第7章 复杂调节系统(上)
- 格式:ppt
- 大小:719.50 KB
- 文档页数:64
第七章调节和聚散第—节调节和聚散的解剖和生理调节和聚散是视力和视觉功能的根本要素,本局部将阐述其概念,并详细讲解有关调节和聚散测量的根本方法和临床应用。
调节和聚散的解剖和生理一、调节的机制睫状肌是由自主神经系统操作的,同时接受交感神经和副交感神经的支配。
(一)副交感的支配副交感纤维起自E-W核。
这些纤维穿出中脑成为第三对脑神经的主干,然后进入眶隔,穿过眶上裂,并成为动眼神经一局部。
动眼神经在睫状神经节发出一支运动根,动眼神经在睫状神经内与副交感神经形成突触。
节后纤维进入眼球内发出睫状短神经,向前穿行于脉络膜腔隙,到达睫状肌,并支配它。
(二)交感神经的支配Gilartin运用解剖、生理、药理、临床和心理的方法证实了交感神经对睫状肌的支配,并在调节中起作用。
交感神经纤维沿着颈交感干走行,在颈上神经节形成突触。
节后纤维沿着颈内动脉到达海绵窦。
进入眼眶后通过睫状神经节的交感根发出两支睫状长神经和一支睫状短神经。
交感神经对睫状肌的支配总结如下:1.交感神经对睫状肌主要是抑制作用,通过β-肾上腺素受体来完成,主要是β2受体。
2.交感神经的作用较小,最大幅度是-1.50D左右。
3.正常的视觉环境中,交感神经的时间效应比副交感神经慢。
到达最大效应需要10~40秒;而副交感神经只需1~2秒。
(一)副交感的支配副交感纤维起自E-W核。
这些纤维穿出中脑成为第三对脑神经的主干,然后进入眶隔,穿过眶上裂,并成为动眼神经一局部。
动眼神经在睫状神经节发出一支运动根,动眼神经在睫状神经内与副交感神经形成突触。
节后纤维进入眼球内发出睫状短神经,向前穿行于脉络膜腔隙,到达睫状肌,并支配它。
(二)交感神经的支配Gilartin运用解剖、生理、药理、临床和心理的方法证实了交感神经对睫状肌的支配,并在调节中起作用。
交感神经纤维沿着颈交感干走行,在颈上神经节形成突触。
节后纤维沿着颈内动脉到达海绵窦。
进入眼眶后通过睫状神经节的交感根发出两支睫状长神经和一支睫状短神经。
《自动化仪表及过程控制》课程教学大纲英文名称:Automatic Instruments and Process Control 课程编号:适用专业:自动化学时: 54 学分: 3课程类别:专业方向课课程性质:限选课一、课程的性质和目的《自动化仪表及过程控制》是自动化专业的重要专业课。
本课程在系统简明地阐述常用过程量测控仪表和计算机控制系统基本原理和基本知识的基础上,同时介绍自动调节系统设计和整定的基础知识,通过本课程的学习,使学生掌握生产过程控制的基础知识和基本应用技术。
二、课程教学内容概述主要内容:1、自动化仪表的概念及其发展;2、DDZ仪表及其控制系统;3、自动化仪表的基本性能指标。
第一章检测仪表基本内容和要求:1、了解温度测量的概念和工业上常用的测量方法;2、掌握热电偶的测温原理及其应用;3、掌握热电阻的测温原理及其应用;4、理解温度变送器的基本结构;5、了解工业生产中压力参数的概念和常用压力测量原理;6、理解压力式、力平衡式、位移式和固态测压元件及其变送器的工作原理;7、理解节流式、容积式流量测量的基本原理及其应用。
8、理解涡轮、电磁、漩涡等流量测量方法的应用;9、理解浮力式、静压式、电容式、超声式等常用液位测量原理;10、了解成分分析仪表的基本概念。
教学重点:1、常用温度仪表、压力仪表、液位仪表、流量仪表和成分仪表的工作原理及其应用。
2、分度表,分度号,热电偶的冷端延伸和冷端补偿,热电阻的三线制;3、差动电容压力变送器工作原理;4、差压流量计的流量公式;5、差压变送器的零点迁移原理。
第二章调节器基本内容和要求:1、重点掌握PID调节规律的原理及其应用;2、理解PID模拟电路的结构原理;了解二位式和连续调节仪表应用的基础知识;3、理解数字PID算法基本表达式及其原理;4、简单了解工业现场常用模拟和数字调节器的基本结构及其应用。
PID调节规律的原理及其应用;第三章集散控制系统和现场总线控制系统基本内容和要求:1、了解单回路可编程调节器的概念2、了解DCS系统的基本概念;3、理解DCS系统的结构特点及其组成;4、理解DCS控制站和操作站的功能;5、了解FCS系统的基本概念;第四章执行器和防爆栅基本要求1、熟炼掌握气动调节阀的基本结构、原理及其应用等基本概念;2、熟悉调节器流量特性的定义及其应用;3、理解和掌握气动执行器气开/气关的形式及其选择原则;4、了解电动执行器及电气转换器的基本原理;5、简单了解工业控制系统防爆的基本概念。
-r复杂控制系统可分为两大类:⑴提高响应曲线性能指标为目的的控制系统,包括:①串级控制系统②前馈控制系统⑵按某些特定要求而开发的控制系统,包括:①比值控制系统②均匀控制系统③分程控制系统和阀位控制系统④选择性控制(取代控制)系统艺上的要求,这时,可考虑采用串级控制系统。
7.1.1串级控制系统基本结构及工作过程串级控制是在简单控制系统基础上的改进。
例:管式加热炉是炼油、化工生产中的重要装置之一,它的任务是把原油加热到一定温度,以保证下道工艺的顺利进行。
因此,需要控制原油加热燃料压力或燃值变化⇓膛温度若用简单可延长炉子寿命,防止炉管烧坏;可保证后面精馏分离的质量。
炉膛温度变化⇒T 2T 、T 2C 回路先改变燃料量⇒3min案仍不能达到生产工艺串级控制系统副变量主对象程,其输入量为副变量,输出量为主变量。
副对象程,其输入量为系统的操纵变量,输出量为副变量。
副控制器—按副变量的测量值与主控制器的输出信号的偏差1图7.6框图为:主控制器x 1原料油+θ1(t )-标准框图为:q系统有两个闭合回路,形成内外环。
主变量是器、测量变送器和对象,但只有一个执行器。
q主、副调节器是串联工作的,主调节器的输出作为副调节器的给定值,而由副控制器的输出来控q进入副回路的干扰首先影响炉膛温度,副变送器提前测出,副控制器立即开始控制,控制过程大为缩短。
出,但副回路的闭环负反馈,使对象炉膛部分特性的时间常数大为缩短,则主控制器的控制通道被缩短,控制效果也得到改善。
燃料压力f 3(t )↑→炉膛温度↑→出口温度↑→副控制器开始调节原油流量f (t )↓→出口温度↑→主副控制器共同调节燃料压力f 3(t )↑→炉膛温度↑→出口温度↑→副控制器开始调节1→主控制器反向调节,使副控制器调节量减小。
n 由上可见:n 副回路:先调、粗调、快调n主回路:后调、细调、慢调n主副回路相互配合、相互补充,提高控制与单回路控制相比,串级控制增加了副控制回路,使控制系统性能得到改善,串级控制系统的性能一般可以从以下四个方面进行分析:n动态性能n Array nnF (s )、F (s )F (s )、F (s )真正的单回路控制C2V 0202G ()1G (s)G (s)G (s)G (s)s ′=+⋅⋅⋅02G (s)G ()s ∗=G c1X 1(s )+-1202+=s T K s G )(K s G =)(()G s K =则:C2V 02C2V 02m20202C2V 02m2K K K 1K K K K G ()T 1S 1K K K K s +′=++T 02′<<T 02K 02 ′≈1/K m2T 02 ′<< T 02 ,说明主环控制通道时间常数缩短,改善了系统的动态性能。
第七章空气调节系统1.答:按照空气处理设备的设置情况,空气调节系统可分为集中式空调系统、半集中式空调系统、分散式空调系统三类。
集中式空调系统的特点是所有的空气处理设备(加热器、冷却器、过滤器、加湿器等)以及通风机等设备都设在一个集中的空调机房内,处理后的空气经风道输送到各空调房间。
半集中式空调系统除了设有集中在空调机房的空气处理设备可以处理一部分空气外,还有分散在被调房间内的空气处理设备。
分散式空调系统的特点是将冷(热)源、空气处理设备和空气输送设备都集中或部分集中在一个空调机组内,组成整体式和分散式等空调机组,可以根据需要,灵活、方便的布置在各个不同的空调房间或邻室内。
2. 答:按照负担室内负荷所用的介质种类,空气调节系统可分为全空气空调系统、全水式空调系统、空气—水空调系统和冷剂系统四类。
全空气系统是空调房间的室内负荷全部由经过处理的空气来承担的空调系统。
全水系统是空调房间的热湿负荷全部靠水作为冷热介质来承担的空调系统。
空气—水空调系统是由空气和水共同负担空调房间热湿负荷的空调系。
冷剂系统是将制冷系统的蒸发器直接放在空调房间来吸收余热余湿。
3. 答:按照所处理空气的来源,普通集中式空气调节系统可分为封闭式空调系统、直流式空调系统和新、回风混合式空调系统三类。
封闭式系统全部使用室内再循环空气,没有室外空气补充。
这种系统最节能,但卫生条件也最差。
直流式系统使用的空气全部来自室外,经热湿处理后送入空调房间,吸收余热余湿后又全部排至室外。
这种系统耗能最多,但室内空气得到了百分之百的交换。
新、回风混合式空调系统采用室外空气与室内再循环空气相混合的系统,这样既节能又卫生。
4. 答:一次回风空调系统的简图及夏季工况空气处理过程的h—d 图如下图所示图7 —1 一次回风空调系统夏季处理过程(a)系统图示(b)h—d 图一次回风系统的装置示意图如图所示。
状态为W 的室外新风与状态为N 的室内回风混合为状态C,经喷水室(或表面式冷却器)冷却减湿到点L(点L 称机器露点.它一般位于φ=90%一95%线上),再从L 加热到送风状态点O,然后送人房间吸收房间的余热余湿后变为室内状态N ,一部分空气被排到室外,另一部分返回到空调机组与新风混合。
第七章空气调节系统1.答:按照空气处理设备的设置情况,空气调节系统可分为集中式空调系统、半集中式空调系统、分散式空调系统三类。
集中式空调系统的特点是所有的空气处理设备(加热器、冷却器、过滤器、加湿器等)以及通风机等设备都设在一个集中的空调机房内,处理后的空气经风道输送到各空调房间。
半集中式空调系统除了设有集中在空调机房的空气处理设备可以处理一部分空气外,还有分散在被调房间内的空气处理设备。
分散式空调系统的特点是将冷(热)源、空气处理设备和空气输送设备都集中或部分集中在一个空调机组内,组成整体式和分散式等空调机组,可以根据需要,灵活、方便的布置在各个不同的空调房间或邻室内。
2. 答:按照负担室内负荷所用的介质种类,空气调节系统可分为全空气空调系统、全水式空调系统、空气—水空调系统和冷剂系统四类。
全空气系统是空调房间的室内负荷全部由经过处理的空气来承担的空调系统。
全水系统是空调房间的热湿负荷全部靠水作为冷热介质来承担的空调系统。
空气—水空调系统是由空气和水共同负担空调房间热湿负荷的空调系。
冷剂系统是将制冷系统的蒸发器直接放在空调房间来吸收余热余湿。
3. 答:按照所处理空气的来源,普通集中式空气调节系统可分为封闭式空调系统、直流式空调系统和新、回风混合式空调系统三类。
封闭式系统全部使用室内再循环空气,没有室外空气补充。
这种系统最节能,但卫生条件也最差。
直流式系统使用的空气全部来自室外,经热湿处理后送入空调房间,吸收余热余湿后又全部排至室外。
这种系统耗能最多,但室内空气得到了百分之百的交换。
新、回风混合式空调系统采用室外空气与室内再循环空气相混合的系统,这样既节能又卫生。
4.答:一次回风空调系统的简图及夏季工况空气处理过程的h—d图如下图所示。
图7—1一次回风空调系统夏季处理过程(a)系统图示(b)h—d图一次回风系统的装置示意图如图所示。
状态为W的室外新风与状态为N 的室内回风混合为状态C,经喷水室(或表面式冷却器)冷却减湿到点L(点L称机器露点.它一般位于φ=90%一95%线上),再从L加热到送风状态点O,然后送人房间吸收房间的余热余湿后变为室内状态N,一部分空气被排到室外,另一部分返回到空调机组与新风混合。
因此只有在没有葡萄糖的时候,同时又有半乳糖的时候,启动子1才是开放的为什么gal 操纵子需要两个转录起始位点?(涉及半乳糖在细胞代谢中的双重功能)半乳糖两个作用: 可以作为唯一碳源供细胞生长; 与之相关的物质--尿苷二磷酸半乳糖(UDPgal )是大肠杆菌细胞壁合成的前体。
而启动子也有两个: galP1起始的转录——无内源葡萄糖、有外源半乳糖时进行,以保证碳源的供应。
galP2起始的转录——有内源葡萄糖、无外源半乳糖时进行,以保证细胞壁的合成需要。
生理功能(可以理解为生物学意义?)无论从必要性和经济性考虑,都要有一个不依赖于cAMP-CAP 的启动子(s2) 进行本底水平的组成型合成,以及一个依赖于cAMP-CAP 的启动子(s1),进行高水平的调节,这样既可以满足细胞最基本的需要(细胞壁),又可以满足在没有葡萄糖而有半乳糖时,细胞能够利用半乳糖进行生长。
进一步解释:gal P2是不依赖于cAMP-CRP 的,相反: cAMP-CRP 对gal P2还起到一种抑制作用,这是因为其与结合位点的结合,会影响到RNA 聚合酶对gal P2的利用。
因此教材上(page257)认为:只有S2活性完全被抑制时,(S1)的调控作用才是有效的。
7.4.2 阿拉伯糖操纵子(arabinose operon)araB 基因、araA 基因和araD, 形成一个基因簇,简写为araBAD三个基因的表达受到ara 操纵子中araC 基因产物AraC 蛋白的调控。
C 蛋白有三个结合位点O2、O1和 I 。
I BADCRPO2O1C结构基因调节基因P BADaraC 基因是araBAD 的调节基因L核酮糖激酶L阿拉伯糖异构酶L核酮糖-5-磷酸-4-差相异构酶结合到ara I 的时候,由于araBAD的启动子本身与ara I有部分重叠,另外还可以引起上游序列回折弯曲,使得AraC同时与O2结合,从而使CRP 聚合酶也不能结合到启动子上,araBAD基因不转录。
第七章空气调节系统时速200公里CRH2型动车组空调系统与国内客车空调系统有很大的区别,是一种全新的空调系统。
通过与国内客车空调系统的比较,对CRH2型动车组空调系统进行简单介绍。
CRH2型动车组车底安装的空调装置为每1节车厢2台、换气装置为每1节车厢1台。
3、6号车厢内设置有空气净化机。
驾驶室设单独的空调装置及车内压释放阀。
第一节客室空调装置图7-1 客室空调装置外形图CRH2型动车组客室空调系统如图7-1 所示,下面针对其构成和技术参数进行介绍。
一、基本技术规格(1)安装方式:准集中方式底架下安装。
(2)主电路输入:单相交流、50Hz、400 +24-37% V(3)控制电路输入:单相交流、50Hz、100±10% V直流:100±10% V(4)冷气控制方式:逆变器频率控制及压缩机运行台数控制。
(5)暖气控制方式:电热器多级控制。
(6)冷气能力a. 当标准条件为以下条件时为37.21kW(32,000kcal/h)/台以上。
●客室热交换器吸入空气干球温度:28±1.0℃●客室热交换器吸入空气湿球温度:23±1.0℃●客室外热交换器吸入空气干球温度:33±1.5℃b. 当超负荷条件为以下条件时为29.07kW(25,000kcal/h)/台以上。
●客室热交换器吸入空气干球温度:35±1.0℃●客室热交换器吸入空气湿球温度:28±1.0℃●客室外热交换器吸入空气干球温度:55℃●无需因冷媒压力过大的保护动作。
(7)暖气能力:24kW/台以上(8)循环风量:在静压68mmAq时为60m3/min/台以上。
(9)其它a. 夏季●在气温为33℃、湿度为80%及M2车150%乘车时(150人乘车时),客室温度可保持在26℃以下。
●在气温为40℃、湿度为55%及M2车100%乘车时(100人乘车时),客室温度可保持在28℃以下。
b. 冬季在气温为-15℃时,客室温度可保持在20℃以上。