大连市某污水处理厂初步设计:CAST反应池
- 格式:pdf
- 大小:510.26 KB
- 文档页数:40
CAST工艺在污水处理厂提标升级中的应用摘要:本人通过工程实例,介绍了盐城市城南污水处理厂二期扩能升级的工艺应用情况,该工程总规模15.0万m3/d,二期新增规模5.0万m3/d。
工程主导采用降低CAST设计负荷,优化运行技术,在强化CAST生物脱氮除磷基础上,增加深度处理工艺,出水水质稳定达到一级A排放标准。
关键词:提标CAST深度处理一级A盐城市城南污水处理厂是淮河流域水污染防治规划重点项目之一。
项目设计总规模15.0万m3/d,分远期建设,一期工程5.0万m3/d,于2006年11月建成投产。
一期部分建(构)筑物按总规模15万m3/d一次建成,出水水质按照国家标准《城镇污水处理厂污染物排放标准》(GB18918-2002)中的污水一级B 排放标准执行。
随着流域水环境治理的不断深入,扩大污水处理能力,降低污水厂能耗,提高污水厂出水水质标准,已成为行业发展的必然趋势。
依据环保部门对二期工程项目要求,城南污水处理厂二期工程出水应按照《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级A排放标准执行,同时尽快落实一期工程尾水提标。
1.工程建设规模和设计进出水水质二期工程建设规模5.0万m3/d,深度处理单元部分建构筑物按土建按远期15.0万m3/d布置。
二期工程进水参照一期运营多年实际进水水质为依据,以累计频率90%作为二期工程的设计进水水质,设计进出水水质如下表。
2 二级生物处理工艺方案城南污水处理厂一期工程采用的是CAST工艺,CAST工艺是传统SBR工艺的改进型。
CAST既保留了传统SBR静态沉表1盐城市城南污水处理厂水质淀、出水SS低的优点,又构造了专门厌氧区(预反应区只设搅拌),使除磷效果稳定可靠;通过对鼓风量的限制,从而造成了同步硝化与反硝化,不仅使脱氮得到保证,而且氧的利用率也显著提高。
一期工程已设CAST池为4组,单池设计容积为8700m³,单组反应周期时长:4h,周期数:6次/天,污泥龄:10d。
CAST生化池工艺计算书设计规模:100000m3/d进出水水质:项目进水出水COD≤250mg/L40mg/LBOD≤140mg/L20mg/LSS≤150mg/L20mg/LTKN≤40mg/L20mg/LNH3-N≤30mg/L8mg/LTP≤4mg/L1mg/L最低温度T14℃1.参数选定周期数N=6个/d周期长T=4h/周期进水时间T j=2h/周期反应时间T F=2h/周期沉淀时间T S=1h/周期排水时间T e=1h/周期池数M=8个水深H=5m安全高度H f=0.6mSVI=1202、设计流量日变化系数K d= 1.1时变化系数Kz= 1.2计算泥量的流量Q d=110000m3/d最高时流量Q h=5000m3/h单池小时进水量Q ih=1041.67m3/h/池3.反应泥龄(1)好氧泥龄θCO=8.10d(2)反应泥龄No=14.00mg/LK de=0.10kgNO3/kgBOD查表得θCO/θCO=0.325取值范围0.2~0.5θCF=12.00d(3)缺氧泥龄θCD= 3.90d在反应时段好氧TO= 1.35h缺氧TD=0.65h4、污泥产率系数Y=0.80kgSS/kgBOD5、污泥量反应污泥量X F=126667.7kg总污泥量X T=253335.3kg6.计算池容T S'= 1.83h(1)主反应器容积V=(H f+(H f2+(62400*Q h*H*T S'/X T/SVI/N))^0.5)*(X T*SVI/1300/T S')V=58737.85m3(2)选择器容积V P=5873.785m3(3)总池容V T=64611.63m37.排水深度△H=24Q H*H/N/V△H= 1.70m8.污泥浓度X H=X T/V= 4.31g/LX L=H*X H/(H-△H)= 6.54g/L由于SVI较低,可行9.单池参数单池容积V i=7342.231m3单池面积F i=1468.446m2单池贮水容积△Vi=2500m310.污泥负荷L S=0.111kgBOD/(kgMLSS.d)11.水力停留时间T=24V/Q=14.10h12.需氧量降解单位BOD需氧量= 1.12kgO2/kgBOD需降解BOD量=12000kgBOD/d需硝化的氨氮量=2000kgN/d反硝化的氮量=1400总需氧量O2=18576kgO2/d13.供气量标准条件下清水中饱和溶解氧20℃Cs=9.17mg/l(K LA)|污/清α=0.820.5~0.95β=0.90.9~0.97Co=2mg/l饱和溶解氧28℃Cs=7.92mg/l空气扩散出口压力1.013x105+9.8x103xH Pb=150300PaT=28℃Ea=0.25离开曝气池时Ot=0.166C sb(28℃)=8.896mg/lC sb(20℃)=10.300mg/lR0=RCs(20)/α[βCsb(T)-C]1.024(T-20)R0=32133.53kgO2/d(1)供气量Gs=R0/0.3Ea*100Gs=428447.01m3/d17851.96m3/h(2)最大时气量Gsmax=21422.35m3/h(3)去除每立方米污水的气量为平均时= 4.28空气/m3污水最大时= 5.14空气/m3污水(4)单池供气量Gs(ih)=5355.59m3/h14.剩余污泥剩余污泥X WT=10555.08kgSS/d最不利Q W=2447.28m3/d每池每周期排泥量Q Wi=50.98m3排泥时间T=0.5h剩余污泥泵流量=101.97m3/h15.主要设备(1)曝气器每个曝气器供气量= 2.5Nm3/h单池=2142个所有池=17136个(2)鼓风机按8个反应池两个系列工况完全相同,一组风机供4座反应池,单组2用1备考虑单台Q=5355.59m3/hP=0.6bar共6台(3)滗水器滗水量为△Vi共16台,每格2台单台Q=1250m3/h堰负荷q≤28L/s.m堰长L≥12.4m(4)潜水搅拌器N=7.3KW共4台池内部是否设搅拌器待定(5)剩余污泥泵Q=101.97m3/hH=10.00m共8台,每池1台(6)回流污泥泵Q=208.33m3/hH= 2.00m共8台,每池1台。
CAST的工作原理与设计计算循环式活性污泥法(Cyclic Activated Sludge Technology,简称CAST)是由美国Goronszy教授开发出来的,该工艺的核心为间歇式反应器,在此反应器中按曝气与不曝气交替运行,将生物反应过程与泥水分离过程集中在一个池子中完成,属于SBR工艺的一种变型。
该工艺投资和运行费用低、处理性能高,尤其是优异的脱氮除磷效果,已广泛应用于城市污水和各种工业废水的处理中。
1 工作原理CAST反应池分为生物选择区、预反应区和主反应区,如图1所示,运行时按进水-曝气、沉淀、撇水、进水-闲置完成一个周期,CAST的成功运行可将废水中的含碳有机物和包括氮、磷的污染物去除,出水总氮浓度小于5mg/L。
1-生物选择器;2-预反应区;3-主反应区图1循环活性污泥技术1)生物选择器设在池子首部,不设机械搅拌装置,反应条件在缺氧和厌氧之间变化。
生物选择区有三个功能:a.絮体结构内底物的物理团聚与动力学和代谢选择同步进行;b.选择器被隔开,保证初始高絮体负荷,以及酶快速去除溶解底物;c.通过选择器的设计,还可以创造一个有利于磷释放的环境,这样促进聚磷菌的生长[1]。
生物选择区的设置严格遵循活性污泥种群组成动力学的有关规律,创造合适的微生物生长条件,从而选择出絮凝性细菌。
活性污泥的絮体负荷S0/X0(即底物浓度和活性微生物浓度的比值)对系统中活性污泥的种群组成有较大的影响,较高的污泥絮体负荷有助于絮凝性细菌的生长和繁殖。
CAST工艺中活性污泥不断地在生物选择器中经历高絮体负荷阶段,这样有利于絮凝性细菌的生长,提高污泥活性,并通过酶反应快速去除废水中的溶解性易降解底物,从而抑制了丝状细菌的生长和繁殖,避免了污泥膨胀的发生。
同时当生物选择器处于缺氧环境时,回流污泥存在的少量硝酸盐氮(约为N3-N=20mg/L)可得到反硝化,反硝化量可达整个系统硝化量的20%[2]。
当选择器处于厌氧环境时,磷得以有效地释放,为生物除磷做准备。
CAST工作原理循环式活性污泥法(Cyclic Activated Sludge Technology,简称CAST)是由美国Goronszy教授开发出来的,该工艺的核心为间歇式反应器,在此反应器中按曝气与不曝气交替运行,将生物反应过程与泥水分离过程集中在一个池子中完成,属于SBR工艺的一种变型。
该工艺投资和运行费用低、处理性能高,尤其是优异的脱氮除磷效果,已广泛应用于城市污水和各种工业废水的处理中。
1 工作原理CAST反应池分为生物选择区、预反应区和主反应区,运行时按进水-曝气、沉淀、撇水、进水-闲置完成一个周期,CAST的成功运行可将废水中的含碳有机物和包括氮、磷的污染物去除,出水总氮浓度小于5mg/L。
1)生物选择器设在池子首部,不设机械搅拌装置,反应条件在缺氧和厌氧之间变化。
生物选择区有三个功能:a.絮体结构内底物的物理团聚与动力学和代谢选择同步进行;b.选择器被隔开,保证初始高絮体负荷,以及酶快速去除溶解底物;c.通过选择器的设计,还可以创造一个有利于磷释放的环境,这样促进聚磷菌的生长[1]。
生物选择区的设置严格遵循活性污泥种群组成动力学的有关规律,创造合适的微生物生长条件,从而选择出絮凝性细菌。
活性污泥的絮体负荷S0/X0(即底物浓度和活性微生物浓度的比值)对系统中活性污泥的种群组成有较大的影响,较高的污泥絮体负荷有助于絮凝性细菌的生长和繁殖。
CAST工艺中活性污泥不断地在生物选择器中经历高絮体负荷阶段,这样有利于絮凝性细菌的生长,提高污泥活性,并通过酶反应快速去除废水中的溶解性易降解底物,从而抑制了丝状细菌的生长和繁殖,避免了污泥膨胀的发生。
同时当生物选择器处于缺氧环境时,回流污泥存在的少量硝酸盐氮(约为N3-N=20mg/L)可得到反硝化,反硝化量可达整个系统硝化量的20%[2]。
当选择器处于厌氧环境时,磷得以有效地释放,为生物除磷做准备。
2)预反应区为水力缓冲区,大小与高峰流量有关,若在非曝气阶段,不进水可将其省去。
污水处理CAST1. 污水处理的背景和重要性污水处理是指将生活污水、工业废水等含有有害物质的水体经过一系列的处理工艺,去除其中的污染物质,使其达到国家规定的排放标准,以保护环境和人类健康。
污水处理对于城市的可持续发展和生态环境的保护至关重要。
2. CAST技术的介绍CAST(Chemically Activated Sludge Treatment)技术是一种先进的污水处理技术,它结合了化学和生物处理的优势。
该技术通过在活性污泥处理过程中添加化学试剂,增强污泥颗粒的吸附能力和沉降速度,从而提高污水处理效率。
3. CAST技术的工艺流程(1)预处理:污水经过初步的筛网过滤,去除大颗粒杂质和悬浮物。
(2)生化处理:将预处理后的污水引入生化池中,通过搅拌和通气等方式,使活性污泥与污水充分接触,降解有机物。
(3)化学处理:在生化池中添加化学试剂,如聚合氯化铝、聚合硫酸铁等,与污水中的悬浮物和胶体颗粒发生化学反应,形成较大的沉淀物。
(4)沉淀处理:经过化学处理后的污水进入沉淀池,沉淀池中的沉淀物经过一段时间的沉淀,沉淀下来形成污泥。
(5)污泥处理:沉淀下来的污泥经过浓缩、脱水等处理,最终得到固体污泥和液体污泥。
4. CAST技术的优势(1)高效处理:CAST技术能够同时利用生化处理和化学处理的优势,提高污水处理的效率。
(2)节能环保:相比传统的生化处理工艺,CAST技术能够减少氧气的消耗,降低能源消耗,减少二氧化碳的排放。
(3)适应性强:CAST技术对于不同种类的污水具有较高的适应性,能够处理高浓度、高难度的污水。
(4)减少污泥产量:CAST技术通过化学处理,能够使污泥颗粒增大,从而减少污泥产量,降低污泥处理的成本。
5. CAST技术在实际应用中的案例以某城市污水处理厂为例,引入CAST技术后,污水处理效率明显提高。
在相同处理能力的情况下,处理时间缩短了30%,处理效果达到了国家排放标准。
同时,污泥产量减少了20%,降低了污泥处理的成本。
CAST工艺在大连城市污水处理厂的应用摘要本文介绍了cast工艺处理污水的过程和工艺特点,根据大连市4家污水处理厂的实际监测数据,评价了cast工艺对城市生活污水的处理效果。
关键词 cast工艺;污水处理厂;处理效果中图分类号x703 文献标识码a 文章编号 1674-6708(2011)52-0049-02cast工艺是在sbr工艺的基础上改进的一种新工艺,它比传统的sbr系统增加了选择器和污泥回流设施,并对时序做了一些调整,从而大大提高了工艺的可靠性及效率。
经过国内外多年的实践运行并不断调整,如今已经是一种技术成熟、运行稳定的污水处理工艺,广泛应用于城市污水和各种工业废水的处理。
1 cast工艺概述循环式活性污泥法(cyclic activated sludge technology,简称cast)是由美国goronszy教授开发出来的,该工艺的核心为间歇式反应器,在此反应器中按曝气与不曝气交替运行,将生物反应过程与泥水分离过程集中在一个池子中完成,属于sbr工艺的一种变型[1]。
采用cast工艺处理废水时,废水按一定周期循环处理,每一个循环由充气/曝气、充水/沉淀、撇水、闲置四个阶段组成,不断重复循环。
cast工艺的池子分3个区,即选择区、兼氧区、主曝气区。
多池系统的进水配水池可作为选择区,选择区的基本功能是防止产生污泥膨胀,回流污泥中的硝酸盐可在此进行反硝化。
在选择区中,废水中的溶解性有机物质能通过酶反应机理而迅速去除,选择区可以恒定容积,也可以改变容积运行;兼氧区内进行微量曝气,调节曝气区可进行缺氧除磷;主曝气区内主要进行降解有机物和硝化,同时也进行硝化—反硝化过程。
2 cast工艺的特点[2]1)出水水质好,有机物去除率高,具有良好的除磷脱氮效果,bod去除率达到95%;2)对冲击负荷的适应性强,适于水质、水量变化较大的中、小污水处理厂,也适应高浓度污水处理;3)活性污泥性能好,因设有回流系统,在厌氧区有效地抑制了丝状菌的大量繁殖,克服了污泥膨胀;4)投资和占地面积小,没有初沉池、二沉池和刮泥系统,因而减少了用地和投资;5)能耗低,cast技术是一种延时曝气系统,氧利用率高,运行费用低;6)运行灵活可靠,可以根据水质、水量进行调整,方便灵活。
CAST工艺处理城市污水原理及设计CAST工艺处理城市污水原理及设计一、引言城市化进程中,污水处理一直是重要的环保领域。
随着城市规模的扩大和人口的增加,城市污水的处理压力越来越大。
为了保护环境,减少污染物的释放,需要采用高效的污水处理技术。
本文将介绍一种称为CAST工艺的污水处理技术,包括其原理、工艺流程和设计要点。
二、CAST工艺的原理CAST工艺是一种常压下的活性污泥系统反应器。
其核心原理是通过微生物的活性作用,将有机物质转化为无机物质,从而达到去除污染物的目的。
该工艺具有以下优势:1. 反应器体积小,占地面积小。
2. 操作简单、控制灵活,适应性强。
3. 反应器内的活性污泥容易维护和更新。
4. 处理效果稳定,出水质量好。
三、CAST工艺的工艺流程1. 进水和预处理:城市污水经过网格和沉砂池等预处理设备后,进入CAST工艺的进水池。
预处理过程主要去除悬浮物和大颗粒有机物质,减少对后续工艺的影响。
2. 厌氧处理:进水从进水池经过预处理后,进入CAST工艺的厌氧区域。
在厌氧条件下,污水中的有机物质被微生物分解成有机酸和乙醇等有机物,产生甲烷等可再生能源。
3. 好氧处理:厌氧处理后的污水进入CAST工艺的好氧区域。
在好氧条件下,污水中的有机物质和氮、磷等营养物质被微生物氧化,产生二氧化碳和水等无害物质。
4. 沉淀池:好氧处理后的污水进入沉淀池,在此处进行悬浮物的沉淀和污泥的回流。
5. 出水处理:经过沉淀池的净化,水质得到进一步改善,可达到城市排放标准。
6. 污泥处理:沉淀池回流的污泥需要经过脱水、干化等处理后,达到资源化利用的目的。
四、CAST工艺的设计要点1. 反应器容积的确定:反应器容积直接关系到工艺的处理效果和运行成本。
根据城市污水的水质和流量,应结合实际情况确定反应器的设计参数。
2. 氧化程度的控制:好氧区域的氧化程度直接影响有机物质的去除效果。
合理的进气量和搅拌速度,以及好氧区域的分区设计,可以提高氧的利用效率,提高去除率。
污水处理厂CAST工艺的研究【摘要】本文介绍了广东省某县城区生活污水处理厂运行周期的选择,溶解氧、污泥浓度、泥龄以及排水比等主要参数的确定方法。
同时对cast工艺除磷脱氮的原理进行了阐述,重点分析了该工艺运行中出现的一些问题以及解决的办法。
【关键词】 cast工艺除磷脱氮变周期运行排水比前言广东省某县城区生活污水处理厂其占地面积2万多平方米,纳污范围为约20.3平方公里。
日前,该污水处理厂已全面投入使用。
厂区各个污水处理工艺池管理实现中控系统实时监视和电脑全自动控制,出水口安装24小时在线自动监测设施,确保污水处理稳定达标。
每天可处理2.5万吨污水,基本能满足县城污水处理需求,也为该县污染减排起到积极作用。
1 工艺流程cast工艺,在全国同工艺污水处理厂中规模较大,运用较为广泛,具有一定的代表性。
下图1为该厂污水处理工艺流程图。
2 工艺参数确定2.1 溶解氧的控制cast生物池一个处理周期主要由静态注人、好氧注入、曝气、沉淀、撇水这几个阶段组成。
污水处理厂鼓风机的启动与溶解氧数值联动,并且可以在曝气的不同时间段对溶解氧数值进行设定,设定分为最大值及最小值。
当生物池中do值大于设定最大值后,变频风机首先降低频率运行,如do值继续升高,将减少鼓风机运行台数;当do值低于最小设定值以后,将增加鼓风机运行台数,整个过程全部由plc 自动控制。
可以分别对好氧注人、曝气阶段人工设定不同的溶解氧数值,以便于工艺调节。
按照传统理论曝气溶解氧应该控制在2~3mgl。
考虑到鼓风机与do值联动后,鼓风机的反应存在一定的滞后性,将曝气do值设定设定在2.2m g/l,这样实际运行下来的效果曝气阶段平均do值在2.4左右,既满足了曝气溶解氧的需要,同时也避免了曝气量的浪费。
2.2 周期的选择为了能够达到最佳的去除率,对不同周期的工况进行试验。
在控制mlss为40mg/l左右的情况下,分别选择4h、5h、6h三种周期的工况进行实验,三种工况的具体参数如表3。
污水处理CAST一、背景介绍污水处理是指对生活污水、工业废水等进行处理,去除其中的污染物质,以保护环境和人类健康。
CAST(污水处理CAST)是一种先进的污水处理技术,它采用了特殊的化学反应原理和设备,能够高效、快速地处理污水,并达到国家相关标准。
二、处理原理CAST技术主要包括混凝、沉淀和过滤等步骤。
具体过程如下:1. 混凝:将污水中的悬浮物质与化学混凝剂进行反应,形成较大的絮凝体。
2. 沉淀:通过重力作用,将絮凝体沉降到污水底部,形成污泥。
3. 过滤:将沉淀后的清水通过过滤器,去除残留的悬浮物质和微小颗粒。
三、处理设备CAST技术需要使用一系列的处理设备,包括混凝剂投加系统、沉淀池、过滤器等。
这些设备通过自动控制系统进行协调操作,以确保处理效果和稳定性。
四、处理效果CAST技术具有以下优势:1. 高效处理:采用先进的处理原理和设备,能够快速、高效地处理大量污水。
2. 降解污染物质:CAST技术能够有效降解有机物质、重金属离子等污染物质,减少对环境的影响。
3. 净化水质:经过CAST处理后的水质达到国家相关标准,可以直接排放或用于再利用。
4. 节能环保:CAST技术采用了先进的能耗控制措施,能够降低能源消耗和对环境的污染。
五、应用领域CAST技术广泛应用于以下领域:1. 城市污水处理厂:城市污水处理厂是CAST技术的主要应用场景之一。
通过CAST技术,可以高效处理大量的生活污水,减少对自然水源的污染。
2. 工业废水处理:许多工业生产过程中产生的废水含有大量的有机物质和重金属离子,经过CAST处理后,可以达到排放标准,减少对环境的影响。
3. 农村污水处理:农村地区的污水处理一直是一个难题,CAST技术可以快速建设简易的污水处理设施,解决农村地区的污水处理问题。
六、实例案例以下是一个CAST技术在某城市污水处理厂的应用案例:某城市污水处理厂采用了CAST技术进行污水处理,每天处理污水量约为5000吨。
某污水厂设计计算说明书姓名:班级:学号:指导老师:2013-6-28目录一总论 (1)二工艺流程 (3)CASS工艺的优点 (4)与其他工艺对比 (7)三处理构筑物设计 (7)㈠集水井的设计 (9)㈡格栅的设计与计算 (10)1.泵前中格栅的设计与计算 (11)2.泵后细格栅的设计与计算 (14)㈢提升泵站 (17)1.设计参数 (17)2.提升泵房设计计算 (17)㈣曝气沉砂池的设计与计算 (18)1.曝气沉砂池 (18)2.曝气沉砂池的设计与计算 (19)3. 设计计算 (19)4.吸砂泵房与砂水分离器 (23)5.鼓风机房 (23)㈤CASS池的设计与计算 (23)1.CASS工艺运行过程 (23)2.CASS反应池的设计计算 (25)㈥污泥浓缩池 (38)1.设计参数 (39)2.设计计算 (39)㈦贮泥池设计 (41)四污水厂总体布置 (39)㈠主要构(建)筑物与附属建筑物 (39)㈡污水厂平面布置 (40)㈢污水处理构筑物高程布置 (45)五设计体会 (47)一总论1.课程设计的内容和深度目的:加深理解所学专业知识,培养运用所学专业知识的能力,在设计、计算、绘图等方面得到锻炼。
内容:对主要污水处理构筑物的工艺尺寸进行设计计算,确定污水处理厂的平面布置和高程布置。
完成设计计算说明书和设计图(污水处理厂平面布置、高程布置图、某构筑物工艺图各一张)。
深度: 初步设计2.基本资料(1).水质水量项目规模:长沙某污水处理厂主要处理该市某地区的工业及居民废水。
考虑远期发展,设计水量扩大一倍。
进水水质:BOD5=160mg/L;COD=280 mg/L; SS=150 mg/L; TN=335mg/L; 磷酸盐(以P计)= 1.8mg/L。
(2).处理要求(1)要求出水水质满足GB 18918-2002《城镇污水处理厂污染物排放标准》的一级B排放标准,即:pH=6~9; BOD5≤20mg/L; COD≤60mg/L; SS≤20mg/L; TN≤20mg/L; NH3-N≤8mg/L, 磷酸盐(以P计)≤1mg/L。
CAST工艺一、CAST工艺简介CAST工艺是循环式活性污泥法(Cyclic Activated Sludge Technology)的简称,它是在SBR工艺的基础上,增加了选择器及污泥回流设施,并对时序做了一些调整,从而大大提高了SBR 工艺的可靠性及效率。
CAST工艺主体构筑物由SBR反应池组成,反应池内主要分为选择区和反应区。
在CAST系统中,至少应设两个池子,以使系统能实现连续进水。
一般地,在第一个池子中进水和曝气,在另一个池子中沉淀和滗水,反之亦然。
在多池系统中,通过合理的选择循环过程,可以使出水连续。
二、工艺流程三、CAST工艺特征1、运行灵活可靠●生物选择器可以根据污水水质情况,以好氧、缺氧和厌氧三种方式运行。
选择器可以恒定容积也可以可变容积运行●可任意调节状态,发挥不同微生物的生理特性●选择器容积可变,避免产生污泥膨胀,提高了系统的可靠性●抗冲击负荷能力强,工业废水、城市污水处理都适用2、处理构筑物少,流程简单●池子总容积减少,土建工程费用低●不需设二次沉淀池及其刮泥设备,也不用设回流污泥泵站3、可实现除磷脱氮●调节生物选择器可变容积的曝气和非曝气顺序,提高了生物除磷脱氮效果4、节省投资●构筑物少,占地面积省●设备及控制系统简单●曝气强度小,不须大气量的供气设备●运行费用低四、应用范围1、处理规模最大规模可达200,000m3/d2、处理水质适用范围广,可用于处理各类生活污水和工业废水CASS工艺原理CASS池分预反应区和主反应区。
在预反应区内,微生物能通过酶的快速转移机理迅速吸附污水中大部分可溶性有机物,经历一个高负荷的基质快速积累过程,这对进水水质、水量、PH和有毒有害物质起到较好的缓冲作用,同时对丝状菌的生长起到抑制作用,可有效防止污泥膨胀;随后在主反应区经历一个较低负荷的基质降解过程。
CASS工艺集反应、沉淀、排水、功能于一体,污染物的降解在时间上是一个推流过程,而微生物则处于好氧、缺氧、厌氧周期性变化之中,从而达到对污染物去除作用,同时还具有较好的脱氮、除磷功能。
污水处理生化工艺CASS和CAST工艺有什么不同?目前国内污水处理工程普遍采纳“活性污泥法”进行二级生化处理,而对循环式活性污泥法的缩写不加区分,CASS与CAST两者常常混用,下面就由我来详细进行分解和对比两种工艺特性相同和不同。
首先,CASS工艺和CAST工艺同属“循环式活性污泥法”范畴,两者都是“序批式活性污泥法(SBR)”的改良变种工艺,它们起源于欧洲,自上个世纪90年月前后间续被引进国内,凭借其系统组成简洁、运行敏捷、自动化程度高等优点,迪奥水处理采纳CASS工艺和CAST 工艺的污水处理设备快速在污水处理行业中得到了广泛应用。
特殊是城镇污水处理厂应用很广。
CASS工艺和CAST工艺两者详细工艺设计时既有相同,也存在肯定的差异,造成了认知上的误区。
详细细节上确有区分,主要集中在生化池池型结构不同、是否连续进水及沉淀时是否进水等问题上。
一、CASS工艺CASS是连续进水周期循环曝气活性污泥技术(Cyclic Activated Sludge System)的简称。
它是在SBR 工艺的基础上,增加了生物选择器及污泥回流设施,并汲取、保留了ICEAS工艺的优点,连续进水,间歇排水。
它集曝气、沉淀功能于一体,进水曝气、沉淀、排水在同一池子内依次进行,周期循环,取消了常规活性污泥法的二沉池,并能实现程序化掌握,自动化程度高,又便利操作。
污水有机物CODCr去除率达80~85%,BOD5去除率达90~95%,且能实现良好的脱氮除磷效果。
二、CAST工艺CAST是间歇进水周期循环式活性污泥技术(Cyclic Activated System Technology)的简称。
整个工艺在一个反应器中完成,工艺按“进水—曝气”、“曝气—非曝气”挨次进行,属于序批式活性污泥工艺,它是在SBR 工艺的基础上,增加了生物选择器、兼氧反应器及污泥回流设施,并对运行时序进行了重新设计调整,它集曝气、沉淀功能于一体,进水、曝气、沉淀、排水在同一池子内依次进行,周期循环,同样取消了常规活性污泥法的二沉池,具有良好的脱氮除磷效果,从而大大提高了SBR工艺的牢靠性及处理效率。
浅析CAST污水处理工艺技术摘要:CAST污水处理工艺即循环式活性污泥法,目前在众多污水厂内得到应用。
本文重点介绍CAST工艺特点、设计计算公式、参数选择及设计要点等。
关键词:污水处理、CAST、设计计算一、工艺概述CAST工艺是在常规SBR工艺基础上发展起来的,因此我们首先要了解常规SBR工艺。
SBR (Sequencing Batch Reactor)是序批式活性污泥法的简称,它集曝气、沉淀于一池,在单一反应池内利用活性污泥完成污水的生物处理和固液分离,而不需另设二沉池及大量污泥回流系统。
在SBR系统中,反应池在一定时间间隔内充满污水,以间歇处理方式运行,处理后混合液静沉淀一段预定的时间后,从池中排除上清液。
典型的SBR系统按时序分为:充水、反应、沉淀、排水与闲置5个阶段。
CAST工艺是Goronszy近年来开发的污水处理新工艺,它综合了推流式和完全混合式活性污泥法,能有效地防止污泥膨胀,去除有机物、氮、磷的效果良好,耐冲击负荷能力强,目前已被认为是常规活性污泥法的革新替代技术,并在美国、澳大利亚、加拿大等国得到广泛采用。
近些年来,随着我国对污水厂排放标准的氮、磷指标变得更加严格,CAST工艺开始在国内被大量应用,成为众多污水处理厂设计备选方案之一。
CAST工艺反应池内分为选择区和主反应区,反应池的运行操作与SBR法类似,由进水反应、沉淀、滗水和闲置四个阶段组成。
进水反应期:与其它SBR工艺不同,CAST工艺的污水原水是间断流入反应池内前部的选择区,与从反应池后部的反应区不断回流的污泥混合,使污泥吸收易溶性基质中的易降解部分,并促使絮凝性微生物生长,污水在选择区厌氧状态下停留一段时间后从选择区与反应区之间隔墙下部的入口以低速流入反应区,这样避免了水力短路。
污水进入反应区内发生生化反应,在该阶段可以只混合不曝气,或既混合又曝气,使污水处在好氧或缺氧状态中,反应期的长短一般由进水水质及所要求的处理程度而定。