热力学第九章
- 格式:ppt
- 大小:827.50 KB
- 文档页数:22
第九章相变过程相变过程是物质从一个相转变为另一个相的过程。
一般相变前后相的化学组成不变,因而相变是个物理过程不涉及化学反应。
从狭义讲,相变仅限于同组成的两相之间的结构变化;但广义概念,相变应包括过程前后相组成发生变化的情况。
第一节相变的热力学分类一.一级相变热力学特点:1.相变时,两相的自由焓相等(即G1=G2,dG=0)。
∵G = U+pV-TSdG = dU+pdV+Vdp-TdS-SdT = 0假设是可逆过程且只做体积功,由热力学第一定律,内能增量为dU = TdS-pdV∴dG = TdS-pdV+pdV+Vdp-TdS-SdT∴dG = Vdp-SdT2.相变的时候,两相的自由焓一阶导数不连续。
恒压条件下,自由焓对温度求导,(∂G1/∂T)P≠(∂G2/∂T)P而恒压下,(∂G/∂T)=-S∴S1≠S2∴两相的熵发生不连续的变化(即没有相变潜热)。
温度T一定时,(∂G1/∂p)T≠(∂G2/∂p)T而温度T一定时,(∂G/∂p)=V∴V1≠V2∴有体积效应所以,相变时,有相变潜热,有体积效应。
二. 二级相变热力学特点:1.两相的自由焓相等。
2.两相自由焓的一阶导数是连续的(即相变时,没有相变潜热,没有体积效应)。
3.自由焓的二阶导数不连续。
P一定时,(∂2G/∂T2)P=-(∂S/∂T)P=-(C p/T),即二级相变时,C p1≠C p2,也就是两相的热容不等。
T一定时,(∂2G/∂p2)T=(∂V/∂p)T=(1/V)*(∂V/∂p)T*V,而K=(1/V)*(∂V/∂p)TK为等温压缩系数,所以K1≠K2;即二级相变时,两相的等温压缩系数是变化的。
(∂2G/∂p*∂T)=(∂V/∂T)p=(1/V)*(∂V/∂T)p*V,而α=(1/V)*(∂V/∂T)p 为等压 热膨胀系数,所以α1≠α2;即二级相变时,两相的等压热膨胀系数是变化的。
第二节 液——固相变(熔体结晶)一.核化均匀熔体实际上必须冷却到比熔点更低的一个温度才开始析晶。
第九章相变过程相变过程是物质从一个相转变为另一个相的过程。
一般相变前后相的化学组成不变,因而相变是个物理过程不涉及化学反应。
从狭义讲,相变仅限于同组成的两相之间的结构变化;但广义概念,相变应包括过程前后相组成发生变化的情况。
第一节相变的热力学分类一.一级相变热力学特点:1.相变时,两相的自由焓相等(即G1=G2,dG=0)。
∵G = U+pV-TSdG = dU+pdV+Vdp-TdS-SdT = 0假设是可逆过程且只做体积功,由热力学第一定律,内能增量为dU = TdS-pdV∴dG = T dS-pdV+pdV+Vdp-TdS-SdT∴dG = Vdp-SdT2.相变的时候,两相的自由焓一阶导数不连续。
恒压条件下,自由焓对温度求导,(∂G1/∂T)P≠(∂G2/∂T)P而恒压下,(∂G/∂T)=-S∴S1≠S2∴两相的熵发生不连续的变化(即没有相变潜热)。
温度T一定时,(∂G1/∂p)T≠(∂G2/∂p)T而温度T一定时,(∂G/∂p)=V∴V1≠V2∴有体积效应所以,相变时,有相变潜热,有体积效应。
二. 二级相变热力学特点:1.两相的自由焓相等。
2.两相自由焓的一阶导数是连续的(即相变时,没有相变潜热,没有体积效应)。
3.自由焓的二阶导数不连续。
P一定时,(∂2G/∂T2)P=-(∂S/∂T)P=-(C p/T),即二级相变时,C p1≠C p2,也就是两相的热容不等。
T一定时,(∂2G/∂p2)T=(∂V/∂p)T=(1/V)*(∂V/∂p)T*V,而K=(1/V)*(∂V/∂p)TK为等温压缩系数,所以K1≠K2;即二级相变时,两相的等温压缩系数是变化的。
(∂2G/∂p*∂T)=(∂V/∂T)p=(1/V)*(∂V/∂T)p*V,而α=(1/V)*(∂V/∂T)p为等压热膨胀系数,所以α1≠α2;即二级相变时,两相的等压热膨胀系数是变化的。
第二节液——固相变(熔体结晶)一.核化均匀熔体实际上必须冷却到比熔点更低的一个温度才开始析晶。
第9章 热力学基础一. 基本要求1. 理解平衡态、准静态过程的概念。
2. 掌握内能、功和热量的概念。
3. 掌握热力学第一定律,能熟练地分析、计算理想气体在各等值过程中及绝热过程中的功、热量和内能的改变量。
4. 掌握循环及卡诺循环的概念,能熟练地计算循环及卡诺循环的效率。
5. 了解可逆过程与不可逆过程的概念。
6. 解热力学第二定律的两种表述,了解两种表述的等价性。
7. 1. 内能 E 仅为温度T 功 在p —V 热量 2. 3. (1)(2) 系统吸收的热量 12M P m o lP式中R C C V P +=为等压摩尔热容。
(3)等温过程 温度不变的过程,其特点是温度T =常量;其过程方程为pV =常量在等温过程中,系统内能无变化,即(4)绝热过程 不与外界交换热量的过程,其特点是dQ=0,其过程方程pV γ=常量在绝热过程中,系统对外做的功等于系统内能的减少,即7. 循环过程 系统从某一状态出发,经过一系列状态变化后又回到了初始状态的整个变化过程。
其特点是内能变化为零,即在循环过程中,系统吸收的净热量(吸收热量1Q 与放出热量2Q 之差。
注意这里及以后的2Q 均指绝对值)与系统对外做的净功(系统对外作的功1A 与外界对系统作的功2A 之差)相等,即若循环沿过程曲线的顺时针方向进行(称为热循环),则其效率8. 卡诺循环 由两个等温过程和两个绝热过程组成的循环,其效率习 题9-1有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的温度和压强都相等,现将5J 的热量都传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递的1)绝程在V—T a 和由初态a ′cb b ,如P (A)Q 1<0,Q 1>Q 2 (B )Q 1 >0,Q 1>Q 2(C )Q 1<0,Q 1<Q 2 (D )Q 1>0,Q 1<Q 2 [ ]9-8设高温热源的热力学温度是低温热源的热力学温度的n 倍,则理想气体在一次卡诺循环中,传给低温热源的热量是从高温热源吸取的热量的(A )n 倍 (B )n -1倍 (C )n1倍 (D )n n 1+倍 [ ]9-10如图所示的两个卡诺循环,第一个沿A 、B 、C 、D 、A 进行,第二个沿A 、B 、C /、D ?、A 进行,这两个循环的效率?1和?2的关系及这两个循环所作的净功A 1和A 2的关系是(A )?1=?2,A 1=A 2 (B )?1>?2,A 1=A 2 (C )?1=?2,A 1>A 2(D )?1=?2,A 1<A 2 [ ] 9-14 一定量的理想气体,分别经历如图(1)所示的abc 过程,(图中虚线ac 为等温线),和图(2)所示的def 过程(图中虚线df 为绝热线)。
第九章相变第九章相变前⼋章我们重点讨论了⽓体的各种性质,也介绍了液体、固体的基本热学性质。
可以说,我们基本上研究了所有的物质。
到此为⽌,我们对热学这门课的梗概应该有⼀个轮廓了。
但是事物之间是普遍联系的,普遍联系的原则是⾃然界最基本的原则。
⾃然界中许多物质都以固、液、⽓三种集聚态存在,然⽽物质的三态可以互相转化并为物质本的性所决定。
例如,常态下液体的⽔可变成⽔蒸汽,也可变成冰,⽽且冰可直接变成汽。
都⾮常形象地说明了这种联系。
显然,这⼀系列转化都与物质内部微粒的热运动有着密切关系。
因此,作为普通物理的热学,⾄少应当对这个问题有⼀个简明的回答,哪怕是最肤浅的。
物质为什么会发⽣物态变化?物态变化的条件什么?物态变化的规律是什么?这些都是我们必须回答的基本问题。
这正是本章的内容。
§1单元第⼀级相变的主要特征教学⽬的和要求:理解“相变”等概念,理解“相变潜热”的物理意义。
掌握单元系⼀级相变的普遍特点和简单规律。
教学时间:⼀课时教学内容:⼀.预备知识:1.何谓相?物理性质均匀的部分,它和其它部分之间有⼀定的分界⾯隔离开来。
例如:冰和⽔的混合物,冰块和⽔有分界⾯,冰块⾥⽔物理性质三均匀的,液体中的⽔物理性质也是均匀的。
那么,冰释⼀个相,⽔也是⼀个相。
2.单元复相系(1)单元:⼀种学化物质(2)单元单相:⼀种化学物质⼀个相的体系例如:冰总是⽔的单元单相系⽔、⽔蒸汽没有混合,是两个单元相性(3)单元复相系:⼀种化学物质,有两个或以上的相。
这样的体系为单元复相系例如,冰⽔混合物是⽔的单元:相系开着的⽔也是⽔的⼀个单元⼆相系固体中不同的点阵结构可视为不同的相。
本书只研究单元系3.相变:物体的相变发⽣变化叫相变相变是在⼀定的温度和压强下进⾏的。
例如,在1atm和100℃时,⽔由液体相变成汽相,但若P不是1atm时,沸点也不再是100℃。
⾼压锅就是这样。
4.⼆级相变:没有什么积的变化,也没有相变潜热,⼈有热容易膨胀系数,⾼温压缩系数发⽣突变。