFN PFG ∠+∠=︒,90PFG FPG ∠+∠=︒, CFN FPG ∴∠=∠,又90FGP CNF ∠=∠=︒ FNC PGF ∴∆∆∽,::::3:4:5FG PG PF NC FN FC ∴==,设3FG m =,则4PG m =,5PF m =,43GN PH BH m ∴===-,5(43)134HN m m PG m =--=+==,解得:1m =, 55PF m ∴==, 520533PE PF FE ∴=+=+=,故答案为:203.【点评】考查折叠轴对称的性质,矩形、正方形的性质,直角三角形的性质等知识,知识的综合性较强,是有一定难度的题目.24.如图,在Rt ABC ∆中,90C ∠=︒,23BC =,2AC =,点D 是BC 的中点,点E 是边AB 上一动点,沿DE 所在直线把BDE ∆翻折到△B DE '的位置,B D '交AB 于点F .若△AB F '为直角三角形,则AE 的长为 3或145.【分析】利用三角函数的定义得到30B ∠=︒,4AB =,再利用折叠的性质得3DB DC ==EB EB '=,30DB E B ∠'=∠=︒,设AE x =,则4BE x =-,4EB x '=-,讨论:当90AFB ∠'=︒时,则332BF ∴︒=,则35(4)22EF x x =--=-,于是在Rt △B EF '中利用2EB EF '=得到542()2x x -=-,解方程求出x 得到此时AE 的长;若B '不落在C 点处,作EH AB ⊥'于H ,连接AD ,如图,证明Rt ADB Rt ADC ∆'≅∆得到2AB AC '==,再计算出60EB H ∠'=︒,则1(4)2B H x '=-,3)EH x -,接着利用勾股定理得到22231(4)[(4)2]42x x x -+-+=,方程求出x 得到此时AE 的长. 【解答】解:90C ∠=︒,23BC =,2AC =,3tan 23AC B BC ∴===, 30B ∴∠=︒,24AB AC ∴==,点D 是BC 的中点,沿DE 所在直线把BDE ∆翻折到△B DE '的位置,B D '交AB 于点F 3DB DC ∴==,EB EB '=,30DB E B ∠'=∠=︒,设AE x =,则4BE x =-,4EB x '=-, 当90AFB ∠'=︒时, 在Rt BDF ∆中,cos BFB BD=, 33cos302BF ∴=︒=, 35(4)22EF x x ∴=--=-, 在Rt △B EF '中,30EB F ∠'=︒,2EB EF ∴'=,即542()2x x -=-,解得3x =,此时AE 为3;若B '不落在C 点处,作EH AB ⊥'于H ,连接AD ,如图, DC DB =',AD AD =, Rt ADB Rt ADC ∴∆'≅∆, 2AB AC ∴'==,9030120AB E AB F EB F ∠'=∠'+∠'=︒+︒=︒, 60EB H ∴∠'=︒,在Rt EHB ∆'中,11(4)22B H B E x '='=-,33(4)EH B H x ='=-, 在Rt AEH ∆中,222EH AH AE +=,∴22231(4)[(4)2]42x x x -+-+=,解得145x =,此时AE 为145.综上所述,AE 的长为3或145. 故答案为3或145.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形。
轴对称图形章末重难点题型汇编【举一反三】【苏科版】【考点1 判断轴对称图形】【方法点拨】掌握轴对称图形的概念:把一个图形沿着某一条直线翻折,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。
注意:理解轴对称图形的定义应注意两点:(1)轴对称图形是一个图形,反映的是这个图形自身的性质。
(2)符合要求的“某条直线”可能不止一条,但至少要有一条。
【例1】(2019春•相城区期中)下列图形中,不是轴对称图形的是()A.B.C.D.【变式1-1】(2018秋•思明区校级期中)如图,四个手机应用图标中是轴对称图形的是()A.B.C.D.【变式1-2】(2018秋•开封期中)下列四个图形中,不是轴对称图形的是()A.B.C.D.【变式1-3】(2018秋•宜兴市校级期中)下列图形中,不是轴对称图形的有()A.1个B.2个C.3个D.4个【考点2 角平分线的应用】【方法点拨】掌握角平分线的性质定理:角平分线上的点到角两边的距离相等牢记:(1)角平分线的性质是证明线段相等的一个比较简单的方法;(2)当遇到有关角平分线的问题时,通常过角平分线上的点向角的两边作垂线,构造相等的线段。
【例2】(2019春•港南区期中)如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE ⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【变式2-1】(2018秋•九龙坡区校级期中)如图,AD是△ABC的角平分线,DE⊥AB于E,已知△ABC的面积为28.AC=6,DE=4,则AB的长为()A.6B.8C.4D.10【变式2-2】(2018秋•思明区校级期中)如图,△ABC中,AB=6,AC=4,AD平分∠BAC,DE⊥AB于点E,BF⊥AC于点F,DE=2,则BF的长为()A.3B.4C.5D.6【变式2-3】(2018秋•西城区校级期中)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC =24,DE=4,AB=7,则AC长是()A.3B.4C.6D.5【考点3 线段垂直平分线性质的应用】【方法点拨】掌握线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等注意:(1)这里的距离指的是点与点之间的距离,也就是两点之间线段的长度。
苏科版八年级数学上册《2.1轴对称与轴对称图形》同步练习题带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列图形是轴对称图形的是()A.B.C.D.2.中国的剪纸艺术源远流长,是中国传统民间社会的一种特有的民俗文化形式,是中华优秀传统文化的重要组成部分,至今已有3000多年的历史.下列剪纸艺术图案中,是轴对称图形的是()A.B.C.D.3.下列图形中,不是轴对称图形的是().A.平行四边形B.圆C.菱形D.等腰三角形4.现实世界中,对称现象无处不在,中国的方块字中有些也具备对称性,下列汉字不是轴对称图形的是()A.一B.中C.王D.语5.下列图形中,是轴对称图形的是()A.B.C.D.6.第24届冬奥会将于2022年2月4日-2月20日在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,共中是轴对称图形的为()A.B.C.D.7.下列图形中,不是轴对称图形的是()A.B.C.D.8.在线段、角、等腰三角形、直角三角形四个图形中,不一定...是轴对称图形的有()个A.1B.2C.3D.49.下列四幅作品分别代表二十四节气中的“春分”、“夏至”、“立秋”、“冬至”,其中是轴对称图形的是()A.B.C.D.10.下列标志中是轴对称图形的有几个()A.2个B.3个C.4个D.5个11.在以下标志中,是轴对称图形的是()A.B.C.D.二、填空题12.已知点(),1A a -,()2,B b 若点A 、B 关于y 轴对称,则a b +的值为 . 13.已知直线yy ′⊥xx ′,垂足为O ,则图形⊥与图形 成轴对称14.角的对称轴是 .15.观察下列图形: 其中是轴对称图形的有 个.16.在线段、角、三角形、正方形、等腰三角形、等边三角形中,是轴对称图形的有 个.三、解答题17.如图,在正方形网格中,每个小正方形的边长为1,格点ABC 的顶点A 、C 的坐标分别为()45-,和()13-,,先作ABC 关于y 轴对称的111A B C △,再把111A B C △向下平移4个单位长度得到222A B C △.(1)请在图中正确作出平面直角坐标系;(2)画出111A B C △和222A B C △.18.如图,在四边形ABCD 中90B D ∠=∠=︒,点E F ,分别在AB ,AD 上AE AF CE CF ==,.(1)判断该图形是否是轴对称图形 (填“是”或“否”); (2)求证:CB CD =.题号 1 2 3 4 5 6 7 8 9 10 答案 B D A D D C C A B B 题号 11 答案 D1.B【分析】本题考查了轴对称图形的定义;平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,就叫做轴对称图形;据此进行逐项分析,即可作答. 【详解】解:A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:B2.D【分析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.据此解答即可.【详解】解:选项A、B、C均不能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以不是轴对称图形选项D能找到这样的一条直线,使图形沿该直线对折后直线两旁的部分能够完全重合,所以是轴对称图形.故选D.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.3.A【分析】根据轴对称图形的定义,逐项分析即可,轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】根据题意,圆、菱形、等腰三角形都是轴对称图形,平行四边形不是轴对称图形.故选A.【点睛】本题考查了轴对称图形的定义,理解轴对称图形的定义是解题的关键.4.D【分析】直接利用轴对称图形的定义得出答案,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、“一”是轴对称图形,故本选项不合题意;B、“中”是轴对称图形,故本选项不合题意;C、“王”是轴对称图形,故本选项不合题意;D、“语”不是轴对称图形,故本选项符合题意.故选:D.【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.D【分析】A.根据轴对称图形的定义判断即可;B.根据轴对称图形的定义判断即可;C.根据轴对称图形的定义判断即可;D.根据轴对称图形的定义判断即可.【详解】A.根据轴对称图形的定义判断,A不是轴对称图形不符合题意;B.根据轴对称图形的定义判断,B不是轴对称图形不符合题意;C.根据轴对称图形的定义判断,C不是轴对称图形不符合题意;D.根据轴对称图形的定义判断,D是轴对称图形符合题意.故选:D【点睛】本题考查轴对称图形的定义,即如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.熟悉这一概念是解题的关键.6.C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A.不是轴对称图形,故本选项不符合题意;B.不是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项符合题意;D.不是轴对称图形,故本选项不符合题意.故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.C【分析】根据轴对称图形的概念进行判断,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A、是轴对称图形,故选项不符合;B、是轴对称图形,故选项不符合;C、不是轴对称图形,故选项符合;D、是轴对称图形,故选项不符合;故选:C.【点睛】此题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合;轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.8.A【分析】根据轴对称图形的定义识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.据此解答即可.【详解】线段是轴对称图形;角是轴对称图形;等腰三角形是轴对称图形;等腰直角三角形是轴对称图形,直角三角形不一定是轴对称图形.故选A.【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.9.B【分析】本题考查了轴对称图形的概念,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A、C、D选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.10.B【分析】根据轴对称图形的概念求解.【详解】根据轴对称图形的概念:是轴对称图形.故选B.【点睛】考查轴对称图形的识别,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.11.D【分析】本题考查了轴对称图形的识别.轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,据此进行逐项判断即可作答.【详解】解:A、该图形不是轴对称图形,故本选项不符合题意;B、该图形不是轴对称图形,故本选项不符合题意;C、该图形不是轴对称图形,故本选项不符合题意;D、该图形是轴对称图形,故本选项符合题意.故选:D.12.3【分析】本题考查对称轴的知识,解题的关键是掌握平面直角坐标系中,点关于y 轴对称:纵坐标不变,横坐标互为相反数,即可. 【详解】⊥点A 、B 关于y 轴对称 ⊥21a b =-⎧⎨=-⎩⊥()213a b +=-+-=- 故答案为:3-. 13.⊥【详解】根据轴对称的意义,沿某条直线对折能够完全重合的两个图形成轴对称,可知图形⊥和图形⊥成轴对称. 故答案为:⊥.14.角平分线所在的直线【详解】角是轴对称图形,它的对称轴是角平分线所在的直线. 故答案为:角平分线所在的直线 15.3【详解】(1)有三条对称轴,是轴对称图形,符合题意; (2)有五条对称轴,是轴对称图形,符合题意; (3)没有对称轴,不是轴对称图形,不符合题意; (4)有对称轴,是轴对称图形,符合题意. ⊥是轴对称图形的有3个. 故答案为3. 16.5【分析】根据轴对称图形的定义求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;分析各图形的特征求解. 【详解】解:根据轴对称图形的定义可知:线段、角、正方形、等腰三角形、等边三角形是轴对称图形; 三角形不一定是轴对称图形; 故是轴对称图形的有5个. 故答案为:5.【点睛】本题考查了轴对称的定义,解题的关键是寻找对称轴,对称轴可使图形两部分折叠后可重合. 17.(1)见解析 (2)见解析【分析】本题考查了平面直角坐标系,轴对称图形的作图,图形平移的作图,熟练掌握相关知识是解答本题的关键.(1)根据A 、C 两点的坐标,可推得坐标原点的位置,由此即可作出图形;(2)根据轴对称图形的作法,分别作点A ,B ,C 关于y 轴的对称点1A ,1B 和1C ,连结11A B ,11B C 和11C A ;作出点1A ,1B 和1C 向下平移4个单位长度的对应点2A ,2B 和2C ,连结22A B ,22B C 和22C A . 【详解】(1)如图即为所求作的平面直角坐标系;(2)如图,111A B C △和222A B C △就是所求作的图形.18.(1)是 (2)见解析【分析】(1)连接AC ,证明ACE ACF ≌得到EAC FAC ∠=∠,证明ABC ADC △≌△,即可得到答案; (2)由(1)得ABC ADC △≌△,即可得到答案. 【详解】(1)解:如图,连接AC在ACE △和ACF △中 AE AF CE CF AC AC =⎧⎪=⎨⎪=⎩()SSS ACE ACF ∴≌EAC FAC ∠=∠∴ 在ABC 和ADC △中 90EAC FAC ABC ADC AC AC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()AAS ABC ADC ∴≌∴该图形沿直线AC 折叠后能够完全重合 ∴该图形是轴对称图形故答案为:是;(2)证明:由(1)得ABC ADC △≌△BC CD ∴=.【点睛】本题考查了全等三角形的判定与性质、轴对称图形的定义,熟练掌握以上知识点是解此题的关键.。
苏科版数学八上第2章轴对称图形2.3设计轴对称图案练习一、选择题1.下列图形都是由两个全等三角形组合而成,其中是轴对称图形的是()A. B. C. D.2.随着现代室内设计的不断发展,具有个性和时代感的设计风格在当今时代被人们所追捧,多数设计风格植入了山西大院窗格的图案、纹样等元素,以下是部分窗格的设计图案,其中不属于轴对称图形的是( )A. B. C. D.3.如图,将正方形图案翻折一次,可以得到的图案是()A. B. C. D.4.如图,点A、B、C都在方格纸的“格点”上,请找出“格点"D,使点A、B、C、D组成一个轴对称图形,这样的点D共有( )个.A.1B.2C.3D.4(4题图)(5题图)(6题图)5.如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有( )A.1种B.2种C.3种D.4种6.如图,方格纸上有2条线段,请你再画一条线段,使图中3条线段组成轴对称图形,最多能画线段的条数是( )A.2条B.3条C.4条D.5条二、填空题7.画轴对称图形,应该先确定,再找出对称点,最后将对称点依次连接起来.8.如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有处.9.如图的2×5的正方形网格中,OA BC的顶点都在小正方形的格点上,这样的.三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.10.如图l所示是个轴对称图形,且每个角都是直角,长度如图所示,小颖按照图2所示的方法玩拼图游戏,两两相扣,相互间不留空隙,那么小颖用2022个这样的图形(图1)拼出来的图形的总长度是 .( 结果用含m, n代数式表示)三、解答题11.下列正方形网格图中,部分方格涂上了阴影,请按照不同要求作图.(1)如图①,整个图形是轴对称图形,画出它的对称轴.(2)如图②,将某一个方格涂上阴影,使整个图形有两条对称轴.(3)如图③,将某一个方格涂上阴影,使整个图形有四条对称轴.12.认真观察下面四幅图中阴影部分构成的图案,回答下列问题.(1)请你写出这四个图案都具有的两个共同特征:特征1 :特征2 :(2)请你借助下面的网格,设计出三个不同图案,使它也具备你所写出的上述特征. (注意:新图案与以上四幅图中的图案不能相同)。
八年级上学期期末专题复习专题4:轴对称一、单选题1. 下列图形中,是轴对称图形的是()A .B .C .D .2. 在直角坐标系xoy中,△ABC关于直线y=1轴对称,已知点A坐标是(4,4),则点B的坐标是()A . (4,﹣4)B . (﹣4,2)C . (4,﹣2)D . (﹣2,4)3. 如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB =CE,则∠B的度数是A . 45°B . 60°C . 50°D . 55°4. 如图,Rt△ABC中,AC=BC=2,点D,E分别是AB,AC的中点,在CD上找一点P,使PA+PE最小,则这个最小值是A . 4B .C . +1D .二、填空题5. 若点M与点N关于x轴对称,则a+b=________.6. 如图,在Rt△ABC中,∠B =90°,ED是AC的垂直平分线,交AC于点D,交BC于E. 已知∠BAE=10°,则∠C的度数为________度.7. 如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出,则该球最后将落入的球袋是________。
三、作图题8. 如图,已知△ABC,∠C=90°,AC<BC,D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=33°,则∠CAD=________°.9. 先填空,后作图:(1)到一个角的两边距离相等的点在它的________上;(2)到线段两端点距离相等的点在它的________上;(3)如图,两条公路AB与CB,C、D是两个村庄,现在要建一个菜市场,使它到两个村庄的距离相等而且还要使它到两条公路的距离也相等,用尺规作图画出菜市场的位置P(不写作法,保留作图痕迹)。
苏科版八年级上册数学轴对称解答题单元复习练习(Word版含答案)一、八年级数学轴对称解答题压轴题(难)1.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.(1)求证:△DCE为等腰三角形;(2)若∠CDE=22.5°,DC=2,求GH的长;(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.【答案】(1)证明见解析;(22;(3)CE=2GH,理由见解析.【解析】【分析】(1)根据题意可得∠CBD=12∠ABC=12∠ACB,,由BD=DE,可得∠DBC=∠E=1 2∠ACB,根据三角形的外角性质可得∠CDE=12∠ACB=∠E,可证△DCE为等腰三角形;(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,2+1,即可求GH的值;(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,即CE=2GH【详解】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠ACB,∵BD=DE,∴∠DBC=∠E=12∠ACB,∵∠ACB=∠E+∠CDE,∴∠CDE=12∠ACB=∠E,∴CD=CE,∴△DCE是等腰三角形(2)∵∠CDE=22.5°,CD=CE2,∴∠DCH=45°,且DH⊥BC,∴∠HDC=∠DCH=45°∴DH=CH,∵DH2+CH2=DC2=2,∴DH=CH=1,∵∠ABC=∠DCH=45°∴△ABC是等腰直角三角形,又∵点G是BC中点∴AG⊥BC,AG=GC=BG,∵BD=DE,DH⊥BC∴BH=HE2+1∵BH=BG+GH=CG+GH=CH+GH+GH2+1∴1+2GH2+1∴GH=2 2(3)CE=2GH理由如下:∵AB=CA,点G是BC的中点,∴BG=GC,∵BD=DE,DH⊥BC,∴BH=HE,∵GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,∴CE=2GH【点睛】本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.2.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-3-(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON).【详解】(1)如图(1)作CQ ⊥OA 于Q,∴∠AQC=90°,△为等腰直角三角形,∵ABC∴AC=AB,∠CAB=90°,∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,≅(AAS),∴AQC BOA∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6,∴C(-6,-2).(2)如图(2)作DP⊥OB于点P,∴∠BPD=90°,△是等腰直角三角形,∵ABD∴AB=BD,∠ABD=∠ABO+∠OBD=90°,∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP,又∵AB=BD,∠AOB=∠BPD=90°,≅∴AOB BPD∴AO=BP,∵BP=OB-PO=m-(-n)=m+n,∵A ()23,0-,∴OA=23,∴m+n=23,∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23,∴整式2253m n +-的值不变为3-.(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM 为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM ≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12EG, ∴EN=12EG, ∵EG=EM-GM,∴EN=12(EM-GM), ∴EN=12(EM-ON).【点睛】本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.3.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB、AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?画出图形,写出结论不证明.【答案】(1)见解析;(2)见解析【解析】【分析】(1)先连接AD,构造全等三角形:△BED和△AFD.AD是等腰直角三角形ABC底边上的中线,所以有∠CAD=∠BAD=45°,AD=BD=CD,而∠B=∠C=45°,所以∠B=∠DAF,再加上BE=AF,AD=BD,可证出:△BED≌△AFD,从而得出DE=DF,∠BDE=∠ADF,从而得出∠EDF=90°,即△DEF是等腰直角三角形;(2)根据题意画出图形,连接AD,构造△DAF≌△DBE.得出FD=ED ,∠FDA=∠EDB,再算出∠EDF=90°,即可得出△DEF是等腰直角三角形.【详解】解:(1)连结AD ,∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD⊥BC ,BD=AD ,∴∠B=∠BAD=∠DAC=45°,又∵BE=AF ,∴△BDE≌△ADF(SAS),∴ED=FD ,∠BDE=∠ADF,∴∠EDF=∠EDA+∠ADF=∠EDA+∠BDE=∠BDA=90°,∴△DEF为等腰直角三角形.(2)连结AD∵AB=AC ,∠BAC=90° ,D为BC中点 ,∴AD=BD ,AD⊥BC ,∴∠DAC=∠ABD=45° ,∴∠DAF=∠DBE=135°,又∵AF=BE ,∴△DAF≌△DBE(SAS),∴FD=ED ,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°.∴△DEF为等腰直角三角形.【点睛】本题利用了等腰直角三角形底边上的中线平分顶角,并且等于底边的一半,还利用了全等三角形的判定和性质,及等腰直角三角形的判定.4.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.5.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.【答案】(1)72;(2)证明见解析;(3)∠B度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE与△AEC为等腰三角形求解即可;(3)根据题意分当BD为特异线、AD为特异线以及CD为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC,∵BD是△ABC的一条特异线,∴△ABD与△BCD为等腰三角形,∴AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB,DC=DB,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD是特异线时,AB=BD,AD=DC,则:∠ABC=180°−20°−20°=140°;当CD为特异线时,不符合题意;综上所述,∠B度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.6.问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.【答案】(1)见详解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM,理由见详解.【解析】【分析】(1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出∠ADC=120°,从而可以求出∠AEB的度数;(3)(Ⅰ)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;(Ⅱ)根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.【详解】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图1,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°;(3)(Ⅰ)如图2,∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴BE=AD,∠BEC=∠ADC,∵点A,D,E在同一直线上,∴∠ADC=180-45=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°,故答案为:90°;(Ⅱ)如图2,∵∠DCE=90°,CD=CE,CM⊥DE,∴CM=DM=EM,∴DE=DM+EM=2CM,∵△ACD≌△BCE(已证),∴BE=AD ,∴AE=AD+DE=BE+2CM ,故答案为:AE=BE+2CM .【点睛】本题属于三角形综合题,主要考查了全等三角形的判定方法和性质,等边三角形的性质以及等腰直角三角形的性质的综合应用.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.7.如图,在等边ABC ∆中,点D ,E 分别是AC ,AB 上的动点,且AE CD =,BD 交CE 于点P .(1)如图1,求证120BPC ︒∠=;(2)点M 是边BC 的中点,连接PA ,PM .①如图2,若点A ,P ,M 三点共线,则AP 与PM 的数量关系是 ; ②若点A ,P ,M 三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.【答案】(1)证明过程见详解;(2)①2AP PM =;②结论成立,证明见详解【解析】【分析】(1)先证明()AEC CDB SAS ≌,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①2AP PM =;由等边三角形的性质和已知条件得出AM ⊥BC ,∠CAP =30°,可得PB =PC ,由∠BPC =120°和等腰三角形的性质可得∠PCB =30°,进而可得AP =PC ,由30°角的直角三角形的性质可得PC =2PM ,于是可得结论;②延长BP 至D ,使PD =PC ,连接AD 、CD ,根据SAS 可证△ACD ≌△BCP ,得出AD =BP ,∠ADC =∠BPC =120°,然后延长PM 至N ,使MN =MP ,连接CN ,易证△CMN ≌△BMP (SAS ),可得CN =BP =AD ,∠NCM =∠PBM ,最后再根据SAS 证明△ADP ≌△NCP ,即可证得结论.【详解】(1)证明:因为△ABC 为等边三角形,所以60A ACB ∠=∠=︒∵AC BCA ACBAE CD=⎧⎪∠=∠⎨⎪=⎩,∴()AEC CDB SAS≌,∴AEC CDB∠=∠,在四边形AEPD中,∵360AEC EPD PDA A∠+∠+∠+∠=︒,∴18060360AEC EPD CDB∠+∠+︒-∠+︒=︒,∴120EPD∠=︒,∴120BPC∠=︒;(2)①如图2,∵△ABC是等边三角形,点M是边BC的中点,∴∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠CAP=12∠BAC=30°,∴PB=PC,∵∠BPC=120°,∴∠PBC=∠PCB=30°,∴PC=2PM,∠ACP=60°﹣30°=30°=∠CAP,∴AP=PC,∴AP=2PM;故答案为:2AP PM=;②AP=2PM成立,理由如下:延长BP至D,使PD=PC,连接AD、CD,如图4所示:则∠CPD=180°﹣∠BPC=60°,∴△PCD是等边三角形,∴CD=PD=PC,∠PDC=∠PCD=60°,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°=∠PCD,∴∠BCP=∠ACD,∴△ACD≌△BCP(SAS),∴AD=BP,∠ADC=∠BPC=120°,∴∠ADP=120°﹣60°=60°,延长PM至N,使MN=MP,连接CN,∵点M是边BC的中点,∴CM=BM,∴△CMN≌△BMP(SAS),∴CN=BP=AD,∠NCM=∠PBM,∴CN∥BP,∴∠NCP+∠BPC=180°,∴∠NCP=60°=∠ADP,在△ADP和△NCP中,∵AD=NC,∠ADP=∠NCP,PD=PC,∴△ADP≌△NCP(SAS),∴AP=PN=2CM;【点睛】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.8.如图1,在△ABC中,∠ACB=90°,AC=12BC,点D为BC的中点,AB =DE,BE∥AC.(1)求证:△ABC≌△DEB;(2)连结AD、AE、CE,如图2.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】【分析】(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=12BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.【详解】(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形∵AC=12BC,点D为BC的中点∴AC=BD又∵AB=DE∴△ABC≌△DEB(H.L.)(2)①由(1)得:△ABC≌△DEB∴BC=EB又∵∠CBE=90°∴∠BCE=45°∴∠ACE=90°-45°=45°∴∠BCE=∠ACE∴CE是∠ACB的角平分线②△ABE是等腰三角形,理由如下:在△ACE和△DCE中AC DCACE BCECE CE=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△DCE(SAS).∴AE=DE又∵AB=DE∴AE=AB∴△ABE是等腰三角形【点睛】本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.9.已知△ABC .(1)在图①中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图②,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下;如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩,∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.10.如图,在等边三角形ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为点D ,连接AD ,BD ,其中BD 交直线AP 于点E .(1)依题意补全图形;(2)若∠PAC =20°,求∠AEB 的度数;(3)连结CE ,写出AE ,BE ,CE 之间的数量关系,并证明你的结论.【答案】(1)补图见解析;(2)60°;(3)CE +AE =BE .【解析】【分析】(1)根据题意补全图形即可;(2)根据轴对称的性质可得AC =AD ,∠PAC =∠PAD=20°,根据等边三角形的性质可得AC =AB ,∠BAC =60°,即可得AB =AD ,在△ABD 中,根据等腰三角形的性质和三角形的内角和定理求得∠D 的度数,再由三角形外角的性质即可求得∠AEB 的度数;(3)CE +AE =BE ,如图,在BE 上取点M 使ME =AE ,连接AM ,设∠EAC =∠DAE =x ,类比(2)的方法求得∠AEB =60°,从而得到△AME 为等边三角形,根据等边三角形的性质和SAS 即可判定△AEC ≌△AMB ,根据全等三角形的性质可得CE =BM ,由此即可证得CE +AE =BE .【详解】(1)如图:(2)在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠PAC =∠PAD ,∴AB =AD∴∠ABD =∠D∵∠PAC =20°∴∠PAD =20°∴∠BAD =∠BAC+∠PAC +∠PAD =100°()1180402D BAD ︒︒∴∠=-∠=. ∴∠AEB =∠D +∠PAD =60°(3)CE +AE =BE . 在BE 上取点M 使ME =AE ,连接AM ,在等边△ABC 中,AC =AB ,∠BAC =60°由对称可知:AC =AD ,∠EAC =∠EAD ,设∠EAC =∠DAE =x .∵AD =AC =AB ,∴()11802602D BAC x x ︒︒∠=-∠-=- ∴∠AEB =60-x +x =60°. ∴△AME 为等边三角形.∴AM=AE ,∠MAE=60°,∴∠BAC=∠MAE=60°,即可得∠BAM=∠CAE.在△AMB 和△AEC 中,AB AC BAM CAE AM AE =⎧⎪∠=∠⎨⎪=⎩, ∴△AMB ≌△AEC .∴CE =BM .∴CE +AE =BE .【点睛】本题是三角形综合题,主要考查了轴对称的性质、三角形的内角和定理、等边三角形的性质及全等三角形的判定与性质等知识点,解决第三问时,通过做辅助线,把AE 转化到BE 上,再证明CE =BM 即可得结论.。
剪纸问题精选题20道一.选择题(共13小题)1.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则FM GF的值是()A.52-B.21-C.12D.22.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.3.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A.B.C.D.4.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH DH AD=≠D.AH DH AD≠≠==C.AH AD DH=≠B.AH DH AD5.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C.D.6.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①②两部分,将①展开后得到的平面图形是()A.矩形B.三角形C.梯形D.菱形7.如图,小明拿一张正方形纸片(如图①),沿虚线向下对折一次得到图②,再沿图②中的虚线向下对折一次得到图③,然后用剪刀沿图③中的虚线剪去一个角,将剩下的纸片打开后得到的图形的形状是()A.B.C.D.8.将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是()A.B.C.D.9.如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是()A.B.C.D.10.如图,将一张正方形纸片按图①,图②所示方法折叠,得到图③,再将图③按虚线剪裁得到图④,将图④展开后得到的图案是()A.B.C.D.11.剪纸是中国古老的汉族传统民间艺术之一.下面是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断()A .是轴对称图形但不是中心对称图形B .是中心对称图形但不是轴对称图形C .既是轴对称图形也是中心对称图形D .既不是轴对称图形也不是中心对称图形12.将一张纸片沿下图中①、②的虚线对折得图2中的③,然后剪去一个角,展开铺平后的图形如下图中的④,则图中的③沿虚线的剪法是( )A .B .C .D .13.若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是( )A .B .C .D .二.填空题(共7小题)14.如图,在四边形纸片ABCD 中,AB BC =,AD CD =,90A C ∠=∠=︒,150B ∠=︒.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD = .15.在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,30AC cm =,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ∆后得到双层BDE ∆(如图2),再沿着过BDE ∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 cm .16.如图,在ABC ∆中,50C ∠=︒,按图中虚线将C ∠剪去后,12∠+∠等于 ︒.17.将一个无盖正方体纸盒展开(如图①),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图②).则所剪得的直角三角形较短的与较长的直角边的比是 .18.把一张长方形纸先左右对折,再上下对折(记为对折2次),然后在折叠着的角上剪刀,将纸展开后,纸的中间就剪出了一个洞如图所示).把一张纸按“先左右,再上下”的顺序对折4次后,再在折叠着的角上剪一刀,将这张纸展开,请动手操作,纸上会出现个洞.19.将一张长为12cm,宽为8cm的长方形纸片按如图对折后剪开,得到的2个长方形沿AF、CE剪开,再将这4个直角三角形拼成如图的大正方形,则此大正方形的面积是.20.如图,在四边形纸片ABCD中,AB BCABC∠=∠=︒,135∠=︒,=,AD CD=,90A C将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为22的平行四边形,则四边形纸片ABCD的面积.剪纸问题精选题20道参考答案与试题解析一.选择题(共13小题)1.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM ,GN 是折痕.若正方形EFGH 与五边形MCNGF 的面积相等,则FM GF 的值是( )A .52-B .21-C .12D .2 【分析】连接HF ,设直线MH 与AD 边的交点为P ,根据剪纸的过程以及折叠的性质得PH MF =且正方形EFGH 的面积15=⨯正方形ABCD 的面积,从而用a 分别表示出线段GF 和线段MF 的长即可求解.【解答】解:连接HF ,设直线MH 与AD 边的交点为P ,如图:由折叠可知点P 、H 、F 、M 四点共线,且PH MF =,设正方形ABCD 的边长为2a ,则正方形ABCD 的面积为24a ,若正方形EFGH 与五边形MCNGF 的面积相等∴由折叠可知正方形EFGH 的面积15=⨯正方形ABCD 的面积245a =, ∴正方形EFGH 的边长24255GF a ==2102HF GF a ∴== 210251052a a MF PH a --∴===∴5102552FM a a GF --=÷= 故选:A .【点评】本题主要考查了剪纸问题、正方形的性质以及折叠的性质,由剪纸的过程得到图形中边的关系是解题关键.2.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是( )A .B .C .D .【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选:C .【点评】此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.3.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( )A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:由于得到的图形的中间是正方形,且顶点在原来的正方形的对角线上,故选:A.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.4.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH DH AD≠≠=≠D.AH DH AD =≠B.AH DH AD==C.AH AD DH【分析】利用图形的对称性特点解题.【解答】解:由图形的对称性可知:AB AH=,CD DH=,正方形ABCD,∴==,AB CD AD∴==.AH DH AD故选:B.【点评】解决本题的关键是利用图形的对称性把所求的线段进行转移.5.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C.D.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.【点评】考查学生的动手操作能力,也可从剪去的图形入手思考.6.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①②两部分,将①展开后得到的平面图形是()A.矩形B.三角形C.梯形D.菱形【分析】本题有助于提高学生的动手及立体思维能力.【解答】解:由折叠过程可得,该四边形的对角线互相垂直平分,则将①展开后得到的平面图形是菱形.故选:D.【点评】此题主要考查菱形的判定以及折叠问题.7.如图,小明拿一张正方形纸片(如图①),沿虚线向下对折一次得到图②,再沿图②中的虚线向下对折一次得到图③,然后用剪刀沿图③中的虚线剪去一个角,将剩下的纸片打开后得到的图形的形状是()A.B.C.D.【分析】利用图形的翻折,由翻折前后的图形是全等形,通过动手操作得出答案.【解答】解:如图所示:故选:A.【点评】本题考查了学生动手操作能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现出来,本题培养了学生的动手能力和空间想象能力.8.将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,剪去右上角,展开得到结论.故选:A.【点评】本题主要考查剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.9.如图,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解结合实际操作解题.【解答】解:在对折后的三角形的三个角上各挖去一个洞,展开后会得到6个洞,排除了第二个图形;在三角形的角上挖洞,展开后洞肯定还是在角上,排除了第一和第四个图形;所以答案为第三个图形;故选:C.【点评】此题主要考查学生的动手实践能力和想象能为.10.如图,将一张正方形纸片按图①,图②所示方法折叠,得到图③,再将图③按虚线剪裁得到图④,将图④展开后得到的图案是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右上翻折,向左上角翻折,剪去左上角,展开得到结论.故选:B.【点评】本题考查的是剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.11.剪纸是中国古老的汉族传统民间艺术之一.下面是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断()A.是轴对称图形但不是中心对称图形B.是中心对称图形但不是轴对称图形C.既是轴对称图形也是中心对称图形D.既不是轴对称图形也不是中心对称图形【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:既是轴对称图形也是中心对称图形,故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.将一张纸片沿下图中①、②的虚线对折得图2中的③,然后剪去一个角,展开铺平后的图形如下图中的④,则图中的③沿虚线的剪法是()A.B.C.D.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:由于得到的图形的中间是正方形,那么它的四分之一为等腰直角三角形.故选B.【点评】本题主要考查空间想象能力:由一个图形的整体看出四分之一.13.若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是()A.B.C.D.【分析】拿正方形纸片先沿对角线向上翻折,再向右翻折,右下翻折,剪去上面一个等腰直角三角形,展开即可得到正确答案.【解答】解:动手操作后可得第一个图案.故选:A .【点评】本题主要考查了剪纸问题;主要是让学生学会动手操作能力.二.填空题(共7小题)14.如图,在四边形纸片ABCD 中,AB BC =,AD CD =,90A C ∠=∠=︒,150B ∠=︒.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD = 23+或423+ .【分析】根据题意结合裁剪的方法得出符合题意的图形有两个,分别利用菱形的判定与性质以及勾股定理得出CD 的长.【解答】解:如图1所示:作//AE BC ,延长AE 交CD 于点N ,过点B 作BT EC ⊥于点T ,当四边形ABCE 为平行四边形,AB BC =,∴四边形ABCE 是菱形,90A C ∠=∠=︒,150B ∠=︒,//BC AN ,30ADC ∴∠=︒,30BAN BCE ∠=∠=︒,则60NAD ∠=︒,90AND ∴∠=︒,四边形ABCE 面积为2,∴设BT x =,则2BC EC x ==,故222x =,解得:1x =(负数舍去),则2AE EC ==,22213EN =-=, 故23AN =+,则423AD DC ==+;如图2,当四边形BEDF 是平行四边形,BE BF =,∴平行四边形BEDF 是菱形,90A C ∠=∠=︒,150B ∠=︒,15ADB BDC ∴∠=∠=︒,BE DE =,30AEB ∴∠=︒,∴设AB y =,则2BE y =,3AE y =,四边形BEDF 面积为2,222AB DE y ∴⨯==,解得:1y =,故3AE =,2DE =,则23AD =+,综上所述:CD 的值为:23+或423+.故答案为:23+或423+.【点评】此题主要考查了剪纸问题以及勾股定理和平行四边形的性质等知识,根据题意画出正确图形是解题关键.15.在三角形纸片ABC 中,90A ∠=︒,30C ∠=︒,30AC cm =,将该纸片沿过点B 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE ∆后得到双层BDE ∆(如图2),再沿着过BDE ∆某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为 40或8033cm .【分析】解直角三角形得到103AB =,60ABC ∠=︒,根据折叠的性质得到1302ABD EBD ABC ∠=∠=∠=︒,103BE AB ==10DE =,20BD =,如图1,平行四边形的边是DF ,BF ,如图2,平行四边形的边是DE ,EG ,于是得到结论.【解答】解:90A ∠=︒,30C ∠=︒,30AC cm =,103AB ∴=60ABC ∠=︒,ADB EDB ∆≅∆,1302ABD EBD ABC ∴∠=∠=∠=︒,103BE AB == 10DE ∴=,20BD =,如图1,平行四边形的边是DF ,BF ,且203DF BF ==∴平行四边形的周长803=如图2,平行四边形的边是DE,EG,且10DE EG==,∴平行四边形的周长40=,综上所述:平行四边形的周长为40或8033,故答案为:40或8033.【点评】本题考查了剪纸问题,平行四边形的性质,解直角三角形,正确的理解题意是解题的关键.16.如图,在ABC∆中,50C∠=︒,按图中虚线将C∠剪去后,12∠+∠等于230︒.【分析】易得C∠的外角度数,那么12360C∠+∠=︒-∠的外角度数,把相关数值代入即可求解.【解答】解:50C∠=︒,C∴∠处的外角18050130=︒-︒=︒,12360130230∴∠+∠=︒-︒=︒.【点评】用到的知识点为:三角形一个顶点处的内角和外角互补;三角形的外角和是360︒.17.将一个无盖正方体纸盒展开(如图①),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图②).则所剪得的直角三角形较短的与较长的直角边的比是1:2.【分析】本题考查了拼摆的问题,仔细观察图形的特点作答.【解答】解:由图可得,所剪得的直角三角形较短的边是原正方体棱长的一半,而较长的直角边正好是原正方体的棱长,所以所剪得的直角三角形较短的与较长的直角边的比是1:2.【点评】本题必须以不变应万变,透过现象把握本质,才能将问题转化为熟悉的知识去解决.18.把一张长方形纸先左右对折,再上下对折(记为对折2次),然后在折叠着的角上剪刀,将纸展开后,纸的中间就剪出了一个洞如图所示).把一张纸按“先左右,再上下”的顺序对折4次后,再在折叠着的角上剪一刀,将这张纸展开,请动手操作,纸上会出现 4 个洞.【分析】经过动手操作,可以得出对折3次得出2个洞;对折4次,得出4个洞;对折5次,得出8个洞;对折6次,得出16个洞;由此可以得出从对折2次开始,所得到的洞的个数分别为:1、2、4、8、16、⋯,这个数列也可以写成1、12、22、32、⋯由此即可得出对折n 次洞的个数为22n -个.【解答】解:根据分析,从对折2次开始,所得到的洞的个数分别为:1、2、4、8、16、⋯,这个数列也可以写成1、12、22、32、⋯对折n 次洞的个数为22n -个.对折4次后纸中间剪出洞的个数为:422224-==(个);故答案为:4.【点评】此题主要考查了剪纸问题,考查了分析推理能力、观察能力和总结能力的应用,要熟练掌握,解答此题的关键是要明确:洞的个数22-=对折次数.19.将一张长为12cm ,宽为8cm 的长方形纸片按如图对折后剪开,得到的2个长方形沿AF 、CE 剪开,再将这4个直角三角形拼成如图的大正方形,则此大正方形的面积是 2100cm .【分析】直接利用已知得出大正方形的边长进而得出其面积.【解答】解:由题意可得:6BF cm =,8AB cm =,故226810()AF cm =+=,则此大正方形的边长为10cm ,故其面积是21010100()cm ⨯=.故答案为:2100cm .【点评】此题主要考查了剪纸问题,正确得出正方形的边长是解题关键.20.如图,在四边形纸片ABCD 中,AB BC =,AD CD =,90A C ∠=∠=︒,135ABC ∠=︒,将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有一个是面积为22的平行四边形,则四边形纸片ABCD 的面积 (442)+或(222)+ .【分析】根据题意分两种情况剪拼,根据题意结合裁剪的方法得出符合题意的图形有两个,分别利用菱形的判定与性质以及勾股定理得出四边形纸片ABCD 的面积.【解答】解:如图1所示:作//AE BC ,延长AE 交CD 于点N ,过点B 作BT EC ⊥于点T ,当四边形ABCE 为平行四边形,AB BC =,∴四边形ABCE 是菱形,90A C ∠=∠=︒,135ABC ∠=︒,//BC AN ,45ADC ∴∠=︒,45BAN BCE ∠=∠=︒,则45NAD ∠=︒,90AND ∴∠=︒,四边形ABCE 面积为22, ∴设BT x =,则2BC EC x ==, 故2222x =,解得:2x =(负数舍去), 则2AE EC BC ===,2EN CN ==, 故22AN DN ==+, 则222DC CN DN =+=+; 则四边形纸片ABCD 的面积为:122(222)24422DCB S DC BC ∆=⨯=+⨯=+; 如图2,当四边形BEDF 是平行四边形,BE BF =,∴平行四边形BEDF 是菱形, 90A C ∠=∠=︒,135ABC ∠=︒, 22.5ADB BDC ∴∠=∠=︒, BE DE =,45AEB ∴∠=︒,∴设AB AE y ==,则2BE y =, 四边形BEDF 面积为22 2222AB DE y ∴⨯== 解得:2y 2AE AB ==2DE =, 则22AD CD ==第1页(共1页)则四边形纸片ABCD 的面积为:122(2222DCB S DC BC ∆=⨯=⨯=+ 综上所述:则四边形纸片ABCD 的面积为:(4+或(2+.故答案为:(4+或(2+.【点评】本题考查了剪纸问题、全等三角形的判定与性质、平行四边形的性质,根据题意画出正确图形是解题关键.。
苏科版数学 八年级上学期 期末测试题1、下列说法中,正确的个数是( )(1)轴对称图形只有一条对称轴,(2)轴对称图形的对称轴是一条线段,(3)两个图形成轴对称,这两个图形是全等图形,(4)全等的两个图形一定成轴对称,(5)轴对称图形是指一个图形,而轴对称是指两个图形而言。
A 1个B 2个C 3个D 4个2、轴对称图形的对称轴的条数( )A 只有一条B 2条C 3条D 至少一条3、下列图形中,不是轴对称图形的是( )A. 两条相交直线B. 线段C.有公共端点的两条相等线段D.有公共端点的两条不相等线段4、到三角形的三个顶点距离相等的点是( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点5、 在△ABC 中,AB=AC ,BC=5cm ,作AB 的垂直平分线交另一腰AC 于D ,连结BD ,如果△BCD 的周长是17cm ,则腰长为( )A 、12cmB 、6 cmC 、 7 cmD 、5 cm6、如图,⊿ABC 中,BC =10,边BC 的垂直平分线分别交AB 、AC 于点E 、F ,BE =7,⊿BCE 的周长为_____。
7、如图,A 、B 是公路边两个新建的居民小区,某镇需在公路边增加一个公共汽车站,这个公共汽车站建在什么位置,才能使两个小区到车站的路程一样,找出汽车站的位置并说明理由。
8、点Q 在∠AOB 的平分线上,QA ⊥OA 于A ,QB ⊥OB 于B ,则AQ =____ ,理由是_____________________________________。
9、如图,∠C=900,∠1=∠2,若BC=10,BD=6,则D到边AB的距离为_____。
10、如图,点P在∠AOB内,PM⊥OA于M,PN⊥OB于N,且PM=PN,连结OP,则OP是________________。
依据是_______________________________。
第二章《轴对称图形》单元检测(满分:100分时间:90分钟)一、选择题(每题2分,共16分)1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是() 3. 如图,在AABC 中,ZACB=90° ,沿CD 折叠△ CBD,使点B 恰好落在边AC 上的点E 处,若ZA=22° ,则ZBDC 的度数为 ( )5. 如图,OP 平分ZAOB, PA 丄OA, PB 丄OB,垂足分别为点A, B.下列结论不一定成 立的是()A. PA=PBB. PO 平分ZAPBC. OA=OBD. AB 垂直平分 OP6. 如图,己知O 是四边形ABCD 内一点,若OA=OB = OC, ZABC= ZADC=70° , 则ZDAO+ ZDCO 的大小是 ( )A ・ 70°B ・ 110° C. 140° D. 150°7. 如图,在RtAABC 屮,ZC=90° , AB 的垂直平分线DE 交BC 于点D,交AB 于点© ® © B CDA. 44°B. 60°C. 67°D. 77°4. 如图,OP 平分=MON, PA 丄ON 于点A,点Q 是射线OM 上的一个动点,若PA = 2, C. 3 D. 4A. 13B. 11C. 10D. 8 第3题图 第5题图E.当ZB = 30°时,下列结论不正确的是()A.AC=AE=BEB. AD=BDC. CD=DE D・ AC = BD& 如图,己知ZMON = 30° ,点A 】,A 2, A3,…在射线ON 上,点B], B 2, B3,…在 射线OM 上.△A I B I A?, AA2B2A3, △A3B3A4,…均为等边三角形,若OAi = l,则厶A 6B 6A 7 的边长为()A. 6B. 12C. 32D. 64二、填空题(每题2分,共20分)9.己知以下四个汽车标志图案:其中是轴对称图形的图案是 _________ (填代号).10・如图,在2X2的正方形格纸中,有一个以格点为顶点的AABC,请你找出格纸中所 有与AABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有 ____________ 个.11. _______________ 如图,在Z\ABC 中,ZC = 90° , ZBAC 的平分线交BC 于点D.若CD=4,则点D 到AB 的距离是 _ . 12. 如图,已知AD 丄BC,垂足为点D, D 为BC 的中点,连接AB, ZABC 的平分线交 AD 于点 O,连接 OC.若ZAOC=125° ,则 ZABC= _____________ .13. 如图,在AABC 中,ZB 与ZC 的平分线交于点O,过点O 作DE 〃BC,分别交AB, AC 于点D, E.若AB=5, AC=4,则Z\ADE 的周氏是 _______________ ・14. 如图,CD 与BE 互相垂直平分,AD 丄DB,若ZBDE=70° ,则ZCAD= _____________ . 15. 如图,ZBAC=110° ,若MP 和NQ 分别垂直平分AB 和AC,则么PAQ= ______________ .第7题图 第8题图c AA M① ② ③ ④第9题图 第11题图 第12题图D第6题图16. ___________________________________________________________ 若等腰三角形一腰上的高与另一腰的夹角为30° ,则顶角的度数为 ____________________________ •17・在4X4的方格屮有五个同样大小的正方形按图示位置摆放,移动其屮一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形.这样的移法共有 ______________ 种.18. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点E,若AC 平分ZDAB,且AB = AC = AD.有如下四个结论:CDAC 丄BD ;②BC = DE ;③ZDBC=-ZDAC ;④厶 2ABC 是正三角形.请写出正确结论的序号 ___________ .(填序号)三、解答题(共64分)19. (本题8分)如图,在由边长为1的小正方形组成的10X10的网格中(我们把组成网 格的小正方形的顶点称为格点),四边形ABCD 在直线/的左侧,其四个顶点A, B, C, D 分别在网格的格点上.⑴请你在所给的网格屮画出四边形ABCD,使以边形ABCD 和四边形ABCD 关于 直线/对称;(2)在⑴的条件下,结合你所画的图形,直接写出四边形A*B, CD 的面积.B第14题图A 第13题图 E 第15题图第17题图 第18题图20.(本题8分)如图,在AABC中,ZC=90° .⑴用圆规和直尺在边AC±作点P,使点P到A, B的距离相等;(保留作图痕迹,不写作法和证明)(2)当满足⑴的点P到AB, BC的距离相等时,求ZA的度数.第20题图21.(本题8分)如图,在AABC中,DM, EN分别垂直平分AC和BC,交AB于M, N 两点,DM 与EN相交于点F.(1)若ACMN的周长为15cm,求AB的长;(2)若ZMFN = 70° ,求ZMCN 的度数.第21题图22.(本题8 分)如图,在AABC 中,AB=AC, D 为边BC 上一点,ZB = 30° , ZDAB =45° .(1)求ZDAC的度数;(2)求证:DC = AB.第22题图23.(本题8分)如图,在AABC中,AB = AC,点D, E, F分别在边AB, BC, AC ±, 且BD=CE, BE=CF・如果点G为DF的中点,那么EG与DF垂直吗?请说明你的理由.第23题图24. (本题10分)如图,在Z\ABC 中,AB = AC, D, E 是BC 边上的点,连接AD, AE, 以厶ADE 的边AE 所在直线为对称轴作AADE 的轴対称图形△ ADE,连接DC,若BD =CD.(1) 求证:AABD^AACD';(2) 若ZBAC=120° ,求ZDAE 的度数.25. (本题12分)(1) 操作发现:如图1, D 是等边三角形ABC 边BA 上一动点(点D 与点B 不重合),连接DC,以DC 为边在BC 上方作等边三角形DCF,连接AF.你能发现线段AF 与BD 之间的数量关系吗? 并证明你发现的结论.(2) 类比猜想:如图2,当动点D 运动到等边三角形ABC 边BA 的延长线上时,其他作法与(1)相同,猜 想AF 与BD 在(1)屮的结论是否仍然成立?(3) 深入探究:①如图3,当动点D 在等边三角形ABC 的边BA 上运动时(点D 与点B 不重合),连接 DC,以DC 为边在其上方、下方分别作等边三角形DCF 和等边三角形DCF,连接AF, BF.探究AF, BF 与AB 有何数量关系?并证明你探究的结论,②如图4,当动点D 在等边三角形ABC 的边BA 的延长线上运动吋,其他作法与图3 相同,①中的结论是否仍然成立?若不成立,是否有新的结论?并证明你得出的结论.第24题图F第25题图A F21. (l)15cm (2)40°22. (1)75° (2)略23. EG 与DF 垂直.24. (1)略 ⑵60°25. (1)AF=BD. (2)AF 与BD 在⑴中的结论仍然成立(3)①AF+BF = AB.参考答案一、 选择题l.B 2.B 3.C 4.B 5.D 6.D 7.D 8.C 二、 填空题9.①③ 10.5 11.4 12.70° 13.9 .14.70° 15.40° 18. ①③三、 解答题19. ⑴所作图形如下:(2)四边形ABCD 的面积为6.516.60° 或 120°17.13八上第二章《轴对称图形》复习(满分:120分时间:60分钟)一、选择题(每题3分,共24分)1.下列图案属于轴对称图案的是 ( )2. 如图,正方形地砖的图案是轴对称图形,该图形的对称轴有3. 如图所示是一台球桌面的示意图,图中小正方形的边长均相等,黑球放在如图所示的 位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是 () A.①B.②C.⑤D. © 4.到三角形三条边的距离都相等的点是这个三角形的()6.如图,一个等边三角形纸片剪去一个角后得到一个四边形,图中Za+Zp 的度数是 ( )A. 180°B. 220°C. 240°D. 300° 7.如图,在AABC 中,AB = AC, ZA=120° , BC = 6cm.若AB 的垂直平分线交BC于点M,交AB 于点E, AC 的垂直平分线交BC 于点N,交AC 于点F,则MN 的长为( )A. 4cmB. 3cmC. 2cm D ・ 1cm© OA B A. 1条 B. 2条 C. 4条 D. 8条 A.三条中线的交点C.三条边的垂直平分线的交点B.三条高的交点 D.三条角平分线的交点5.若等腰三角形的一个角等于42°,则它的底角为 A. 42°69° 或 84。
- 1 -
A
B
C
D
E
F
期末复习——轴对称图形
班级____________ 姓名____________ 得分____________
一、选择题
1、下列图形是轴对称图形的是
下列图形是轴对称图形的是 ( )
2、等腰三角形的一边长是10 cm,另一边长是6 cm,则它的周长是 ( )
A.26 cm B.22 cm C.16 cm D.22 cm或26 cm
3、.如图3,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,
使整个被涂黑的图案构成一个轴对称图形的方法有( )种.
A.4 B.5 C.6 D.7
4、下列图形中,对称轴最多的是 ( )
A.正方形 B.等边三角形 C.线段 D.等腰三角形
5、已知:如图,BD为△ABC的的角平分线,且BD=BC,E为
BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.
下列结论:①△ABD≌△EBC; ②∠BCE+∠BCD=180°;
③AD=AE=EC;④BA+BC=2BF.其中正确的是( )
A.①②③ B.①③④ C.①②④ D.①②③④
二、填空题
6、(1)如图,在Rt△ABC中,∠C=90°,BD是三角形的角平分线,交AC于点D,AD= 2.2
cm,AC=3.7 cm,则点D到AB边的距离是__________cm.
(2)在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,
则∠B的度数为__________.
第6题图 第7题图
7、如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.
(1)若△AEF的周长为10 cm,则BC的长为__________cm.
(2)若∠EAF=100°,则∠BAC__________.
8、(1)如图①,在Rt△ABC中,若AB=AC,AD=AE,∠BAD=40°,则∠EDC=__________.
(2)如图②,∠ACB=90°,E、F为AB上的点,AE=AC,BC=BF,则∠ECF=__________.
- 2 -
三、解答题:
9、在图示的网格中
①作出△ABC关于MN对称的图形△A1B1C1;
②说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?
10、(1)如图,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB于
点M、;N
(2)若P1P2=5 cm,则△PMN的周长为?
11、如图,BO平分∠CBA,CO平分∠ACB,MN过点O,且MN∥BC,若AB=12,△
AMN的周长为29,求AC的长.
12、在△ABC中,∠C=90°,DE垂直平分斜边AB,分别交AB,BC于D,E.若∠CAE=
∠B=30°,求∠AEB.(5分)
(第11题)
E
B
D
C
A