解偏微分方程(研究生课程)
- 格式:pdf
- 大小:867.35 KB
- 文档页数:15
偏微分方程与常微分方程的解法在数学领域中,微分方程是一类重要的方程,常见的包括偏微分方程和常微分方程。
本文将介绍偏微分方程和常微分方程的解法。
一、偏微分方程的解法偏微分方程是涉及多个变量的方程,其中包含了未知函数的偏导数。
解决偏微分方程的方法有很多种,以下将介绍其中两种常见的解法。
1. 分离变量法分离变量法是一种常用的解偏微分方程的方法。
首先,将多变量的偏微分方程转化为一个或多个只包含一个变量的常微分方程。
然后,通过求解这些常微分方程,得到原偏微分方程的解。
举例来说,考虑一个常见的分离变量法的应用:热传导方程。
热传导方程描述了物质内部温度的变化情况。
假设我们要解决一维热传导方程,可以将变量分离为时间变量和空间变量。
通过引入一个分离常数,将方程转化为两个常微分方程,然后求解这两个方程得到温度分布的解析解。
2. 变量替换法变量替换法是解决偏微分方程的另一种常见方法。
该方法通过引入适当的变量替换,将原方程转化为一个更简单的形式。
通过这种变换,可以使得方程的求解更加容易。
以二阶线性偏微分方程为例,假设要解决的方程为:$$\frac{{\partial^2 u}}{{\partial x^2}} + \frac{{\partial^2 u}}{{\partialy^2}} = 0$$我们可以通过引入新的变量替换,例如令$v = \frac{{\partialu}}{{\partial x}}$,将原方程转化为两个常微分方程$\frac{{dv}}{{dx}} = 0$和$\frac{{dv}}{{dy}} = 0$。
然后,求解这两个方程,再回代求解原方程,得到偏微分方程的解。
二、常微分方程的解法常微分方程是只依赖一个自变量的方程,其中包含了未知函数的导数。
解决常微分方程的方法也有很多种,以下介绍其中两种常见的解法。
1. 分离变量法分离变量法同样可用于求解常微分方程。
通过将方程中的未知函数和自变量分离,将其转化为可分离变量的形式。
第十章 偏微分方程数值解法偏微分方程问题,其求解十分困难。
除少数特殊情况外,绝大多数情况均难以求出精确解。
因此,近似解法就显得更为重要。
本章仅介绍求解各类典型偏微分方程定解问题的差分方法。
§1 差分方法的基本概念1.1 几类偏微分方程的定解问题椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程),(2222y x f yu x u u =∂∂+∂∂=∆ 特别地,当0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称为调和方程2222=∂∂+∂∂=∆yux u u Poisson 方程的第一边值问题为⎪⎩⎪⎨⎧Ω∂=Γ=Ω∈=∂∂+∂∂Γ∈),(),(),(),(),(2222y x y x u y x y x f y ux u y x ϕ 其中Ω为以Γ为边界的有界区域,Γ为分段光滑曲线,ΓΩ称为定解区域,),(y x f ,),(y x ϕ分别为Ω,Γ上的已知连续函数。
第二类和第三类边界条件可统一表示为),(),(y x u u y x ϕα=⎪⎪⎭⎫ ⎝⎛+∂∂Γ∈n 其中n 为边界Γ的外法线方向。
当0=α时为第二类边界条件, 0≠α时为第三类边界条件。
抛物型方程:其最简单的形式为一维热传导方程220(0)u ua a t x∂∂-=>∂∂ 方程可以有两种不同类型的定解问题:初值问题⎪⎩⎪⎨⎧+∞<<∞-=+∞<<-∞>=∂∂-∂∂x x x u x t x u a tu )()0,(,0022ϕ初边值问题221200,0(,0)()0(0,)(),(,)()0u ua t T x l t x u x x x lu t g t u l t g t t Tϕ⎧∂∂-=<<<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩其中)(x ϕ,)(1t g ,)(2t g 为已知函数,且满足连接条件)0()(),0()0(21g l g ==ϕϕ边界条件)(),(),(),0(21t g t l u t g t u ==称为第一类边界条件。
偏微分方程的分类及其求解方法偏微分方程是数学中的一个重要分支,它是描述现实世界中各种自然现象的一种工具。
通俗来说,偏微分方程是一种与时间、空间或空间位置有关的方程式。
偏微分方程的应用范围极广,如物理、数学、金融等领域,它的求解方法也因其类别不同而不同。
偏微分方程的分类偏微分方程可以按照方程中未知函数的数量和自变量的数量分类。
1. 偏导数方程偏导数方程是指方程中只有一个未知函数,但它依赖于多个独立变量(通常是时间和空间)的变量。
常见的偏导数方程包括热传导方程和波动方程。
热传导方程:热传导方程可以描述物质中的热传导过程。
在物质内部,热会沿着温度梯度传导,从高温区域传到低温区域。
因此,热传导方程与物质的热扩散有关。
波动方程:波动方程可以描述许多物理过程,特别是电磁波、声波和其他类型的波动。
波动方程的形式类似于二阶线性常微分方程。
2. 广义保守方程系广义保守方程是指方程中有多个未知函数和多个独立变量的变量。
它们可以描述流体动力学、多相系统等系统。
常见的广义保守方程系包括纳维-斯托克斯方程和零阻力欧拉方程。
纳维-斯托克斯方程:纳维-斯托克斯方程可以描述流体运动。
纳维-斯托克斯方程可以分为不可压缩纳维-斯托克斯方程和可压缩纳维-斯托克斯方程。
零阻力欧拉方程:零阻力欧拉方程是一种部分解析的解对称的不可压缩流体运动的偏微分方程。
它是最基本的转子动量方程之一,在研究飞行器、导弹、宇宙航行器等方面起着重要的作用。
偏微分方程的求解方法1. 分离变量法分离变量法是偏微分方程求解的一种基本方法。
其主要思想是将多元函数表示为各变量的单元函数乘积形式,再通过互相作为超定条件的单个变量的恒等式得到未知参数。
例如,假设在一维的热传导方程中,温度场函数是t(x,t),其中x是空间变量,t是时间变量。
则可以将温度场函数写成t(x,t)=X(x)T(t)的形式,从而将偏微分方程转化为两个常微分方程。
通过求解这些常微分方程可以得到解。
2. 有限差分法有限差分法是一种数值解偏微分方程的方法。
偏微分方程的基本理论与解法偏微分方程(Partial Differential Equations,简称PDE)是数学中非常重要的一个分支。
它描述了自然界中各种物理现象和工程问题中的变化和传播过程。
本文将介绍偏微分方程的基本理论和一些常见的解法。
一、偏微分方程的定义与分类偏微分方程是包含多个未知函数及其偏导数的方程。
它的一般形式可以表示为F(x1, x2, ..., xn, u, ∂u/∂x1, ∂u/∂x2, ..., ∂u/∂xn) = 0,其中u是未知函数,而∂u/∂xi表示对变量xi的偏导数。
根据方程中涉及的未知函数的个数以及偏导数的阶数,偏微分方程可以分为以下几类:1. 一阶偏微分方程:方程中包含一阶偏导数。
2. 二阶偏微分方程:方程中包含二阶偏导数。
3. 高阶偏微分方程:方程中包含高于二阶的偏导数。
4. 线性偏微分方程:方程中的未知函数及其偏导数之间的关系是线性的。
5. 非线性偏微分方程:方程中的未知函数及其偏导数之间的关系是非线性的。
二、偏微分方程的基本理论1. 解的存在性和唯一性:对于一些特定类型的偏微分方程,可以证明在一定的条件下,方程存在唯一的解。
这对于物理和工程问题的建模和求解非常重要。
2. 奇性理论:奇性现象是指当某些参数取特定值时,偏微分方程的解会发生突变。
奇性理论研究了这些特殊情况下方程解的行为。
3. 变分原理:变分原理是一种通过极小化能量泛函来求解偏微分方程的方法。
它是最优控制、计算物理等领域中的重要工具。
三、常见的偏微分方程解法1. 分离变量法:这是一种常见的求解线性偏微分方程的方法。
通过假设解可分离变量的形式,将方程转化为一系列常微分方程。
2. 特征线法:特征线法适用于一些特殊的偏微分方程,通过引入一组参数,将方程转化为关于参数的常微分方程组。
3. 变换法:变换法通过引入适当的变换,将原方程转化为简单形式的偏微分方程,进而求解。
总结:本文简单介绍了偏微分方程的基本理论与解法。
偏微分方程数值解法的研究与应用偏微分方程是研究物理、化学、生物、地理等领域中一些基本规律的数学模型。
它们可以描述有关温度、电磁场、流体力学、生物物理学等的动态变化过程。
偏微分方程的解决对相关学科的发展和创新有着重要意义。
然而,解决偏微分方程的数值方法一直是一个难题。
本文将讨论偏微分方程数值解法的研究和应用。
一、偏微分方程及其解法简介偏微分方程是一种描述物理现象和系统行为的数学方程,在经济、生物学、物理学、化学等多个领域都有应用。
与普通微分方程不同,偏微分方程涉及多个变量之间的关系。
在实际应用中,常采用数值方法求解偏微分方程的解。
数值解法通常通过将偏微分方程转化为一个离散的方程组,然后用计算机求解。
目前,主要的偏微分方程数值解法包括有限元法、有限差分法和谱方法。
其原理是将偏微分方程化为一组代数方程,通过计算机模拟来求解它们的解。
有限元法利用三角剖分的方法将区域离散化,然后将偏微分方程转化为一个线性方程组。
在此基础上,采用逐步迭代的方法求解得到解。
有限差分法是在物理空间中选择一个离散网格,并利用差分运算将偏微分方程转化为离散的代数方程组。
谱方法是将解表示为基函数的线性组合,通过调整系数求得解的解析表达式。
二、偏微分方程数值解法的应用偏微分方程数值解法已广泛应用于工程领域、地球科学和数学等领域。
以下是几种典型的应用:1. 电力系统建模电力系统建模用偏微分方程数值解法来计算电气设备的功率和耗能。
这种方法的目的是增强对电力变量、设备能耗和设备状态的控制,进而优化电力系统的能源利用效率和稳定性。
2. 医学图像处理在医学图像处理应用中应用到偏微分方程数值解法,可用于三维CT扫描和磁共振成像,如肺纤维化、心脏和血管系统等。
基于偏微分方程的数据算法可提取图像的详细信息,同时保持感兴趣区域的特性。
3. 石油勘探在石油勘探领域,偏微分方程的数值方法可用于神经网络建模和预测天然气储量。
具体来说,通过解决相关偏微分方程,可以计算出不同位置的天然气和地下水的渗透率,并通过模拟模型来预测未发现的天然气储量。
偏微分方程的解析解介绍偏微分方程(Partial Differential Equation, PDE)是一类涉及多个变量和它们的偏导数的方程。
在数学和物理学等领域中,偏微分方程广泛应用于描述自然界中的各种现象和过程。
解析解是指通过数学的推导和求解,得到的能够精确描述方程解的解析表达式。
本文将深入探讨偏微分方程的解析解的研究方法和应用领域。
偏微分方程的分类偏微分方程可以分为多个不同类型,常见的分类方法包括: 1. 椭圆型偏微分方程(elliptic PDEs):这类方程中的二阶导数的系数满足某些条件,广泛应用于静电学、热传导等问题的建模。
2. 抛物型偏微分方程(parabolic PDEs):这类方程常用于描述扩散过程、热传导过程等,它们的解析解在某些情况下可以直接求得。
3. 双曲型偏微分方程(hyperbolic PDEs):这类方程常用于描述波动方程、传播过程等,求解方法相对较为复杂。
求解偏微分方程的方法针对不同类型的偏微分方程,可以采用不同的方法进行求解。
在此我们介绍几种常见的方法:分离变量法分离变量法是求解一类分离变量形式的偏微分方程的常用方法。
这种方法的基本思想是将多元函数表示为几个单变量函数的乘积形式,通过将原方程分离变量,分别对各个变量进行求解,再通过叠加得到原方程的解析解。
特征线法特征线法适用于一类具有常系数的线性偏微分方程。
通过构造特征线方程,将原偏微分方程转化为常微分方程,然后通过求解常微分方程来得到原方程的解析解。
特征线法在求解一些双曲型偏微分方程时常用。
变换法是通过对原方程进行一定的变换,将复杂的偏微分方程转化为简单的形式,进而求解得到解析解。
常见的变换方法包括拉普拉斯变换、傅里叶变换等。
变换法在一些特殊的偏微分方程求解问题中有重要应用。
数值方法对于一些复杂的偏微分方程,往往难以得到解析解。
此时,可以利用数值方法近似求解。
常见的数值方法包括有限差分法、有限元法、谱方法等。
偏微分方程的数值解法偏微分方程(Partial Differential Equation, PDE)是数学和物理学中的重要概念,广泛应用于工程、科学和其他领域。
在很多情况下,准确解析解并不容易获得,因此需要利用数值方法求解偏微分方程。
本文将介绍几种常用的数值解法。
1. 有限差分法(Finite Difference Method)有限差分法是最常见和经典的数值解法之一。
基本思想是将偏微分方程在求解域上进行离散化,然后用差分近似代替微分运算。
通过求解差分方程组得到数值解。
有限差分法适用于边界条件简单且求解域规则的问题。
2. 有限元法(Finite Element Method)有限元法是适用于不规则边界条件和求解域的数值解法。
将求解域划分为多个小区域,并在每个小区域内选择适当的形状函数。
通过将整个域看作这些小区域的组合来逼近原始方程,从而得到一个线性代数方程组。
有限元法具有较高的灵活性和适用性。
3. 有限体积法(Finite Volume Method)有限体积法是一种较新的数值解法,特别适用于物理量守恒问题。
它通过将求解域划分为多个控制体积,并在每个体积内计算守恒量的通量,来建立离散的方程。
通过求解这个方程组得到数值解。
有限体积法在处理守恒律方程和非结构化网格上有很大优势。
4. 局部网格法(Local Grid Method)局部网格法是一种多尺度分析方法,适用于具有高频振荡解的偏微分方程。
它将计算域划分为全局细网格和局部粗网格。
在全局细网格上进行计算,并在局部粗网格上进行局部评估。
通过对不同尺度的解进行耦合,得到更精确的数值解。
5. 谱方法(Spectral Method)谱方法是一种基于傅里叶级数展开的高精度数值解法。
通过选择适当的基函数来近似求解函数,将偏微分方程转化为代数方程。
谱方法在处理平滑解和周期性边界条件的问题上表现出色,但对于非平滑解和不连续解的情况可能会遇到困难。
6. 迭代法(Iterative Method)迭代法是一种通过多次迭代来逐步逼近精确解的求解方法。
偏微分方程掌握偏微分方程的基本概念与解法偏微分方程(Partial Differential Equations,PDEs)是数学中一种重要的方程类型,在数学、物理、工程等领域中具有广泛的应用。
掌握偏微分方程的基本概念与解法对于深入理解和应用相关领域的知识至关重要。
本文将介绍偏微分方程的基本概念,并详细讨论几种常见的偏微分方程解法。
一、偏微分方程的基本概念在介绍偏微分方程的解法之前,我们有必要先了解一些偏微分方程的基本概念。
偏微分方程是包含多个未知函数的方程,这些未知函数的导数以及它们本身都可能出现在方程中。
偏微分方程通常用来描述物理、化学、工程等自然科学领域中的过程和现象。
常见的偏微分方程类型包括椭圆型方程、双曲型方程和抛物型方程。
椭圆型方程常用于描述稳态问题,如静电场分布;双曲型方程常用于描述波动传播过程,如声波、电磁波的传播;抛物型方程常用于描述热传导、扩散以及其他变化速度较慢的现象。
二、偏微分方程解法1. 分离变量法分离变量法是解偏微分方程中常用的一种方法。
它适用于一些特定的偏微分方程类型,如线性齐次方程。
分离变量法的基本思想是假设待求解函数可以表示为若干个单变量函数的乘积形式,然后将原方程中的导数进行分离,并且令各个单变量函数分别等于常数。
通过求解这些常数,再将各个单变量函数组合起来,得到最终的解函数。
2. 特征线法特征线法常用于解决双曲型方程。
该方法通过分析偏微分方程的特征线和特征曲面来求解方程。
首先,通过特征曲线对自变量进行参数化,并将其代入原方程,得到关于未知函数的常微分方程(ODE)。
然后,通过求解此常微分方程,得到未知函数的一般解。
最后,通过特征线与边界条件的关系确定未知常数,得到特定的解。
3. 变换法变换法是通过对偏微分方程进行变量变换,将原方程转化为更简单的形式,从而求解方程的方法。
常见的变换方法有齐次化变量、特征变量法等。
通过适当的变量替换,可以将原方程转化为常微分方程、分离变量的偏微分方程或者恒定系数的变系数常微分方程。
偏微分方程的数值解法在科学和工程领域中,偏微分方程(Partial Differential Equations,简称PDEs)被广泛应用于描述自然现象和工程问题。
由于许多复杂的PDE难以找到解析解,数值方法成为了求解这些方程的重要途径之一。
本文将介绍几种常见的偏微分方程数值解法,并探讨其应用。
一、有限差分法有限差分法是求解偏微分方程最常用的数值方法之一。
其基本思想是将空间和时间连续区域离散化成有限个点,通过差分逼近偏微分方程中的导数,将偏微分方程转化为差分方程。
然后,利用差分方程的迭代计算方法,求解近似解。
以一维热传导方程为例,其数值解可通过有限差分法得到。
将空间区域离散化为若干个网格点,时间区域离散化为若干个时间步长。
通过差分逼近热传导方程中的导数项,得到差分方程。
然后,利用迭代方法,逐步更新每个网格点的数值,直到达到收敛条件。
最终得到近似解。
二、有限元法有限元法是另一种常用于求解偏微分方程的数值方法。
它将连续的空间区域离散化为有限个单元,将PDE转化为每个单元内的局部方程。
然后,通过将各个单元的局部方程组合起来,构成整个区域的方程组。
最后,通过求解这个方程组来获得PDE的数值解。
有限元法的优势在于可以适应复杂的几何形状和边界条件。
对于二维或三维的PDE问题,有限元法可以更好地处理。
同时,有限元法还可以用于非线性和时变问题的数值求解。
三、谱方法谱方法是利用一组基函数来表示PDE的解,并将其代入PDE中得到一组代数方程的数值方法。
谱方法具有高精度和快速收敛的特点,在某些问题上比其他数值方法更具优势。
谱方法的核心是选择合适的基函数,常用的基函数包括Legendre多项式、Chebyshev多项式等。
通过将基函数展开系数与PDE的解相匹配,可以得到代数方程组。
通过求解这个方程组,可以得到PDE的数值解。
四、有限体积法有限体积法是将空间域划分为有限个小体积单元,将PDE在每个小体积单元上进行积分,通过适当的数值通量计算来近似描述流体在边界上的净流量。
偏微分方程数值解讲义
《偏微分方程数值解讲义》是为高等院校计算数学专业高年级本科生和研究生偏微分方程数值解法课程编写的教材。
全书分为差分方法和有限元方法两个相互独立的部分。
差分方法部分的先修课程是数值分析、数值代数;有限元部分则同时要求学生对实变函数与泛函分析有初步的了解。
掌握一定的数学物理方程的理论和方法无疑有助于本课程的深入学习。
《偏微分方程数值解讲义》在选材上注重充分反映偏微分方程数值解法中的核心内容,力图展现算法构造与分析的基本思想;在内容的处理上,体现了由浅入深、循序渐进的原则;在叙述表达上,严谨精练、清晰易读,便于教学与自学。
为便于读者复习、巩固、理解和拓广所学的知识,每章之后配置了相当数量的习题,并在书后附上了大部分习题的答案或提示。
《偏微分方程数值解讲义》可作为综合大学、理工科大学、高等师范院校计算数学以及相关学科的本科生和研究生的教材或教学参考书,也可供从事计算数学、应用数学和科学工程计算研究的科技人员参考。
偏微分方程解法一、概述偏微分方程是数学中的一个重要分支,广泛应用于物理、工程、经济等领域。
解决偏微分方程的方法有很多种,其中最常用的方法是数值解法和解析解法。
本文将重点介绍偏微分方程的解析解法。
二、基本概念1. 偏微分方程:含有多个自变量和它们的偏导数的方程。
2. 解析解:能够用一定的代数式或函数表示出来的解。
3. 常微分方程:只含一个自变量和它的导数的方程。
4. 偏微分方程分类:(1)线性偏微分方程:各项次数之和为1或2。
(2)非线性偏微分方程:各项次数之和大于2。
5. 解析解法分类:(1)可分离变量法(2)相似变量法(3)积分因子法(4)特征线法(5)变换法三、可分离变量法可分离变量法是求解一类特殊形式线性偏微分方程最常用的方法,其基本思想是将未知函数表示成各自变量之积,然后将其带入原偏微分方程中得到一组常微分方程,再求解这些常微分方程,最后将得到的解代回原方程中即可。
以一阶线性偏微分方程为例:$$\frac{\partial u}{\partial t}+a(t)u=b(t)$$其中$a(t)$和$b(t)$为已知函数,$u=u(x,t)$为未知函数。
将未知函数表示成各自变量之积:$$u=X(x)T(t)$$将其带入原方程中得到:$$XT'+aXT=bXt$$将$X$和$T$分离变量并整理得到:$$\frac{1}{X}\frac{dX}{dx}=\frac{1}{at+b}-\frac{c}{X}$$其中$c$为常数。
对上式两边同时积分得到:$$ln|X|=ln|at+b|-ct+D_1,D_1为常数。
$$即可得到$X(x)$的解析解。
同理,对于$T(t)$也可以通过可分离变量法求出其解析解。
最后将$X(x)$和$T(t)$的解代入原方程中即可得到未知函数$u=u(x,t)$的解析解。
四、相似变量法相似变量法是一种适用于非线性偏微分方程的方法,其基本思想是通过引入新的自变量和因变量,将原偏微分方程转化成一个形式相似但更简单的方程,从而求出原方程的解析解。
偏微分方程课程总结一、课程概述偏微分方程是数学的一个重要分支,它描述了时间和空间中某一变量变化率的规律。
这门课程主要涵盖了偏微分方程的基本理论、解法及其应用。
通过学习,我深入理解了偏微分方程在物理、工程、经济等领域的重要作用,也掌握了一些解决实际问题的技巧。
二、课程内容1. 偏微分方程的基本概念:介绍了偏微分方程的定义、分类以及解的存在性与唯一性。
2. 求解方法:讲解了分离变量法、积分变换法、有限差分法等基本解法,并进行了实例分析。
3. 线性偏微分方程:重点讨论了线性偏微分方程的基本理论,包括解的存在性、唯一性、正则性等,以及一些常见的线性偏微分方程的解法。
4. 非线性偏微分方程:探讨了非线性偏微分方程的基本理论,如整体解、奇异解、周期解等,并介绍了一些重要的非线性偏微分方程。
5. 应用实例:结合实际问题,如热传导、波动现象、流体动力学等,进行了偏微分方程的应用分析。
三、课程收获通过这门课程,我不仅掌握了偏微分方程的基本理论,还学会了如何运用这些知识解决实际问题。
我深入理解了偏微分方程在各个领域的应用,也学会了如何将复杂的实际问题转化为数学模型。
此外,我还提高了自己的数学思维能力,学会了如何分析问题、解决问题。
四、课程不足虽然这门课程让我收获颇丰,但也有一些不足之处。
首先,课程内容较为抽象,对于初学者来说可能有一定的难度。
其次,课程中涉及的数学知识点较多,需要有一定的数学基础才能更好地理解。
最后,课程的应用实例部分可以更加丰富,以便更好地展示偏微分方程的实际应用价值。
五、总结与展望总体来说,这门偏微分方程课程非常值得学习。
通过学习,我不仅掌握了偏微分方程的基本理论和方法,还学会了如何运用这些知识解决实际问题。
在未来的学习和工作中,我将继续深入学习偏微分方程的相关知识,不断提高自己的数学素养和解决实际问题的能力。
同时,我也希望能够将所学的知识应用到实际工作中,为解决实际问题做出贡献。
偏微分方程的几种经典解法经过一个学期偏微分方程课程的学习,我们掌握了几种求解三种典型方程的方法,如分离变量法、行波法、特征函数展开法、求解非齐次方程的Duhanmel 原理灯,此外,我们通过学习还掌握了求解波动方程的'D Alembert 公式,求解位势方程的Green 公式等等.这些经典方法的综合运用可以求解很多初等偏微分方程,故而是基本而重要的.本文着重总结了偏微分方程的几种经典解法,一次介绍了分离变量法、行波法、幂级数解法、Fourier 变换法以及Green 函数法,通过对典型方程的研究,深入理解集中经典方法.1.分离变量法分离变量法:基本思想是设法把偏微分方程的问题转化为解常微分方程的问题.1.1第一初边值问题例:利用分离变量法求解下述问题(非齐次0边值双曲方程)2222sin 2cos 2,u ux t t x ∂∂-=∂∂ 0,0x t π<<> (1.1) (0,)(,)0,u t u t π== 0t > (1.2) (,0)sin ,u x x =0x π<< (1.3)(,0)sin 2,ux x t∂=∂ 0x π<< (1.4) 解:用分离变量法求问题(1.1)—(1.4)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.5)方程(1.1)对应的齐次方程为22220,u ut x∂∂-=∂∂0,0x t π<<> (1.6) 将(1.5)式代入方程(1.6)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.7) 其中λ为固定常数,下面证明0λ>. 由(1.7)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.2)和(1.5)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.2)—(1.6)可以化为如下形式的两个常微分问题,即()()"()()0,1(0)()0,2X x X x X X λπ⎧+=⎪⎨==⎪⎩ 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题. 求解问题(1).根据常微分方程的理论可知,问题(1)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.8)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底.将问题(1.1)—(1.4)中的非齐次项和初值按{}1()n n X x ∞=展开,得1sin 2cos 2()sin ,n n x t f t nx ∞==∑ 0,0x t π≤≤≥1sin sin ,n n x a nx ∞==∑ 0,x π≤≤1sin 2sin ,n n x b nx ∞==∑ 0,x π≤≤其中0,1()cos 2,20,0,3n n f t t n t n =⎧⎪==≥⎨⎪≥⎩ 1,10,2n n a n =⎧=⎨≥⎩,0,11,20,3n n b n n =⎧⎪==⎨⎪≥⎩设1(,)()()n n n u x t X x T t ∞==∑, 0,0x t π≤≤≥ (1.9)是问题(1.1)—(1.4)的形式解,将上式代入(1.1)—(1.4)可得,()n T t 是如下常微分方程初值问题的解,"'()()(),0(0),(0),n n n n n n n n T t T t f t t T a T b λ⎧+=>⎪=⎨⎪=⎩,其中1,2,n = . 求解问题(2).当1n =时,问题(2)转化为求常微分问题"11'11()()0,(0)0,(0)1,T t T t T T ⎧+=⎪=⎨⎪=⎩ (3) 有常微分方程理论可知,问题(3)的通解为112()cos sin T t c t c t =+.将其代入1(0)1T =,得11c =.将12()cos sin T t t c t =+代入'1(0)0T =得20c =.故1()cos T t t =. 当2n =时,问题(2)转化为常微分问题"22'22()4()cos 2,(0)1,(0)0,T t T t t T T ⎧+=⎪=⎨⎪=⎩ (4)对应其次方程的特征根为2i α=±,用常微分方程中的算子解法求特解.2(4)cos2,D x t +=故sin 24tx t =.所以问题(4)的通解为212()cos 2sin 2sin 2.4tT t c t c t t =++将其代入2(0)0T =得10c =,将22()sin 2sin 24t T t c t t =+代入'2(0)1T =得212c =,故22()sin 2.4t T t t +=当3n ≥时,问题(2)转化为常微分问题"2'()()0,(0)0,(0)0,n n n nT t n T t T T ⎧+=⎪=⎨⎪=⎩ (5) 由常微分理论可知,问题(5)的通解为12()cos sin ,3,4,n T t c nt c nt n =+= 将其代入(0)0,n T =得10c =.将2()sin n T t c nt =代入'(0)0,n T =得20c =.故()0n T t =. 综上有cos ,1,2()sin 2,2,040,3,n t n t T t t n t n =⎧⎪+⎪==≥⎨⎪≥⎪⎩(1.10)将(1.8)(1.10)代入(1.9)中,得问题(1.1)—(1.4)的形式解为2(,)sin cos sin 2sin 2,4t u x t x t x t +=+ 0,0x t π≤≤≥经检验,该形式解满足原问题及初边值条件,该形式解就是原问题的解. 例:利用分离变量法求解下述问题22220,u ut x ∂∂-=∂∂ 0,0x t π<<> (1.11) (0,)sin ,(,)0,u t t u t π== 0t >, (1.12) (,0)0,u x = 0x π<<, (1.13)(,0),u x x t ππ∂-=∂ 0x π<<, (1.14)解:将上述非零边值问题转化为零边值问题,用变量代换,设(,)u x t 是原问题的解,令(,)(,)sin ,xv x t u x t t ππ-=-0,0x t π≤≤≥. 则(,)v x t 是如下问题的解2222(,),v vf x t t x ∂∂-=∂∂ 0,0x t π<<> (1.15) (0,)(,)0,v t v t π== 0t >, (1.16) (,0)0v x =, 0x π<<, (1.17)(,0)0,vx t∂=∂ 0x π<<, (1.18) 其中(,)sin ,xf x t t ππ-=0,0x t π≤≤≥. 用分离变量法求问题(1.15)—(1.18)的形式解.设该问题有如下形式的形式解(,)()()v x t X x T t =, (1.19)方程(1.15)对应的齐次方程为22220,v vt x∂∂-=∂∂ 0,0x t π<<>, (1.20) 将(1.19)代入方程(1.20)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.21) 其中λ为固定常数,下面证明0λ>. 由(1.21)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.16)和(1.19)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.16)—(1.18)(1.20)可以化为如下形式的两个常微分问题,即"()()0,(0)()0,X x X x X X λπ⎧+=⎨==⎩ (6) 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题.(7) 求解问题(6).根据常微分方程的理论可知,问题(6)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.22)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底. 将问题(1.15)—(1.18)的非齐次项按{}1()n n X x ∞=展开,得1sin ()sin ,n n xt f t nx ππ∞=-=∑0,0.x t π≤≤≥ 令sin n xc nx ππ-=,则在其两端同乘sin nx 再在(0,)π上积分,得 200sin sin 2nn x nxdx c nxdx c πππππ-==⎰⎰. 由分部积分,经计算可得2n c n π=.从而2()sin n f t t n π=,0t ≥,1,2,n = . 设1(,)()()n n n v x t X x T t ∞==∑,0,0.x t π≤≤≥是问题(1.15)—(1.18)的形式解,将其带入(1.15)—(1.18)可得,()n T t 是如下常微分问题的解"22()()sin ,n n T t n T t t n π+=0,t > (1.23) (0)0,n T = (1.24) '(0)0,n T = (1.25)其中1,2,n =(1.23)—(1.25)对应的齐次方程的特征根为ni α=±,则通解为()cos sin n n n T t A nt B nt =+.用算子算法求特解,222()()sin n D n T t t n π+=,解得 22sin ()(1)n tT t n n π=-.故该问题的通解为22sin ()cos sin (1)n n n tT t A nt B nt n n π=++-. (1.26)将上式代入(0)0,n T =得0n A =,将22sin ()sin (1)n n tT t B nt n n π=+-代入'(0)0,n T =得222(1)n B n n π-=-,1,2,n = . 故2222sin 2sin ()(1)(1)n nt tT t n n n n ππ-=+--,0,t >1,2,n = . 因此,问题(1.15)—(1.18)的形式解为22212sin 2sin (,)sin (1)(1)n nt t v x t nx n n n n ππ∞=⎛⎫-=+ ⎪--⎝⎭∑,0,0.x t π≤≤≥ (1.27) 考察(1.27)右端级数的收敛性.记2222sin 2sin sin (1)(1)n nt t a nx n n n n ππ⎛⎫-=+ ⎪--⎝⎭,0,0,x t π≤≤≥1,2,n = . 容易验证下列级数均在[0,][0,)π⨯+∞上一致收敛1n n a ∞=∑,1n n a x ∞=∂∂∑,1n n a t ∞=∂∂∑,221n n a x ∞=∂∂∑,221n n a t ∞=∂∂∑,21nn a x t ∞=∂∂∂∑. 经检验,(,)v x t 满足问题(1.15)—(1.18),就是 问题(1.15)—(1.18)解.将(1.27)代入(,)(,)sin xu x t v x t t ππ-=+,0,0,x t π≤≤≥ 得22212sin 2sin (,)sin sin (1)(1)n nt t xu x t nx t n n n n ππππ∞=⎛⎫--=++ ⎪--⎝⎭∑,0,0,x t π≤≤≥ 此即为原问题(1.11)—(1.14)的解.1.2第二初边值问题例:利用分离变量法求解下述问题(抛物型)220,u ut x ∂∂-=∂∂ 01,0x t <<> (1.28) (0,)(1,)0,u u t t x x ∂∂==∂∂ 0,t > (1.29) (,0)cos ,u x x π= 01,x << (1.30)解:用分离变量法求解问题(1.28)—(1.30)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.31)将其代入(1.28)有"'()()()()X x T t X x T t λ∆==-,01,0x t <<> (1.32) 其中λ为某一常数,且0λ≥. 由(1.32)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,1)上积分,得11"20()()()0,X x X x dx X x dx λ+=⎰⎰注意到由(1.29)和(1.31)有''(0)(1)0,X X ==所以有11'220()()X x dx X x dx λ=⎰⎰易见0λ≥.故(1.28)—(1.30)可化为如下形式的两个常微分问题,即"''()()0,01,(0)(1)0,X x X x x X X λ⎧+=<<⎨==⎩ (8) 和'()()0,0T t T t t λ+=> (9)求解问题(8),当0λ=时,有"()0X x =,''(0)(1)0,X X ==由常微分方程的理论可知,问题(8)的通解为12()X x c c x =+,01x ≤≤.将其代入'(0)0X =,有20c =,故1()X x c =,其中1c 为任意常数. 当0λ>时,由常微分方程的理论可知,问题(8)的通解为12(),X x c c =+ 01x ≤≤将其代入'(0)0X =,则20c =,将1()X x c =代入'(1)0X =,得2()n n λπ=, 1,2,n =特征值n λ对应的特征函数为()cos n X x n x π=,1,2,n = ,01x ≤≤. 所以,对于0λ≥,有()cos n X x n x π=,01x ≤≤, 0,1,2,n =注意到{}1()n n X x ∞=是一个直交系统,即10,,()(),,2m n m n X x X x dx m n π≠⎧⎪=⎨=⎪⎩⎰ 这表明{}1()n n X x ∞=正规化后是2((0,1))L 的一个基底. 下面求解问题(9),将2()n n λπ=代入,可有'22()()0,n n T t n T t π+=0,1,2,n = ,0t ≥.有常微分方程理论可知其通解为223()n t n T t c e π-=, 0,1,2,n = , 0t ≥.此时,形式解为2230(,)()()cos n t n n n n u x t X x T t c n xe ππ∞∞-====∑∑, 01x ≤≤,0t ≥.将其代入(1.30)中,得30(,0)cos cos n u x c n x x ππ∞===∑,01,x <<由比较系数法,可得31,10,1n c n =⎧=⎨≠⎩故问题(1.28)—(1.30)的形式解为2(,)cos t u x t xe ππ-=,01x ≤≤,0t ≥.经检验,该形式解满足原问题(1.28)—(1.30),此即为原问题的解.1.3 Poisson 方程的边值问题分离变量法还适用于某些特殊形状区域上的二维Poisson 方程的各种边值问题,如果所考虑的定解区域是矩形域,那么可以完全仿照前面的方法来求解,只是此时x,y 之一要扮演t 的角色;如果定解区域是圆域或环形域,则应先做极坐标变换将定解问题化为矩形区域上的定解问题,然后利用分离变量法求解. 例:利用分离变量法求解下述问题22222212(),u u x y x y∂∂+=-∂∂ 12,<< (1.33)(,)0,u x y =1,= (1.34)(,)0,ux y υ∂=∂2,= (1.35)其中υ为2{(,)2}x y R ∂∈上的单位外法向量.解:用分离变量法求解问题(1.33)—(1.35)的形式解.首先,通过极坐标变换将环形域上的定解问题化为矩形域上的定解问题,做极 坐标变换cos ,sin ,x y ρθρθ=⎧⎨=⎩ 12,02ρθπ≤≤≤≤, 则(1.33)—(1.35)化为2222221112cos 2,v v vρθρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.36) (1,)0,(2,)0,vv θθρ∂==∂ 02θπ<<, (1.37) 其中(,)(cos ,sin )v u ρθρθρθ=,12,02ρθπ≤≤≤≤.注意到在极坐标条件下(,0)ρ与(,2)ρπ表示同一点,故(,)v ρθ还满足如下周期性条件(,0)(,2),(,0)(,2),v v v v ρρπρρπθθ∂∂==∂∂ 12,ρ<< (1.38) 问题(1.36)—(1.38)是一个定解问题. 方程(1.36)对应的齐次方程为22222110,v v vρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.39) 设问题对应的形式解为(,)()()v R ρθρθ=ψ,12,02ρθπ≤≤≤≤. (1.40)将(1.40)代入(1.37)中,得"'"211()()()()()()0,R R R ρθρθρθρρψ+ψ+ψ= 12,02ρθπ<<<<即"2"'()()(),()()R R R θρρρρλθρ∆ψ+=-=-ψ12,02ρθπ<<<<, (1.41) 其中λ为固定常数,下面证明0λ≥.由(1.41)有"()()0,θλθψ+ψ= 02θπ<<,在上式两端同乘()θψ,并在(0,2)π上积分,由(1.38)和(1.40)可知''(0)(2),(0)(2),ππψ=ψψ=ψ所以有22'220()(),d d ππθθλθθψ=ψ⎰⎰易见0λ≥.所以问题(1.37)(1.38)(1.40)可化为两个常微分问题,即"''()()0,(0)(2),(0)(2),θλθππ⎧ψ+ψ=⎪⎨ψ=ψψ=ψ⎪⎩ 02θπ<<, (10) 以及2"'()()()0R R R ρρρρλρ+-=和适当定解条件的常微分问题(11)求解问题(10).当0λ=时,有"''()0,(0)(2),(0)(2),θππψ=ψ=ψψ=ψ由常微分方程的理论可知,问题(10)的通解为()A B θθψ=+,02θπ≤≤,代入(0)(2)πψ=ψ得()A θψ=,其中A 为任意实数. 当0λ>时,通解为(),A B θψ=+02θπ≤≤, 将其代入''(0)(2),(0)(2)ππψ=ψψ=ψ有sin ,A A B =+=-+,故2,1,2,n n n λ==特征值n λ对应的特征函数为()cos sin ,02,1,2,n n n A n B n n θθθθπψ=+≤≤= .其中n A 和n B 是任意不同时为零的实数,综上可知()cos sin ,02,0,1,2,n n n A n B n n θθθθπψ=+≤≤= ,其中0A 是任意不为零的实数,n A 和n B 是任意不同时为零的实数. 注意到1{cos sin }n n n θθ∞=+是一个直交系统,即20()()0,,,0,1,2,m n m n m n πθθψψ=≠=⎰,这表明1{cos sin }n n n θθ∞=+正规化后是2((0,2))L π的一个基底.设1(,)()()()cos ()sin ,n n n n n n n v R A n B n ρθρθρθρθ∞∞∞====ψ=+∑∑∑12,02ρθπ≤≤≤≤,将非齐次项按1{cos sin }n n n θθ∞=+展开,有2n =时,2212A ρ=代入(1.4)—(1.6)有"'22222'2214()()()12,(1)(2)0,A A A A A ρρρρρρ⎧+-=⎪⎨⎪==⎩ 12,ρ<< 2"'2'1()()()0,12,(1)(2)0,n n n nn n A A A A A ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 0,1,3,4,n = ,和2"'2'1()()()0,12,(1)(2)0,n n n nn n B B B B B ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 1,2,3,n = .解得2242129112(),1717A ρρρρ-=-++ 12ρ≤≤, ()0n A ρ=, 12ρ≤≤,0,1,3,4,n = , ()0n B ρ=, 12ρ≤≤,1,2,3,n = .故224129112(,)()cos 21717v ρθρρρθ-=-++, 12,02ρθπ≤≤≤≤ 因此,原问题的形式解为2222222112(,)[12917()],17()x y u x y x y x y -=-++++12≤. 经检验,该形式解满足原问题,即为原问题的解.二.行波法行波法:求解一维波动方程的常用解法,利用这种方法得到波动方程的一个重要求解公式('d Alembert 公式)1.齐次波动方程cauchy 问题定理2.1('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),则函数 ()()()()()x+atx-at11u x t =x-at +x+at +d 22a ϕϕψξζ⎰,,[)()2u C R 0+∈⨯∞, 是cauchy 问题22222u u-a=0t x ∂∂∂∂, x R t>0∈, ()(),0u x x ϕ=, x R ∈()(),0ux x tψ∂=∂, x R ∈的解.例:求解下述波动方程的cauchy 问题()()2222120,,0,0cos ,,0cos ,u u uu x R t t x t u x x x R ux e x x R t -⎧∂∂∂-++=∈>⎪∂∂∂⎪⎪=∈⎨⎪∂⎪=-∈⎪∂⎩解:首先将方程化为标准形式.设u 是原问题的解,令()(),,,,0t v x t e u x t x R t =∈≥则v 是如下问题的解()()222210,,0,cos ,,0,v vx R t t x v x t x x Rvx e x R t -⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩由定理2.1可知()()()()1111,cos cos 22cos cos ,,0x t x tv x t x t x t e d x t te x R t ζ+---=-+++=+∈≥⎰ 因此()()()1,cos cos t u x t e x t t e -+=+, ,0x R t ∈≥为原问题的解.利用一维齐次波动方程cauchy 问题的通解表达式,还可以求解其他定解问题.在此不再赘述.2.非齐次波动方程的cauchy 问题定理2.2('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),[)()10,f C R ∈⨯+∞, 则函数()()()()()()()()011,221,,,02x atx att x a t x a t u x t x at x at d a f d d x R t a ττϕϕψξζζτζτ+-+---=-++++∈≥⎰⎰⎰属于[)()20,C R ⨯+∞,是cauchy 问题()()()()()22222,,,0,0,,0,u u a f x t x R t t x u x x x R ux x x R t ϕψ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩的解,其中0a >.注2.1上述问题解得光滑程度本质上取决于初值和非齐次项的光滑程度. 注2.2 如果()(),x x ϕψ和(),f x t 都是x 的奇(偶,周期)函数,则上述问题的解也是x 的奇(偶,周期)函数. 例:求解下述波动方程的定解问题()()()()()()22222,,00,0,0,0,0,0,0u u a f x t x t x u t t u x x x ux x x tϕψ∂∂-=>∂∂=>=>∂=>∂其中0a >,[)()[)()[)[)()2110,,0,,0,0,C C f C ϕψ∈+∞∈+∞∈+∞⨯+∞,且满足相容性条件()()()()2''000,00,0a f ϕψϕ==-=解:注意到如果u 是x 的奇函数,则u 自然满足边值条件.因此,根据注2.2,我们可以采用奇延拓方法来求解上述问题.将()(),x x ϕψ和(),f x t 关于0x =做奇延拓,即令()()(),0,0x x x x x ϕϕ≥⎧⎪Φ=⎨-<⎪⎩ ()()(),,0x x x x x ψψ≥⎧⎪ψ=⎨-<⎪⎩ ()()(),,0,0,,,0,0f x t x t F x t f x t x t ≥≥⎧⎪=⎨-<≥⎪⎩考虑cauchy 问题()()()()()22222,,,0,0,,0,u u a F x t x R t t x u x x x R ux x x R t⎧∂∂-=∈>⎪∂∂⎪⎪=Φ∈⎨⎪∂⎪=ψ∈∂⎪⎩ 按'd Alembert 公式形式地写出其解()()()()()()()()011,221,,,02x atx at t x a t x a t u x t x at x at d F d d x R t aττξζζτζτ+-+---=Φ-+Φ++ψ+∈≥⎰⎰⎰回到原来的初值,ϕψ和非齐次项f ,就可以得到原问题的形式解如下:当0x at ≥≥时,()()()()()()()()011,221,2x atx at t x a t x a t u x t x at x at d af d d aττϕϕψξζζτζτ+-+---=-++++⎰⎰⎰ ()1而当0x at ≤≤时,()()()()()()()()()()())/0/11,221(,,2x at at x t x a x a t t x a t a t x t x a x a t u x t at x x at d af d d f d d aττττϕϕψξζζτζτζτζτ+--+-+------=--+++++⎰⎰⎰⎰⎰ ()2可以直接验证由()1和()2确定的形式解[)[)()20,0,u C ∈+∞⨯+∞就是定解问题的解.三.幂级数解法幂级数解法:是求解偏微分方程的经典解法之一,不仅可以求解一维问题,还可以求解高维问题.我们先来求解如下的常微分方程初值问题()()()()2''0,00,'00,u t a u t t u A u +=>== ()()()3.13.23.3其中0a >方程()3.1的通解是()12cos sin ,0u t C at C at t =+≥其中1C 和2C 是任意实数.由边值条件()3.2和()3.3,可得12,0C A C ==.于是,问题()()3.1 3.3-的解为()cos ,0u t A at t =≥注意到()()()201cos ,02!nnn at at t n ∞=-=≥∑因此,问题()()3.1 3.3-的解可写为如下的级数形式()()()()()()222001,02!2!nn nnn n at tu x A a A t n n ∞∞==-==-≥∑∑. ()3.4定理3.1 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数()202!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()()()2222200,,,0,2!2!nn n nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑ 就是波动方程Cauchy 问题()()()22220,,0,0,,0=0,u ux R t t x u x x x R u x x Rt ϕ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪∈∂⎪⎩的级数形式的形式解.定理3.2 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数0!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()22200,,,0,!!nn n nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑就是热传导方程Cauchy 问题220,,0u u x R t t x ∂∂-=∈>∂∂()(),0,u x x x R ϕ=∈的级数形式地形式解.幂级数方法求解问题的一大优点就是空间维数不限,下面的例子是一个高维问题.例:求解三维波动方程的Cauchy 问题()()()()()()()()()232330,,,,0, 3.5,,,0,,,,,, 3.6,,,00,,,,3.7uu x y z R t t u x y z x y z x y z R ux y z x y z R tϕ∂-∆=∈>∂=∈∂=∈∂ 其中222222,x y z∂∂∂∆=++∂∂∂()()2223,,,,,x y z x y z x y z R ϕ=++∈解:令2,a A ϕ=-∆=,则由()3.4可得到问题()()3.5 3.7-的级数形式的形式解()()()()230,,,,,,,,,02!n nn t u x y z t x y z x y z R t n ϕ∞==∆∈≥∑ ()3.8将ϕ的表达式代入()3.8,得()()22223,,,3,,,,0u x y z t x y z t x y z R t =+++∈≥容易验证,这个形式解的确是定解问题的解.四.Fourier 变换方法1.()R ε,()D R 和()R ϕ空间(i )()R ε空间:对于{}()1n n u C R ∞∞=⊂和()u C R ∞∈,如果对任何a b <及任何非负整数k ,都有[]()()()(),0sup limk knn x a b u x u x →∞∈-= 则称()n u x 在()C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()C R ∞,称为基本空间()R ε.(ii )()D R 空间:对于{}()01n n u C R ∞∞=⊂和()0u C R ∞∈,如果存在a b <,使得[],n u a b ⊂supp 且对任何非负整数k ,都有()()()()0sup limk knn x Ru x u x →∞∈-= 则称()n u x 在()0C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()0C R ∞,称为基本空间()D R .(iii )()R ϕ空间:如果()u C R ∞∈,且对任何非负整数k 和m ,都有()()s u p k mx Rxu x ∈<+∞,则称()u R ϕ∈.()R ϕ中序列收敛的概念:对于{}()1n n u R ϕ∞=⊂和()u R ϕ∈,如果对任何非负整数m 和k ,都有()()()()()0sup limkkmnn x Rx u x u x →∞∈-= 则称()n u x 在()R ϕ中收敛于()u x .2.速降函数空间上的Fourier 变换(i )定义:设(),R ϕϕ∈称函数[]()(),ix Rx e dx R ξϕξϕξ-=∈⎰F为ϕ的Fourier 变换,也记为();ϕξ∧称函数[]()-11x (),2ix Re d x R ξϕϕξξπ=∈⎰F为ϕ的Fourier 逆变换,也记为()x ϕ∨. (ii )性质:a )设()R ϕϕ∈,对任意正整数m 有()()()[]()()()()[]()11,;m m m m i x ix x ϕξξϕξϕϕ--⎡⎤⎡⎤==-⎣⎦⎣⎦F F F F[]()()()()()[]()()()()()11,.m m mm ix x i x ϕξϕξϕξϕ--⎡⎤⎡⎤=-=⎣⎦⎣⎦F F F Fb) 设()R ϕϕ∈,对任意正整数0a R b R ∈≠∈和,有[]()[]()()()[]()11(),;ia iaxx a e a x e x ξϕξϕξϕξϕ----=-=⎡⎤⎣⎦F F FF[]()[]()()()[]()1111(),.x bx b x b b bbξϕξϕϕξϕ--==⎡⎤⎣⎦F F FFc) 设()12,R ϕϕϕ∈,则[][][][][][]11112121212,2ϕϕϕϕϕϕπϕϕ---*=*=;F F F FF F [][][][][][]111121212121,.2ϕϕϕϕϕϕϕϕπ---=*=*F F F F FF其中12ϕϕ*表示1ϕ与2ϕ的卷积,即()()()()1212,.R x x y y dy x R ϕϕϕϕ*=-∈⎰d )Fourier 变换与Fourier 逆变换都是()R ϕ上的连续线性变换.e )Fourier 变换与Fourier 逆变换互为逆变换. (iii)在速降函数空间中求解热传导方程 考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.1,0,,4.2u u x t R t xu x g x x R ∂∂-=∈⨯+∞∂∂=∈ 其中()g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.1, 4.2的解u 满足(),u t ∙∈()()0.R t ϕ≥将方程()4.1和初值问题()4.2关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.t u t g e R t ξξξξ∧∧-=∈≥关于ξ作Fourier 逆变换,并利用()R ϕ上Fourier 逆变换的线性性质,得(),u x t ()212t ix Rg e e d ξξξξπ∧-=⎰()()22241()21()2().iy t ix R R t i x y R R x y tR g y e dye e d g y e d dy g y e dy ξξξξξξπξπ---+---===⎰⎰⎰⎰⎰ 即问题()()4.1,4.2的解u 具有如下表达式的形式解()()24,(),,0.x y tRu x t g y edy x R t --=∈>⎰特别地,若()22,xg x ex R -=∈,则问题()()4.1,4.2的解u 的形式解为()()()2222442,,,0.x x y y t tRu x t eedy x R t ----+==∈≥且容易验证这个形式解满足方程(4.1)和初值问题(4.2),从而是问题(4.1),(4.2)的解.(iv)在速降函数空间中求解弦振动方程考虑弦振动方程的Cauchy 问题()()()()()()()()()22220,,0,,4.3,0,, 4.4,0,,4.5u ux t R t xu x x x R ux x x R tϕψ∂∂-=∈⨯+∞∂∂=∈∂=∈∂其中()()(),x x R ϕψϕ∈.由于()()(),x x R ϕψϕ∈,因此,我们猜想Cauchy 问题()()4.3 4.5-的解u 满足(),u t ∙∈()()0.R t ϕ≥将方程()4.3和初值问题()()4.4,4.5关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()()()()()()2220,0,4.6,0, 4.7,0, 4.8u u t t u ut ξξϕξξψξ∧∧∧∧∧∧⎧∂⎪+=>⎪∂⎪⎪=⎨⎪⎪∂=⎪∂⎪⎩其中R ξ∈.求解这个常微分方程,方程()4.6的通解为()()()12,.i t i t u t C e C e ξξξξξ∧-=+由()()4.7 4.8和,得()()()()()()12121==,.C C C C R i ξξϕξξξψξξξ∧∧+-∈,因此()()()()()()1211=,.22C C R i i ψξψξξϕξξϕξξξξ∧∧∧∧⎛⎫⎛⎫ ⎪ ⎪=+-∈ ⎪ ⎪⎝⎭⎝⎭,从而()()()()()11,22i t i t u t e e i i ξξψξψξξϕξϕξξξ∧∧∧∧∧-⎛⎫⎛⎫ ⎪ ⎪=++-⎪ ⎪⎝⎭⎝⎭()()()()1,,0.(4.9)22i t i t i t i t e e e e R t i ξξξξψξϕξξξ∧∧--=++-∈≥将()()i t i t e e i ξξξ--改写为()1,,0.t i t i t i t e e e d R t i ξξξττξξ---=∈≥⎰ 对()4.9两端同时关于ξ作Fourier 变换,结合上式可得(),u x t ()()()()11222i t i t i t i t ix R e e e e e d i ξξξξξψξϕξξπξ∧∧--⎡⎤⎢⎥=++-⎢⎥⎣⎦⎰ ()()()()()()()()()()()()()()()()()()()1144111222112211,,0.22t i x t i x t i i xR R t t i x t t R t tx tx te e d e d e d x t x t e d d x t x t x d x t x t d x R t ξξξτξξϕξξψξτξππϕϕψξξτπϕϕψττϕϕψξξ∧∧+--∧+--+-=++⎛⎫=++-+ ⎪⎝⎭=++-++=++-+∈≥⎰⎰⎰⎰⎰⎰⎰即问题()()4.3 4.5-的解u 具有如下表达式的形式解()()()()()11,,,0.22x tx tu x t x t x t d x R t ϕϕψξξ+-==++-+∈≥⎰3.广义函数(i )定义:(),D R ()R ε和()R ϕ上的连续线性泛函分别称为()',D R ()'R ε和()'R ϕ广义函数,它们统称为广义函数;(),D R ()R ε和()R ϕ上的全体连续线性泛函分别记为()',D R ()'R ε和()'.R ϕ(ii)判定:a )设F 为()D R 上的线性泛函,则()'F D R ∈的充分必要条件是对任何闭区间[],ab ,存在非负整数~k 和正实数,M 使得()[]()()()[]~,0,,.sup k x a b k kF u M u x u D R a b ∈≤≤≤∈⊂且supp ub )设F 为()R ε上的线性泛函,则()'F R ε∈的充分必要条件是存在闭区间[],a b以及非负整数~k 和正实数,M 使得()[]()()()~,0,.sup k x a b k kF u M u x u R ε∈≤≤≤∈c )设F 为()R ϕ上的线性泛函,则()'F R ϕ∈的充分必要条件是存在非负整数~~,m k 和正实数,M 使得()()()()~~0,0,.supk m x Rm m k kF u Mx u x u R ϕ∈≤≤≤≤≤∈4.广义函数空间上的Fourier 变换(i )定义:设()[]()',f R f Fourier f R ϕϕ∈定义的变换为如下的上的泛函F[][](),,,f f R ϕϕϕϕ=∈,FF也记为;f ∧[]()-1f Fourier f R ϕ定义的逆变换为如下的上的泛函F[][]()-1-1,,,f f R ϕϕϕϕ=∈,F F也记为f ∨. (ii )性质:a )设()'f R ϕ∈,有()[]()[]()'1'1,;f i f f x ix f x ξξ--⎡⎤⎡⎤==-⎣⎦⎣⎦F FFF[]()()()()[]()()()()'11,'.f ixf x f x i f x ξξξξ--=-=⎡⎤⎡⎤⎣⎦⎣⎦F FFF这里,导数指广义导数,乘积是指广义函数与其乘子的乘积.b )Fourier 变换与Fourier 逆变换都是()'R ϕ上的连续线性变换.c )Fourier 变换与Fourier 逆变换互为逆变换.(iii )()'R Fourier ϕ上的变换方法考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.10,0,,4.11u u x t R t x u x g x x R ∂∂-=∈⨯+∞∂∂=∈ 其中()'g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.10,4.11的解u 满足(),u t ∙∈()()'0.R t ϕ≥将方程()4.10和初值问题()4.11关于x 作Fourier 变换,并利用()'R ϕ上Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.tu t g eR t ξξξξ∧∧-=∈≥()()()2'',0t g R e t R ξϕϕ∧-∈≥这里是的乘子.关于ξ作Fourier 逆变换,就可以得到问题()()4.10,4.11的形式解. 例:求解问题()()()()()()220,,0,,4.12,0,,4.13u u x t R t x u x x x R δ⎧∂∂-=∈⨯+∞⎪∂∂⎨⎪=∈⎩解:由于初值不是一个普通函数,所以问题()()4.12,4.13的解不可能在 0t =处连续,因此我们需要重新定义u 满足初值条件()4.13的含义.既然g 是一个不是普通函数的()'R ϕ广义函数,因此我们可以把初值条件()4.13定义为:作为()'R ϕ广义函数,(),u t ∙在0t =处等于g ,即()()'0lim ,.t u t g R ϕ+→∙=于下面我们来求解问题()()()4.12,4.13.1, 5.3g ∧=注意到于是由,得()()22,=,,0.ttu t g eeR t ξξξξξ∧∧--=∈≥0t >因此当时,有()()224-14,,.x t tu x t ex R ξ--⎡⎤==∈⎢⎥⎣⎦F()()4.12,4.13于是我们得到问题的形式解()()24,,0.xt u x t x R t -=∈>,()()()0, 5.1.u C R ∞∈⨯+∞容易验证这个形式解满足方程最后验证它还满足初值条件()5.2,即()()()0lim ,,,,.t u x t x R ϕδϕϕϕ+→=∈事实上,对任意的()R ϕϕ∈,有()()()()()()2244,,,xxt t Ru x t x x ex dx ϕϕϕ--==⎰(22,0.yRe dy t ϕ-=>由控制收敛定理可知()()(2lim ,,lim 2y Rt t u x t x e dyϕϕ++-→→=(()200,yRedy ϕϕϕ-===五.Laplace 方程的基本解和Green 函数place 方程的基本解求解全空间上的N (≥2)维Poisson 方程()(), 5.1Nu f x x R -∆=∈的解的表达式,先寻找其次Poisson 方程,即Laplace 方程()0, 5.2Nu x R -∆=∈的径向解,设()(||),N u x w x x R =∈是方程(5.2)的一个解,将u 的表达式代入方程(5.2),得1''(||)'()0,\{0}N N w x w r x R r---=∈也就是说,w 满足方程1''()'()0,0N w r w r r r-+=>即1('())'0,0N r w r r -=>因此1'(),0,N A w r r r -=>其中A 是任意实数.从而2ln ,2(),3N B r C N w r BC N r -+=⎧⎪⎨+≥⎪⎩当,当, 其中B 和C 是任意实数, 定义:称N R 上的函数211ln 22||()1,3(2)||N N N x x N N x πω-⎧=⎪⎪Γ=⎨⎪≥⎪-⎩,当当 为Laplace 方程(5.2)的基本解,也成为Newton 位势,其中N ω是N 维单位球的表面积,Laplace 方程的基本解具有的性质:(1) (\{0})N C R ∞Γ∈,且对任意的\{0}N x R ∈,有()0x ∆Γ=;(2) Γ,1()()Nloc x L R ∇Γ∈,且在广义函数意义下()(),N x x x R δ-∆Γ=∈,即对任意的0()N C R ϕ∞∈,有()()(0)NR x x dx ϕϕ∇Γ⋅∇=⎰或者()()(0)NR x x dx ϕϕΓ⋅∇=-⎰2.Green 函数考虑Poisson 方程的第一边值问题()(),, 5.3u f x x -∆=∈Ω()()(),,5.4u x g x x =∈∂Ω其中Ω是(2)N R N ≥中具有光滑边界的有界区域,设21()()u C C ∈Ω⋂Ω是为题(5.3),(5.4)的解,可以得到对任意的ξ∈Ω,()()()()()(()()),u x x x u x dx u x x u x dS v vξξξΩ∂Ω∂∂Γ-Γ-∆=-+Γ--∂∂⎰⎰ 即()()()()()()(()()), 5.5u x x u x x u x dx x u x dS v vξξξΩ∂Ω∂∂Γ-=Γ-∆+Γ--∂∂⎰⎰其中v 表示∂Ω的单位外法向量,因此,问题(5.3),(5.4)属于21()()C C Ω⋂Ω的解可用(5.5)右侧积分值表示出来,但第二个积分式子中含未知数u 沿外法向量的导数,这是我们所不知道的,注意到由Green 公式可以推出:对任意的21()()v C C ∈Ω⋂Ω,有()()(()()()())(()()),v x u x u x v x v x u x dx u x v x dS v vΩ∂Ω∂∂∆-∆=-∂∂⎰⎰ 即()()()(()()()())(()()). 5.6v x u x u x v x v x f x dx g x v x dS v vΩ∂Ω∂∂∆+=-∂∂⎰⎰由(5.5)和(5.6)得()()()()()[(()())()()()][(()())()()].5.7u u x v x x x v x f x u x v x dx x v x g x dS v v v ξξξξΩ∂Ω=∂∂∂Γ-Γ-++∆+Γ-+-+∂∂∂⎰⎰ 如果21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω是问题()(,)0,,5.8x v x x ξ-∆=∈Ω()(,)(), 5.9v x x x ξξ=-Γ-∈∂Ω的解,那么根据(5.7)有()()()(,)()(),, 5.10G x u G x f x dx g x dS vξξξΩ∂Ω∂=-∈Ω∂⎰⎰其中(,)()(,),(,),.G x x v x x x ξξξξξ=Γ-+∈Ω⨯Ω≠这样我们得到了问题(5.3),(5.4)一个解的表达式(5.10)定义:如果对任意固定的21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω满足方程(5.8)和边值条件(5.9),则我们称定义于{(,):}x x ξξ∈Ω⨯Ω≠上的函数(,)()(,)G x x v x ξξξ=Γ-+为Laplace 算子关于区域Ω的Green 函数,称()x ξΓ-为Green 函数(,)G x ξ的奇异部分,而称(,)v x ξ为Green 函数(,)G x ξ的正则部分,注:如果Green 函数(,)G x ξ的正则部分(,)v x ξ存在,则根据第一边值问题(5.8)(5.9)解的唯一性,可知(,)(,),(,).v x v x x ξξξ=∈Ω⨯Ω因此21()().v C C ∈Ω⨯Ω⋂Ω⨯ΩLaplace 算子关于区域Ω的Green 函数(,)G x ξ具有以下性质: (1) 对任意的(,)x ξ∈Ω⨯Ω,x ξ≠,都有(,)(,);G x G x ξξ=(2) 对任意的ξ∈Ω,有21(,)(\{})(\{}),(,)|0,G C C G ξξξξ∂Ω⋅∈Ω⋂Ω⋅=且对任意的\{}x ξ∈Ω,(,)0x G x ξ∆=;(3) 对任意的ξ∈Ω,有1(,),(,)(),x G G x L ξξ⋅∇∈Ω且在广义函数意义下(,)(),x G x x x ξδξ-∆=-∈Ω.。