第7章 简单控制系统1
- 格式:doc
- 大小:218.01 KB
- 文档页数:19
第7章 专家控制系统教学内容首先介绍专家系统基本概念、特征、组成以及基本类型。
然后讲授专家控制系统的工作原理,最后介绍了建立专家系统的步骤和专家控制器。
教学重点1.专家系统的概念,即它是一种模拟人类专家解决领域问题的计算机程序系统。
将专家系统同控制理论和技术相结合,对系统进行控制形成专家控制系统。
把专家系统作为控制器称为专家控制器。
专家系统的基本组成,即由知识库、推理机、解释接口等组成。
2.专家控制系统工作原理。
专家系统设计的基本步骤:认识和阶段化概念,实现阶段,获取知识、构造外部知识库,调试和检验阶段。
教学难点专家系统的工作原理、知识的表示和获取,专家系统的设计。
教学要求1.了解专家系统的概念,理解专家控制系统、专家控制器的概念。
2.掌握专家系统的特征、组成和基本类型。
3.理解专家控制系统的工作原理。
知识的表示和获取。
4.掌握建立专家系统的步骤。
5.了解专家控制器的组成,专家控制器的设计原则。
7.1 概述7.1.1 专家系统的起源与发展人工智能科学家一直在致力于研制在某种意义上讲能够思维的计算机软件,用以“智能化”的处理、解决实际问题。
60年代,科学家们试图通过找到解决多种不同类型问题的通用方法来模拟思维的复杂过程,并将这些方法用于通用目的的程序中。
然而事实证明这种“通用”程序处理的问题类型越多,对任何个别问题的处理能力似乎就越差。
后来,科学家们认识到了问题的关键即计算机界程序解决问题的能力取决于它所具有的知识量的大小。
为使一个程序智能化,必须使其具有相关领域的大量高层知识。
为解决某具体专业领域问题的计算机程序系统的开发研制工作,导致专家系统这一新兴学科的兴起。
从本质上讲,专家系统是一类包含着知识和推理的智能计算机程序,其内部含有大量的某个领域专家水平的知识和经验,能够利用人类专家的知识和解决问题的方法来处理该领域的问题。
1965年斯坦福大学开始建立用于分析化合物内部结构的DENTRAL系统,首先使用了“专家系统”的概念。
习题集第一章概论1.试从学科和能力两个方面说明什么是人工智能。
2.哪些思想、思潮、时间和人物在人工智能发展过程中起了重要作用?3.近年来人工智能研究取得哪些重要进展?4.为什么能够用计算机模拟人类智能?5.目前人工智能学界有哪些学派?它们的认知观为何?6.自动控制存在什么机遇与挑战?为什么要提出智能控制?7.简述智能控制的发展过程,并说明人工智能对自动控制的影响。
8.傅京孙对智能控制有哪些贡献?9.什么是智能控制?它具有哪些特点?10.智能控制器的一般结构和各部分的作用为何?它与传统控制器有何异同?11.智能控制学科有哪几种结构理论?这些理论的内容是什么?12.为什么要把信息论引入智能控制学科结构?13.人工智能不同学派的思想在智能控制上有何反映?第二章知识表示方法1.状态空间法、问题归约法、谓词逻辑法和语义网络法的要点是什么?它们有何本质上的联系及异同点?2.设有3个传教士和3个野人来到河边,打算乘一只船从右岸渡到左岸去。
该船的负载能力为两人。
在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。
他们怎样才能用这条船安全地把所有人都渡过河去?3.利用下图,用状态空间法规划一个最短的旅行路程:此旅程从城市A开始,访问其他城市不多于一次,并返回A。
选择一个状态表示,表示出所求得的状态空间的节点及弧线,标出适当的代价,并指明图中从起始节点到目标节点的最佳路径。
4.试说明怎样把一棵与或解树用来表达下图所示的电网络阻抗的计算。
单独的R、L或C可分别用R、jωL或1/jωC来计算,这个事实用作本原问题。
后继算符应以复合并联和串联阻抗的规则为基础。
5.试用四元数列结构表示四圆盘梵塔问题,并画出求解该问题的与或图。
6.用谓词演算公式表示下列英文句子(多用而不是省用不同谓词和项。
例如不要用单一的谓词字母来表示每个句子)。
A computer system is intelligent if it can perform a task which,if performed by a human, requires intelligence.7.把下列语句表示成语义网络描述:(1)All man are mortal.(2)Every cloud has a silver lining.(3)All branch managers of DEC participate in a profit-sharing plan.8.作为一个电影观众,请你编写一个去电影院看电影的剧本。
第7章 思考题与习题1.基本练习题(1)什么叫比值控制系统?它有哪几种类型?画出它们的原理框图。
答:1)比值控制系统就是实现副流量2F 与主流量1F 成一定比值关系,满足关系式:21F K F的控制系统。
2)比值控制系统的类型:开环比值控制系统、单闭环比值控制系统、双闭环比值控制系统、变比值控制系统。
3)结构原理图分别如图7-1,图7-2,图7-3,图7-4所示:图7-1开环比值控制系统(a )开环比值控制系统原理图(b )开环比值控制系统方框图图7-2单闭环比值控制系统(a)单闭环比值控制系统原理图 (b )单闭环比值控制系统方框图(a )原理图(b )方框图(a) 原理图(b) 方框图(b)方框图图7-3双闭环比值控制系统(a)双闭环比值控制系统原理图(b)双闭环比值控制系统方框图(b)方框图图7-4变比值控制系统(a)变比值控制系统原理图(b)变比值控制系统方框图(2)比值控制中的比值与比值系数是否是一回事?其关系如何?答:1)工艺要求的比值系数K,是不同物料之间的体积流量或重量流量之比,而比值器参数K’,则是仪表的读数。
它与实际物料流量的比值K,一般情况下并不相等。
因此,在设计比值控制系统时,必须根据工艺要求的比值系数K计算出比值器参数K’。
当使用单元组合仪表时,因输入-输出参数均为统一标准信号,所以比值器参数K’必须由实际物料流量的比值系数K折算成仪表的标准统一信号。
2)当物料流量的比值K一定、流量与其检测信号呈平方关系时,比值器的参数与物料流量的实际比值和最大值之比的乘积也呈平方关系。
当物料流量的比值K一定,流量与其检测信号呈线性关系时,比值器的参数与物料流量的实际比值和最大值之比的乘积也呈线性关系。
(3)什么是比值控制中的非线性特性?它对系统的控制品质有何影响?在工程设计中如何解决?答:1)比值控制系统中的非线性特性是指被控过程的静态放大系数随负荷变化而变化的特性。
2)非线性特性使系统的动态特性变差。
第7章简单控制系统随着现代石油化工等过程装置的日益大型化、复杂化,智能仪表和计算机控制系统的日益普及,各类控制系统特别是复杂控制和先进控制系统在生产过程中的作用越来越显得重要。
目前,占控制系统绝大多数的仍然是简单控制系统,简单控制系统也是各类复杂控制和先进控制系统的基础。
因此,掌握简单控制系统的基本原理和设计方法非常重要。
由于简单控制系统的工作原理在前述章节已做介绍与讨论,本章以简单控制系统的设计、投运与整定为主要内容。
7.1 简单控制系统结构与组成从第一章已知,自动控制系统是由被控对象和自动化装置两大部分组成,即测量元件及变送器自动化装置自动控制器(调节器)自动控制系统(起控制作用)执行器(控制阀)被控对象受控制的物理装置(生产设备)(对象)由于构成自动控制系统的这两大部分(主要是指自动化装置)的数量、连接方式及其目的不同,自动控制系统可以有许多类型。
所谓简单控制系统,通常是指由一个测量元件及变送器、一个控制器、一个控制阀和一个对象所构成的单闭环控制系统,因此也称为单回路控制系统。
图7-l所示的液位控制系统与图7-2所示的温度控制系统都是简单控制系统的例子。
图7-1所示的液位控制系统中,贮槽是被控对象,液位是被控变量,变送器LT将反映液位高低的信号送往液位控制器LC。
控制器的输出信号送往执行器,改变控制阀开度使贮槽输出流量发生变化以维持液位稳定。
图7-1 液位控制系统图7-2 温度控制系统图7-2所示的温度控制系统,是通过改变进入换热器的载热体流量,以维持换热器出口物料的温度在工艺规定的数值上。
需要说明的是在本系统中画出了变送器LT及TT这个环节,根据第一章中所介绍的控制流程图,按自控设计规范,测量变送环节是被省略不画的,所以在本书以后的控制系统图中,也将不再画出测量、变送环节,但要注意在实际的系统中总是存在这一环节,只是在画图时被省略罢了。
图7-3是图7-1和图7-2所示控制系统的方块图,也简单控制系统的典型方块图。
由图可知,简单控制系统由四个基本环节组成,即被控对象(简称对象)、测量变送环节、控制器和执行器。
对于不同对象的简单控制系统(例如图7-1和图7-2所示的系统),尽管其具体装置与变量不相同,但都可以用相同的方块图来表示,这就便于对它们的共性进行研究。
图7-3 简单控制系统方块图由图7-3还可以看出,在该系统中有着一条从系统的输出端引向输入端的反馈路线,也就是说该系统中的控制器是根据被控变量的测量值与给定值的偏差来进行控制的,这是简单反馈控制系统的又一特点。
简单控制系统的结构比较简单,所需的自动化装置数量少,投资低,操作维护也比较方便,而且在一般情况下,都能满足控制质量的要求。
因此,这种控制系统在工业生产过程中得到了广泛的应用。
据某大型化肥厂统计,简单控制系统约占控制系统总数的85%左右。
由于简单控制系统是最基本的、应用最广泛的系统,因此,学习和研究简单控制系统的结构、原理及使用是十分必要的。
同时,简单控制系统是复杂控制系统的基础,学会了简单控制系统的分析,将会给复杂控制系统的分析和研究提供很大的方便。
前面几章已经分别介绍了组成简单控制系统的各个组成部分,包括被控对象、测量变送装置、控制器、执行器等。
本章将介绍组成简单控制系统的基本原则;被控变量及操纵变量的选择;控制器控制规律的选择及控制器参数的工程整定等。
7.2 被控变量的选择自动控制的目的:使生产过程自动按照预定的目标进行,并使工艺参数保持在预先设定的数值上(或按预定规律变化)。
生产过程中希望借助自动控制保持恒定值(或按一定规律变化)的变量称为被控变量。
在构成一个自动控制系统时,被控变量的选择十分重要,它关系到系统能否达到稳定操作、增加产量、提高质量、改善劳动条件、保证安全等目的,关系到控制方案的成败。
如果被控变量选择不当,不管组成什么型式的控制系统,也不管配上多么精密先进的工业自动化装置,都不能达到预期的控制效果。
被控变量的选择是与生产工艺密切相关的,而影响一个生产过程正常操作的因素是很多的,但并非所有影响因素都要加以自动控制。
所以,必须深入实际,调查研究,分析工艺,找出影响生产的关键变量作为被控变量。
所谓“关键”变量,是指这样一些变量:它们对产品的产量、质量以及安全具有决定性的作用,而人工操作又难以满足要求的;或者人工操作虽然可以满足要求,但是,这种操作是既紧张而又频繁的。
根据被控变量与生产过程的关系,可分为两种类型的控制型式:直接指标控制与间接指标控制。
如果被控变量本身就是需要控制的工艺指标(温度、压力、流量、液位、成分等),则称为直接指标控制;如果工艺是按质量指标进行操作的,照理应以产品质量作为被控变量进行控制,但有时缺乏各种合适的获取质量信号的检测手段,或虽能检测,但信号很微弱或滞后很大,这时可选取与直接质量指标有单值对应关系而反应又快的另一变量,如温度、压力等作为间接控制指标,进行间接指标控制。
被控变量的选择,有时是一件十分复杂的工作,除图7-4 精馏过程示意图了前面所说的要找出关键变量外,还要考虑许多其1-精溜塔;2-蒸汽加热器他因素,下面先举一个例子来略加说明,然后再归纳出选择被控变量的一般原则。
图7-4是精馏过程的示意图。
它的工作原理是利用被分离物各组分的挥发度不同,把混合物中的各组分进行分离。
假定该精馏塔的操作是要使塔顶(或塔底)馏出物达到规定的纯度,那么塔顶(或塔底)馏出物的组分x D(或x w)应作为被控变量,因为它就是工艺上的质量指标。
如果检测塔顶馏出物的组分x D(或x w)尚有困难,或滞后太大,那么就不能直接以x D (或x w)作为被控变量进行直接指标控制。
这时可以在与x D(或x w)有关的参数中找出合适的变量作为被控变量,进行间接指标控制。
在二元系统的精馏中,当气液两相并存时,塔顶易挥发组分的浓度x D、塔顶温度T D、压力p三者之间有一定的关系。
当压力恒定时,组分x D和温度T D之间存在有单值对应的关系。
图7-5所示为苯、甲苯二元系统中易挥发组分苯的百分浓度与温度之间的关系。
易挥发组分的浓度越高,对应的温度越低;相反,易挥发组分的浓度越低,对应的温度越高。
图7-5 苯-甲苯溶液的T-x图图7-6 苯-甲苯溶液的p-x图当温度T D恒定时,组分x D和压力p之间也存在着单值对应关系,如图7-6所示。
易挥发组分浓度越高,对应的压力也越高;反之,易挥发组分的浓度越低,对应的压力也越低。
由此可见,在组分、温度、压力三个变量中,只要固定温度或压力中的一个,另一个变量就可以代替x D作为被控变量。
在温度和压力中,究竟应选哪一个参数作为被控变量呢?从工艺合理性考虑,常常选择温度作为被控变量。
这是因为:第一,在精馏塔操作中,压力往往需要固定。
只有将塔操作在规定的压力下,才易于保证塔的分离纯度,保证塔的效率和经济性。
如塔压波动,就会破坏原来的汽液平衡,影响相对挥发度,使塔处于不良工况。
同时,随着塔压的变化,往往还会引起与之相关的其他物料量的变化,影响塔的物料平衡,引起负荷的波动。
第二,在塔压固定的情况下,精馏塔各层塔板上的压力基本上是不变的,这样各层塔板上的温度与组分之间就有一定的单值对应关系。
由此可见,固定压力,选择温度作为被控变量是可能的,也是合理的。
在选择被控变量时,还必须使所选变量有足够的灵敏度。
在上例中,当x D变化时,温度T D的变化必须灵敏,有足够大的变化,容易被测量元件所感受,且使相应的测量仪表比较简单、便宜。
此外,还要考虑简单控制系统被控变量间的独立性。
假如在精馏操作中,塔顶和塔底的产品纯度都需要控制在规定的数值,据以上分析,可在固定塔压的情况下,塔顶与塔底分别设置温度控制系统。
但这样一来,由于精馏塔各塔板上物料温度相互之间有一定联系,塔底温度提高,上升蒸汽温度升高,塔顶温度相应亦会提高;同样,塔顶温度提高,回流液温度升高,会使塔底温度相应提高。
也就是说,塔顶的温度与塔底的温度之间存在关联问题。
因此,以两个简单控制系统分别控制塔顶温度与塔底温度,势必造成相互干扰。
使两个系统都不能正常工作。
所以采用简单控制系统时,通常只能保证塔顶或塔底一端的产品质量。
工艺要求保证塔顶产品质量,则选塔顶温度为被控变量;若工艺要求保证塔底产品质量,则选塔底温度为被控变量。
如果工艺要求塔顶和塔底产品纯度都要保证,则通常需要组成复杂控制系统,增加解耦装置,解决相互关联问题。
从上面举例中可以看出,要正确地选择被控变量,必须了解工艺过程和工艺特点对控制的要求,仔细分析各变量之间的相互关系。
选择被控变量时,一般要遵循下列原则:①被控变量应能代表一定的工艺操作指标或能反映工艺操作状态,一般都是工艺过程中比较重要的变量;②被控变量在工艺操作过程中经常要受到一些干扰影响而变化。
为维持被控变量的恒定,需要较频繁的调节;③尽量采用直接指标作为被控变量,当无法获得直接指标信号,或其测量和变送信号滞后很大时,可选择与直接指标有单值对应关系的间接指标作为被控变量;④被控变量应能被测量出来(可测性),并具有足够大的灵敏度;⑤选择被控变量时,必须考虑工艺合理性和国内仪表产品现状;⑥被控变量应是独立可控的(可控性)。
7.3操纵变量的选择7.3.1 操纵变量与干扰变量在自动控制系统中,把用来克服干扰对被控变量的影响,实现控制作用的变量称为操纵变量。
最常见的操纵变量是介质的流量。
此外,也有以转速、电压等作为操纵变量的。
在本章第一节举的例子中,图7-1所示的液位控制系统,其操纵变量是出口流体的流量;图7-2所示的温度控制系统,其操纵变量是载热体的流量。
当被控变量选定以后,接下去应对工艺进行分析,找出有哪些因素会影响被控变量发生变化的。
一般来说,影响被控变量的外部输入往往有若干个而不是一个,在这些输入中,有些是可控(可以调节)的,有些是不可控的。
原则上,是在诸多影响被控变量的输入中选择一个对被控变量影响显著而且可控性良好的输入,作为操纵变量,而其他未被选中的所有输入量则视为系统的干扰。
下面举一实例加以说明。
图7-7是炼油和化工厂中常见的精馏设备。
如果根据工艺要求,选择提馏段某块塔板(一般为温度变化最灵敏的板,称为灵敏板)的温度作为被控变量。
那么,自动控制系统的任务就是通过维持灵敏板上温度恒定,来保证塔底产品的成分满足工艺要求。
从工艺分析可知,影响提馏段灵敏板温度T灵的因素主要有:进料的流量(Q入)、成分(x 入)、温度(T入)、回流的流量(Q回)、回流液温度(T回)、加热蒸汽流量(Q蒸)、冷凝器冷却温度及塔压等等。
这些因素都会影响被控变量(T灵)变化,如图7-8所示。
现在的问题是选择哪一个变量作为操纵变量。
为此,可先将这些影响因素分为两大类,即可控的和不可控的。
从工艺角度看,本例中只有回流量和蒸汽流量为可控因素,其他一般为不可控因素。