螺栓连接强度校核与设计
- 格式:doc
- 大小:171.00 KB
- 文档页数:6
烟台工程职业技术学院课程单元设计教案任务二螺栓连接的强度计算为了便于机器的制造、安装、维修和运输,在机器和设备的各零、部件间广泛采用各种联接。
联接分可拆联接和不可拆联接两类。
不损坏联接中的任一零件就可将被联接件拆开的联接称为可拆联接,这类联接经多次装拆仍无损于使用性能,如螺纹联接、链联接和销联接等。
不可拆联接是指至少必须毁坏联接中的某一部分才能拆开的联接,如焊接、铆钉联接和粘接等。
螺纹联接和螺旋传动都是利用具有螺纹的零件进行工作的,前者作为紧固联接件用,后者则作为传动件用。
一、单个螺栓连接的强度计算单个螺栓联接的强度计算是螺纹联接设计的基础。
根据联接的工作情况,可将螺栓按受力形式分为受拉螺栓和受剪螺栓。
针对不同零件的不同失效形式,分别拟定其设计计算方法,则失效形式是设计计算的依据和出发点。
1.失效形式工程中螺栓联接多数为疲劳失效受拉螺栓——螺栓杆和螺纹可能发生塑性变形或断裂受剪螺栓——螺栓杆和孔壁间可能发生压溃或被剪断2.失效原因:应力集中应力集中促使疲劳裂纹的发生和发展过程3、设计计算准则与思路受拉螺栓:设计准则为保证螺栓的疲劳拉伸强度和静强度受剪螺栓:设计准则为保证螺栓的挤压强度和剪切强度(一)受拉螺栓连接1、松螺栓联接这种联接在承受工作载荷以前螺栓不拧紧,即不受力,如图所示的起重吊钩尾部的松螺接联接。
螺栓工作时受轴向力F 作用,其强度条件为[]σπσ≤==4210d FA F 式中d1为螺栓危险截面的直径(即螺纹的小径),单位为mm ;[σ]为松联接的螺栓的许用拉应力,单位为MPa 。
由上式可得设计公式为[]σπFd 41≥计算得出dl 值后再从有关设计手册中查得螺纹的公称直径d 。
2、紧螺栓联接⑴只受预紧力的紧螺栓联接 工作前拧紧,在拧紧力矩T 作用下: 复合应力状态:预紧力F0 →产生拉伸应力σ 螺纹摩擦力矩T1→产生剪应力τ按第四强度理论:()σσστσσ3.15.0332222=+=+=e ∴强度条件为:][43.121σπσ≤=d F e设计公式为:[]σπ013.14F d ⨯≥由此可见,紧联接螺栓的强度也可按纯拉伸计算,但考虑螺纹摩擦力矩T 的影响,需将预紧力增大30%。
受轴向载荷松螺栓连接强度校核与设计受轴向载荷松螺栓连接的基本形式如下图1所示:图1 受轴向载荷松螺栓连接受轴向载荷松螺栓连接强度校核与设计时,按下列公式进行计算:校核计算公式:设计计算公式:许用应力计算公式:式中:――轴向载荷,N;――螺栓小径,mm,查表获得;――螺栓屈服强度,MPa,由螺纹连接机械性能等级决定;――安全系数,取值范围:。
受横向载荷铰制孔螺栓连接强度校核与设计受横向载荷铰制孔螺栓连接的基本形式如图1所示:图1 受横向载荷铰制孔螺栓连接受横向载荷铰制孔螺栓连接的基本计算公式:按挤压强度校核计算:按抗剪强度校核计算:按挤压强度设计计算:按抗剪强度设计计算:式中:――受横向载荷,N;――受剪直径,(=螺纹小径),mm,查表获得;――受挤压高度,取、中的较小值,mm;m――受剪面个数。
许用应力的计算公式分两组情况,如表1:表1 许用应力计算公式强度计算被连接件材料静载荷动载荷挤压强度钢铸铁抗剪强度钢和铸铁表中:为材料的屈服极限,由螺栓机械性能等级所决定。
受横向载荷紧螺栓连接强度校核与设计受横向载荷紧螺栓连接的基本形式如图1所示:图1 受横向载荷紧螺栓连接受横向载荷紧螺栓连接强度校核与设计的基本公式如下:(1)预紧力计算公式:(2)校核计算公式:(3)设计计算公式:(4)许用应力计算公式:式中:――横向载荷,N;――螺栓预紧力,N;――可靠性系数,取1.1~1.3;m――接合面数;f――接合面摩擦因数,根据不同材料而定。
钢对钢时,为0.15 左右;――螺纹小径,从表中获取;――螺栓屈服强度,MPa,由螺栓材料机械性能等级决定;――安全系数,按表1选用。
表1 预紧螺栓连接的安全系数材料种类静载荷动载荷M6~M16 M16~M30 M30~M60 M6~M16 M16~M30 M30~M60碳钢4~3 3~2 2~1.3 10~6.5 6.5 6.5~10 合金钢5~4 4~2.5 2.5 7.5~5 5 6~7.5受轴向载荷紧螺栓连接(静载荷)强度校核与设计受轴向载荷紧螺栓连接的基本形式如图1所示:图1 受轴向载荷紧螺栓连接受轴向载荷紧螺栓连接的基本公式:强度校核计算公式:螺栓设计计算公式:许用应力计算公式:总载荷计算公式:预紧力计算公式:残余预紧力计算公式:式中:――轴向载荷,N;――螺栓所受轴向总载荷,N;――残余预紧力,N;――螺栓小径,mm,查表获得;――残余预紧力系数,可按表1选取;――相对刚度,可按表2选取。
.法兰螺栓的选择和校核法兰螺栓的联接是承受预紧力和工作拉力的紧螺栓联接。
并且法兰螺栓孔是铰制孔,孔和螺杆多采用基孔制过度配合(H7/m6,H7/n6)。
这种联接能精确固定连接件的相对位置,并且能承受横向载荷,但孔的加工精度较高。
]4[螺栓的规格是5.127⨯M ,十个这样规格的螺栓环行均匀分布在法兰的周边(可见设计图纸)。
螺栓强度校核:根据前文十字轴式万向联轴器的传动效率可知法兰螺栓所受的轴向力 BT F e =1 6415010tan120.213 3.0410350z F F N ︒⨯=∙=⨯=⨯ e T ——联轴器的工作扭矩是50KN ·mB ——法兰螺栓中心圆直径是350mm此时螺栓收到的总拉力400.8 5.7210c z z z F F F F F =+=+=⨯N上式c F 是残余预紧力]4[,对于有密封要求的联接,c F =(1.5~1.8)z F ;对于一般联接,工作载荷稳定时,c F =(0.2~0.6)z F ;工作载荷不稳定时,c F =(0.6~1.0)z F ;对于地脚螺栓联接,c F ≥z F 。
我所设计的万向联轴器属于工作载荷不稳定,所以我取c F =0.8z F 。
(1).拉伸强度考虑到螺栓在总拉力0F 的作用下可能需要拧紧,故将拉力增加30%以考虑扭转应力的影响。
这样危险截面的拉伸强度条件为40221.3 1.3 5.721030.58100.78517.64ca w F n d σπ⨯⨯===⨯⨯2/mm N(2).剪切强度螺杆与壁孔的挤压强度条件为:8.20252710104.15min 01=⨯⨯⨯==L nd F p σ2/mm N螺栓杆的剪切强度条件为: 5.2427785.010104.1425201=⨯⨯⨯==d n F πτ2/mm N 鉴于拉伸强度ca σ,挤压强度p σ,剪切强度τ都超过302/mm N 所以螺栓材料可以选45或35钢都满足强度条件。
受轴向载荷松螺栓连接强度校核与设计受轴向载荷松螺栓连接的基本形式如下图1所示:图1 受轴向载荷松螺栓连接受轴向载荷松螺栓连接强度校核与设计时,按下列公式进行计算:校核计算公式: 设计计算公式: 许用应力计算公式: 式中:――轴向载荷,N;――螺栓小径,mm,查表获得;――螺栓屈服强度,MPa,由螺纹连接机械性能等级决定;――安全系数,取值范围:。
受横向载荷铰制孔螺栓连接强度校核与设计 受横向载荷铰制孔螺栓连接的基本形式如图1所示:图1 受横向载荷铰制孔螺栓连接受横向载荷铰制孔螺栓连接的基本计算公式: 按挤压强度校核计算: 按抗剪强度校核计算: 按挤压强度设计计算: 按抗剪强度设计计算:――――――、中的铸铁为图1 受横向载荷紧螺栓连接受横向载荷紧螺栓连接强度校核与设计的基本公式如下:(1)预紧力计算公式:(2)校核计算公式: (3)设计计算公式: (4)许用应力计算公式:式中:――横向载荷,N;――螺栓预紧力,N;――可靠性系数,取1.1~1.3;m――接合面数;f――接合面摩擦因数,根据不同材料而定。
钢对钢时,为0.15 左右;――螺纹小径,从表中获取;――――受轴向载荷紧螺栓连接的基本公式:强度校核计算公式: 螺栓设计计算公式: 许用应力计算公式: 总载荷计算公式: 预紧力计算公式:残余预紧力计算公式:式中:――轴向载荷,N;――螺栓所受轴向总载荷,N;――残余预紧力,N;――螺栓小径,mm,查表获得;――残余预紧力系数,可按表1选取;――相对刚度,可按表2选取。
――螺栓屈服强度,MPa,由螺纹连接机械性能等级决定;――安全系数,查表3。
受轴向载荷紧螺栓连接(动载荷)强度校核与设计 受轴向载荷紧螺栓连接的基本形式如图1所示:图1 受轴向载荷紧螺栓连接受轴向载荷紧螺栓连接(动载荷)的基本公式:强度校核计算公式:许用应力计算公式:式中:――轴向载荷,N;――螺栓小径,mm,查表获得;――相对刚度,按表1选取;――尺寸因数,按表2查得;――制造工艺因数,切制螺纹,滚制、搓制螺纹;――受力不均匀因数,受压螺母,受拉螺母;――缺口――――,不控制。
螺牙强度校核螺接的螺牙强度校核一、引言 (1)二、参考教材 (1)三、适用范围 (1)四、力学性能校核 (2)1. 螺纹副抗挤压计算 (3)2. 抗剪切强度校核 (4)3. 抗弯曲强度校核 (5)4. 自锁性能校核 (9)5. 螺杆强度校核 (10)一、引言在机械设计的螺栓联接强度校核中,通常分为两部分,一是针对螺栓小径圆柱体(简称螺栓本体)的抗拉强度、抗剪强度进行校核,在螺栓本体满足工况使用后,再进一步对螺牙的强度进行校核,而下文就螺牙强度校核展开了相关性能校核的过程步骤。
二、参考教材1.《机械设计》第四版,高等教育出版社,邱宣怀主编,1997年7月第4版,1997年7月第1次印刷,印数0001—17094,定价23.60元,该书是戊子庚上学时的教材。
摘自P120。
2.《机械设计手册》第四版,第3卷,成大先主编,化学工业出版社,2005年1月北京第25次印刷。
摘自12-3~12-9。
三、适用范围螺纹联接可以使用普通螺纹、梯形、矩形、锯齿形等四种,且多用普通螺纹。
下图1给出了螺旋副的可能螺纹种类、特点和应用。
图1 螺旋副的螺纹种类、特点和应用四、力学性能校核该文件仅讨论五个方面的校核:抗挤压、抗剪切、抗弯曲、自锁性、螺杆强度。
根据实践,由于螺母的材质软,螺纹副的破坏多发生在螺母;但当螺母和螺杆材料相同时,螺杆首先破坏,此时应校核螺杆。
该文件中的各物理量及其含义和公式均可查阅文件(双击打开)螺纹联接的参数解释;该五项校核已编成excel 计算表格以提高效率,使用时仅仅需要填写绿色表格,其余表格计算机自行计算得出结果,见文件(双击打开)螺纹联接计算表格。
1. 螺纹副抗挤压计算把螺纹牙展直后相当于一根悬臂梁,见下图2、图3,抗挤压是指公、母螺纹牙之间的挤压应力不应超过许用挤压应力,否则便会产生挤压破坏。
设轴向力为F ,相旋合螺纹圈数为z ,则验算计算式为:p p []F =Aσσ≤ 且2F F A d hzπ= 若取p [][]σσ=,则有2[]F d hz σπ≤ 式中●p σ:挤压应力,单位MPa ; ● p []σ:许用挤压应力,单位MPa ;●F :轴向力,单位N ; ●2d :外螺纹中径,单位mm ; ● h :螺纹工作高度,单位mm ,p 为螺距,单位mm ,h 与p的关系为:● z :结合圈数,无量纲,一般不要超过10(因为旋合的各圈螺纹牙受力不均,因而z 不宜大于10);2. 抗剪切强度校核对螺杆,应满足 1[]F d bz ττπ=≤ ; 对螺母,应满足[]F Dbz ττπ=≤ 式中● F :轴向力,单位N ;●1d :计算公扣时使用螺纹小径,单位mm ; ●D :计算母扣时使用螺纹大径,单位mm ; ● b :螺纹牙底宽度,单位mm ,b 与p 的关系为:● z :结合圈数,无量纲,一般不要超过10(因为旋合的各圈螺纹牙受力不均,因而z 不宜大于10);● ][τ:许用剪应力,单位MPa ,对于材质为钢,一般可以取][6.0][στ=,][σ为材料的许用拉应力,S[]S σσ=,单位MPa ,其中S σ为屈服应力,单位MPa ,S 为安全系数,一般取3~5。
jgj82-2011钢结构高强度螺栓连接技术规程JGJ82-2011钢结构高强度螺栓连接技术规程是在JGJ82-2003钢结构
高强度螺栓连接技术规程的基础上发布的新版技术规程,主要对螺栓材料
类型、紧固力校核过程、螺栓连接细节处理等有所调整和改进,并且增加
了穿螺栓的滑动支架的计算要求,拓宽了螺栓技术规程应用范围。
1、材料
JGJ82-2011钢结构高强度螺栓连接技术规程规定,螺栓的材料分为
碳素钢、低合金钢、不锈钢、高强度钢共四类,具体见表3.3。
2、紧固力校核过程
JGJ82-2011钢结构高强度螺栓连接技术规程在技术标准中,除了要
求紧固力要求之外,还增加了紧固力校核过程和紧固力要求,具体要求参
见技术标准,表2.2。
3、螺栓连接细节处理
JGJ82-2011钢结构高强度螺栓连接技术规程要求,每个螺栓连接部
件之间的距离必须大于或等于紧固件的直径,具体要求参见表 2.1。
此外,为了提高螺栓连接的可靠性,在细节处理上还要求钢板进行抗拉孔的处理,具体要求如表3.1所示。
4、穿螺栓的滑动支架
JGJ82-2011钢结构高强度螺栓连接技术规程还增加了穿螺栓的滑动
支架的计算要求,除了要考虑螺栓滑动支架设计中的紧固力校核外,还需要。
螺栓连接强度校核与设计————————————————————————————————作者: ————————————————————————————————日期:受轴向载荷松螺栓连接强度校核与设计受轴向载荷松螺栓连接的基本形式如下图1所示:图1受轴向载荷松螺栓连接受轴向载荷松螺栓连接强度校核与设计时,按下列公式进行计算:校核计算公式:设计计算公式:许用应力计算公式:式中:――轴向载荷,N;――螺栓小径,mm,查表获得;――螺栓屈服强度,MPa,由螺纹连接机械性能等级决定;――安全系数,取值范围:。
受横向载荷铰制孔螺栓连接强度校核与设计受横向载荷铰制孔螺栓连接的基本形式如图1所示:图1 受横向载荷铰制孔螺栓连接受横向载荷铰制孔螺栓连接的基本计算公式:按挤压强度校核计算:按抗剪强度校核计算:按挤压强度设计计算:按抗剪强度设计计算:式中:――受横向载荷,N;――受剪直径,(=螺纹小径),mm,查表获得;――受挤压高度,取、中的较小值,mm;m――受剪面个数。
许用应力的计算公式分两组情况,如表1:表1 许用应力计算公式强度计算被连接件材料静载荷动载荷挤压强度钢铸铁抗剪强度钢和铸铁表中:为材料的屈服极限,由螺栓机械性能等级所决定。
受横向载荷紧螺栓连接强度校核与设计受横向载荷紧螺栓连接的基本形式如图1所示:图1受横向载荷紧螺栓连接受横向载荷紧螺栓连接强度校核与设计的基本公式如下:(1)预紧力计算公式:(2)校核计算公式: (3)设计计算公式:(4)许用应力计算公式:式中:――横向载荷,N;――螺栓预紧力,N;――可靠性系数,取1.1~1.3;m――接合面数;f――接合面摩擦因数,根据不同材料而定。
钢对钢时,为0.15 左右;――螺纹小径,从表中获取;――螺栓屈服强度,MPa,由螺栓材料机械性能等级决定;――安全系数,按表1选用。
表1 预紧螺栓连接的安全系数材料种类静载荷动载荷M6~M16M16~M30M30~M60 M6~M16M16~M30M30~M60碳钢4~3 3~22~1.3 10~6.5 6.5 6.5~10合金钢5~44~2.5 2.5 7.5~5 5 6~7.5受轴向载荷紧螺栓连接(静载荷)强度校核与设计受轴向载荷紧螺栓连接的基本形式如图1所示:图1 受轴向载荷紧螺栓连接受轴向载荷紧螺栓连接的基本公式:强度校核计算公式:螺栓设计计算公式:许用应力计算公式:总载荷计算公式:预紧力计算公式:残余预紧力计算公式:式中:――轴向载荷,N;――螺栓所受轴向总载荷,N;――残余预紧力,N;――螺栓小径,mm,查表获得;――残余预紧力系数,可按表1选取;――相对刚度,可按表2选取。
螺纹锁紧环换热器主螺纹设计与强度校核罗 聪(中石化洛阳工程有限公司,河南省洛阳市471003)摘要:介绍螺纹锁紧环换热器管箱密封结构特点,分析其载荷传递方式,总载荷最终通过主螺纹传递到管程筒体。
目前螺纹锁紧环换热器主螺纹设计中是假设将总载荷平均分配,再对螺纹进行强度校核,但每扣螺纹实际承受载荷是不均匀的。
以某螺纹锁紧环换热器为例,参照GB/T34019—2017《超高压容器》中关于螺纹载荷分布的计算校核方法,计算主螺纹的载荷分布并校核。
结果表明:螺纹载荷分布计算结果与有限元模拟相吻合,前四扣螺纹承担超过总载荷的50%,主螺纹校核合格。
为螺纹锁紧环结构设计中考虑螺纹承受载荷不均匀的强度校核提供一种可借鉴的方法。
关键词:主螺纹 设计 强度校核 载荷分布1 螺纹锁紧环换热器特点螺纹锁紧环换热器在国内外大型炼油装置中得到了较为广泛的应用,具有结构紧凑、密封性能可靠及节约占地等优点。
依据管程、壳程设计压力的不同,主要分为高 高压(H H)型螺纹锁紧环换热器(管程、壳程均为高压)和高 低压(H L)型螺纹锁紧环换热器(管程高压,壳程低压)。
两种螺纹锁紧环换热器管箱密封结构见图1。
图1 两种螺纹锁紧环换热器管箱密封结构Fig.1 Channelsealingstructureoftwokindsofthreadlockingringheatexchanger螺纹锁紧环换热器结构特殊在于管箱。
H H型螺纹锁紧环换热器通过分程箱、锁紧环等内部构件将管程内压引起的轴向载荷、管程密封所需载荷、管壳程间密封载荷等最终由主螺纹的啮合传递到管箱筒体[1]。
H L型螺纹锁紧环换热器管程内压引起的轴向载荷、管程密封所需载荷等通过主螺纹传递到管箱筒体,而壳程压力以及壳程密封所需载荷由壳体法兰螺栓承受。
两种结构都比较紧凑,H H型管板采用压差设计,H L型管板采用全压设计,壳程除了采用法兰结构外还可以采用Ω环等其他密封结构型式。
2 主螺纹的设计螺纹锁紧环换热器的总载荷最终都通过螺纹锁紧环和管箱筒体端部的主螺纹进行传递。
螺栓强度计算螺栓联接的强度计算,主要是根据联接的类型、联接的装配情况(是否预紧)和受载状态等条件,确定螺栓的受力;然后按相应的强度条件计算螺栓危险截面的直径(螺纹小径)或校核其强度。
3.4.1 普通螺栓联接的强度计算 1.松螺栓联接松螺栓联接松螺栓联接在装配时不需要把螺母拧紧,在承受工作载荷之前螺栓并不受力,所以螺栓所受到的工作拉力就是工作载荷 F,故螺栓危险截面拉伸强度条件为:设计公式:——螺纹小径,mm;F——螺栓承受的轴向工作载荷,N;[σ]——松螺栓联接的许用应力,N/ ,许用应力及安全系数见表 3-4-1。
2.紧螺栓联接紧螺栓联接紧螺栓联接有预紧力F′,按所受工作载荷的方向分为两种情况:(1)受横向工作载荷的紧螺栓联接受横向工作载荷的紧螺栓联接普通螺栓联接铰制孔用螺栓(a)普通螺栓联接普通螺栓联接:左图为通螺栓联接,被联接件承受垂直于轴线的横向载荷。
因螺栓普通螺栓联接杆与螺栓孔间有间隙,故螺纹不直接承受横向载荷,而是预先拧紧螺栓,使被联接零件表面间产生压力,从而使被联接件接合面间产生的摩擦力来承受横向载荷。
如摩擦力之总和大于或等于横向载荷,被联接件间不会相互滑移,故可达到联接的目的。
(b)铰制孔用螺栓铰制孔用螺栓:承受横向载荷时,不仅可采用普通螺栓联接,也可采用铰制孔用螺铰制孔用螺栓栓联接。
此时,螺栓孔为铰制孔,与螺栓杆(直径处)之间为过渡配合,螺栓杆直接承受剪切,如上图所示。
在受横向载荷的铰制孔螺栓联接中,载荷是靠螺杆的剪切以及螺杆和被联接件间的挤压来传递的。
这种联接的失效形式有两种:螺杆受剪面的塑性变形或剪断;① ② 螺杆与被联接件中较弱者的挤压面被压溃。
故需同时验算其挤压强度和剪切强度条件:剪切强度条件:挤压强度条件:(2)受轴向工作载荷的紧螺栓联接受轴向工作载荷的紧螺栓联接现实生活中,螺栓所受外载荷与螺栓轴线平行的情况很多,如左图所示的汽缸盖螺栓联接,即为承受轴向外载荷的联接。
第八节 提高螺栓连接强度的措施分析影响螺栓连接强度的因素,从而提出提高联接强度的措施。
这对于螺纹联接的设计也是很重要的。
螺纹联接的强度,主要取决于螺栓的强度。
影响螺栓强度的因素很多,有材料、结构、尺寸、制造、工艺等。
实际设计中,通常主要是以下几个方面考虑来提高联接的强度。
一、减小应力幅(可提高疲劳强度)大家知道,影响疲劳强度的主要因素是变应力中的应力幅↑a σ,则越易产生疲劳破坏。
↓a σ,则可以提高疲劳强度。
由螺栓总拉力:F C C C F F mb b++=02可以看出,当工作拉力F 变化时,只会引起(F C C C mb b+)这一部分是变化的。
此部分减小,就可以使↓a σ。
显然:相对刚度mb bC C C +越小,则可提高疲劳强度。
由此可见:措施为;① 减小b C (见教材上的图) ② 增大m C (见教材上的图) 这样可以使mb bC C C +↓,从而使↓a σ。
但是由F C C C F F mb b++=02可知,在F 0给定的条件下,减小螺栓的刚度C b 或增大被联接件刚度C m ,都将引起残余预紧力F 1减小,从而降低了联接的紧密性。
因此,若在减小C b 或增大C m 的同时,适当增加预紧力F 0,就可以使F 1不致减小太多或保持不变。
减小螺栓的刚度的方法:(1)适当增加螺栓的长度(2)采用腰状杆螺栓和空心螺栓(3)在螺母下面安装上弹性元件腰状杆螺栓和空心螺栓在螺母下面安装上弹性元件增大被联接件的刚度(1)不用垫片或采用刚度较大的垫片(2)采用刚度较大的金属垫片或密封环软垫片密封密封环密封二、改善螺纹牙之间的受力分布:对于普通螺母如图示。
工作中螺栓受拉,使螺距增大,而螺母受压,其螺距减小。
导致螺栓、螺母产生了螺距差。
这样,旋合的螺栓和螺母的各圈螺纹牙不能都保持良好的接触,那末各圈螺纹牙所分担的载荷就不相等。
(如图所示)。
理论分析和实践都表明:从螺母支撑面算起第一圈受载荷最大。
以后各圈依次减小。
受轴向载荷松螺栓连接强度校核与设计受轴向载荷松螺栓连接的基本形式如下图1所示:图1 受轴向载荷松螺栓连接受轴向载荷松螺栓连接强度校核与设计时,按下列公式进行计算:校核计算公式:设计计算公式:许用应力计算公式:式中:――轴向载荷,N;――螺栓小径,mm,查表获得;――螺栓屈服强度,MPa,由螺纹连接机械性能等级决定;――安全系数,取值范围:。
受横向载荷铰制孔螺栓连接强度校核与设计受横向载荷铰制孔螺栓连接的基本形式如图1所示:图1 受横向载荷铰制孔螺栓连接受横向载荷铰制孔螺栓连接的基本计算公式:按挤压强度校核计算:按抗剪强度校核计算:按挤压强度设计计算:按抗剪强度设计计算:式中:――受横向载荷,N;――受剪直径,(=螺纹小径),mm,查表获得;――受挤压高度,取、中的较小值,mm;m――受剪面个数。
许用应力的计算公式分两组情况,如表1:表1 许用应力计算公式表中:为材料的屈服极限,由螺栓机械性能等级所决定。
受横向载荷紧螺栓连接强度校核与设计受横向载荷紧螺栓连接的基本形式如图1所示:图1 受横向载荷紧螺栓连接受横向载荷紧螺栓连接强度校核与设计的基本公式如下:(1)预紧力计算公式:(2)校核计算公式:(3)设计计算公式:(4)许用应力计算公式:式中:――横向载荷,N;――螺栓预紧力,N;――可靠性系数,取1.1~1.3;m――接合面数;f――接合面摩擦因数,根据不同材料而定。
钢对钢时,为0.15 左右;――螺纹小径,从表中获取;――螺栓屈服强度,MPa,由螺栓材料机械性能等级决定;――安全系数,按表1选用。
表1 预紧螺栓连接的安全系数受轴向载荷紧螺栓连接(静载荷)强度校核与设计受轴向载荷紧螺栓连接的基本形式如图1所示:图1 受轴向载荷紧螺栓连接受轴向载荷紧螺栓连接的基本公式:强度校核计算公式:螺栓设计计算公式:。
第八节 提高螺栓连接强度的措施分析影响螺栓连接强度的因素,从而提出提高联接强度的措施。
这对于螺纹联接的设计也是很重要的。
螺纹联接的强度,主要取决于螺栓的强度。
影响螺栓强度的因素很多,有材料、结构、尺寸、制造、工艺等。
实际设计中,通常主要是以下几个方面考虑来提高联接的强度。
一、减小应力幅(可提高疲劳强度)大家知道,影响疲劳强度的主要因素是变应力中的应力幅↑a σ,则越易产生疲劳破坏。
↓a σ,则可以提高疲劳强度。
由螺栓总拉力:F C C C F F m b b ++=02 可以看出,当工作拉力F 变化时,只会引起(F C C C mb b +)这一部分是变化的。
此部分减小,就可以使↓a σ。
显然:相对刚度mb b C C C +越小,则可提高疲劳强度。
由此可见:措施为; ① 减小b C (见教材上的图)② 增大m C (见教材上的图) 这样可以使mb b C C C +↓,从而使↓a σ。
但是由F C C C F F mb b ++=02 可知,在F 0给定的条件下,减小螺栓的刚度C b 或增大被联接件刚度C m ,都将引起残余预紧力F 1减小,从而降低了联接的紧密性。
因此,若在减小C b 或增大C m 的同时,适当增加预紧力F 0,就可以使F 1不致减小太多或保持不变。
减小螺栓的刚度的方法:(1)适当增加螺栓的长度(2)采用腰状杆螺栓和空心螺栓(3)在螺母下面安装上弹性元件腰状杆螺栓和空心螺栓在螺母下面安装上弹性元件增大被联接件的刚度(1)不用垫片或采用刚度较大的垫片(2)采用刚度较大的金属垫片或密封环软垫片密封密封环密封二、改善螺纹牙之间的受力分布:对于普通螺母如图示。
工作中螺栓受拉,使螺距增大,而螺母受压,其螺距减小。
导致螺栓、螺母产生了螺距差。
这样,旋合的螺栓和螺母的各圈螺纹牙不能都保持良好的接触,那末各圈螺纹牙所分担的载荷就不相等。
(如图所示)。
理论分析和实践都表明:从螺母支撑面算起第一圈受载荷最大。
关于螺栓设计I 单个螺栓设计一.螺纹联接的强度计算松螺纹联接强度计算紧螺栓联接强度计算1.仅承受预紧力的紧螺栓联接拉伸强度条件为2.承受预紧力和工作拉力的紧螺栓联接拉伸强度条件为疲劳强度计算3承受工作剪力的紧螺栓联接松螺纹联接强度计算拉伸强度条件为:【5-14】式中:F--螺栓工作载荷,N;d1--螺栓危险截面的直径,mm;[σ]--螺栓材料的许用拉应力,MPa.紧螺栓联接强度计算1.仅承受预紧力的紧螺栓联接拉伸强度条件为:式中:Q p—螺栓所受预紧力,N。
2.承受预紧力和工作拉力的紧螺栓联接①拉伸强度条件为:式中:Q—螺栓总拉力,N。
螺栓总拉力的计算:Q=Qp+[Cb/(Cb+Cm)]·F式中:Cb/(Cb+Cm)称为螺栓的相对刚度,一般设计时,可按下表推荐的数据选取。
螺栓的相对刚度Cb/(Cb+Cm)被联接钢板间所用垫片类别Cb/(Cb+Cm)金属垫片(或无垫片)0.2~0.3皮革垫片0.7铜皮石棉垫片0.8橡胶垫片0.9②疲劳强度计算对于受轴向变载荷的重要联接,应对螺栓的疲劳强度作精确校核,计算其最大应力计算安全系数:式中:σ-1tc——螺栓材料的对称循环拉压疲劳极限,MPa ,σ-1tc值见表——试件的材料特性,即循环应力中平均应力的折算系数,对于碳素钢,=0.1—0.2,对于合金钢,=0.2—0.3;——拉压疲劳强度综合影响系数,如忽略加工方法的影响,则Kσ=kσ/εσ,Kσ此处为有效应力集中系数,见表εσ为尺寸系数,见附表;S ——安全系数。
螺纹联接件常用材料的疲劳极限(摘自GB38-76)材料疲劳极限(MPa)σ-1σ-1tc10 Q215 35 45 40C r 160~220170~220220~300250~340320~440120~150120~160170~220190~250240~340螺纹联接的安全系数 S受载类型静载荷变载荷松螺栓联接 1.2~1.7紧螺栓联接受轴向及横向载荷的普通螺栓联接不考虑预紧力的简化计算M6~M16 M16~M30 M30~M60 M6~M16 M16~M30 M30~M60 碳钢5~4 4~2.5 2.5~2 碳钢12.5~8.5 8.5 8.5~12.5合金钢5.7~5 5~3.4 3.4~3 合金钢10~6.8 6.8 6.8~10考虑预紧力的计算1.2~1.51.2~1.5(Sa=2.5~4) 铰制孔用螺栓联接钢:Sr=2.5,Sp=1.25铸铁:Sp=2.0~2.5钢:Sr=3.5~5,Sp=1.5铸铁:Sp=2.5~3.03.承受工作剪力的紧螺栓联接螺栓杆与孔壁的挤压强度条件为螺栓杆的剪切强度条件为式中:F ——螺栓所受的工作剪力,N;d0——螺栓剪切面的直径(可取为螺栓孔的直径),mm;L min——螺栓杆与孔壁挤压面的最小高度,mm,设计时应使L min 1.25d0;[σ]p——螺栓或孔壁材料的许用挤压应力,MPa ;[τ] ——螺栓材料的许用切应力,MPa 。
受轴向载荷松螺栓连接强度校核与设计
受轴向载荷松螺栓连接的基本形式如下图1所示:
图1 受轴向载荷松螺栓连接
受轴向载荷松螺栓连接强度校核与设计时,按下列公式进行计算:
校核计算公式:
设计计算公式:
许用应力计算公式:
式中:――轴向载荷,N;――螺栓小径,mm,查表获得;――螺栓屈服强度,MPa,由螺纹连接机械性能等级决定;――安全系数,取值范围:。
受横向载荷铰制孔螺栓连接强度校核与设计受横向载荷铰制孔螺栓连接的基本形式如图1所示:
图1 受横向载荷铰制孔螺栓连接
受横向载荷铰制孔螺栓连接的基本计算公式:
按挤压强度校核计算:
按抗剪强度校核计算:
按挤压强度设计计算:
按抗剪强度设计计算:
式中:――受横向载荷,N;――受剪直径,(=螺纹小径),mm,查表获得;――受挤压高度,取、中的较小值,mm;m――受剪面个数。
许用应力的计算公式分两组情况,如表1:
表1 许用应力计算公式
强度计算被连接件材料静载荷动载荷
挤压强度钢
铸铁
抗剪强度钢和铸铁
表中:为材料的屈服极限,由螺栓机械性能等级所决定。
受横向载荷紧螺栓连接强度校核与设计
受横向载荷紧螺栓连接的基本形式如图1所示:
图1 受横向载荷紧螺栓连接
受横向载荷紧螺栓连接强度校核与设计的基本公式如下:
(1)预紧力计算公式:
(2)校核计算公式:
(3)设计计算公式:
(4)许用应力计算公式:
式中:――横向载荷,N;――螺栓预紧力,N;――可靠性系数,取1.1~1.3;m――接合面数;f――接合面摩擦因数,根据不同材料而定。
钢对钢
时,为0.15 左右;――螺纹小径,从表中获取;――螺栓屈服强度,MPa,由螺栓材料机械性能等级决定;――安全系数,按表1选用。
表1 预紧螺栓连接的安全系数
材料种类
静载荷动载荷
M6~M16 M16~M30 M30~M60 M6~M16 M16~M30 M30~M60
碳钢4~3 3~2 2~1.3 10~6.5 6.5 6.5~10 合金钢5~4 4~2.5 2.5 7.5~5 5 6~7.5
受轴向载荷紧螺栓连接(静载荷)强度校核与设计受轴向载荷紧螺栓连接的基本形式如图1所示:
图1 受轴向载荷紧螺栓连接
受轴向载荷紧螺栓连接的基本公式:
强度校核计算公式:
螺栓设计计算公式:
许用应力计算公式:
总载荷计算公式:
预紧力计算公式:
残余预紧力计算公式:
式中:――轴向载荷,N;――螺栓所受轴向总载荷,N;――残余预紧力,N;――螺栓小径,mm,查表获得;――残余预紧力系数,可按表1选取;――相对刚度,可按表2选取。
――螺栓屈服强度,MPa,由螺纹连接机械性能等级决定;――安全系数,查表3。
表1 受轴向力紧螺栓所须残余预紧力系数K
工作情况一般连接变载荷冲击压力容器或重要连接K 0.2~0.6 0.6~1.0 1.0~1.5 1.5~1.8
表2 螺栓连接的相对刚度λ
垫片材料金属(或无垫
片)
皮革铜皮石棉橡胶λ0.2~0.3 0.7 0.8 0.9
表3 预紧螺栓连接的安全系数
材料种类
静载荷动载荷
M6~M16 M16~M30 M30~M60 M6~M16 M16~M30 M30~M60
碳钢4~3 3~2 2~1.3 10~6.5 6.5 6.5~10 合金钢5~4 4~2.5 2.5 7.5~5 5 6~7.5
受轴向载荷紧螺栓连接(动载荷)强度校核与设计受轴向载荷紧螺栓连接的基本形式如图1所示:
图1 受轴向载荷紧螺栓连接
受轴向载荷紧螺栓连接(动载荷)的基本公式:
强度校核计算公式:
许用应力计算公式:
式中:――轴向载荷,N;――螺栓小径,mm,查表获得;――相对刚度,按表1选取;――尺寸因数,按表2查得;――制造工艺因数,切制螺纹,滚制、搓制螺纹;――受力不均匀因数,受压螺母,受拉螺母;――缺口应力集中因数,按表3查得;
――抗压疲劳极限,按表4选取;――安全因数,控制预紧力
,不控制预紧力。
表1 螺栓连接的相对刚度λ
皮革铜皮石棉橡胶垫片材料金属(或无垫
片)
λ0.2~0.3 0.7 0.8 0.9
表2 尺寸因数
<12 16 20 24 30 36 42 48 56 64 螺栓直径
d
1 0.87 0.8 0.74 0.65 0.64 0.60 0.57 0.54 0.53
表3 缺口应力集中因数
螺栓材料/MPa 400 600 800 1000
3 3.9 4.8 5.2
表4 抗压疲劳极限
材料10 Q235-A 35 45 40Cr 120~150 120~160 170~220 190~250 240~340。